Description

The Si2169D integrates digital demodulators for first and second generation DVB standards (DVB-T2/T/C/S/S2 and S2X) in a single advanced CMOS die. Leveraging Silicon Labs’ proven digital demodulation architecture, the Si2169D achieves excellent reception performance for each media while significantly minimizing front-end design complexity, cost, and power dissipation. Connecting the Si2169D to a hybrid TV tuner or digital only tuner, such as Silicon Labs’ Si217x/5x/4x devices, results in a high-performance and cost optimized TV or STB front-end solution.

Silicon Labs internally developed DVB-T2, including T2-Lite, demodulator can accept a standard IF (36 MHz) or low-IF input and support all modes specified by the DVB-T2 standard. Main features of the DVB-T2 mode are 256 QAM with rotated constellations, SISO and MISO support, FEF management, fully autonomous signal acquisition including automatic L1 signaling parsing, 600 kHz acquisition range, support for all pilot patterns, and DVB-T2/T auto-detection.

DVB-T, DVB-C, and DVB-S2/S demodulators are next-generation enhanced versions of proven and broadly-used Silicon Labs’ Si2169/68/67/66/64/62/60 devices.

The satellite reception allows demodulating widespread DVB-S, DIRECTV™ (DSS), DVB-S2, DIRECTV™ (AMC) legacy standards, and new Part II of DVB-S2 (S2X) satellite broadcast standard. A zero-IF interface (differential) allows for a seamless connection to market proven satellite silicon tuners. Si2169D embeds DiSEqC™ 2.0 LNB interface for satellite dish control and an equalizer to compensate for echoes in long cable feeds from the antenna to the satellite tuner input.

The cable reception allows demodulating widely deployed DVB-C legacy standard (ITU-T J.83 Annex A/C) and the Americas’ cable standard (ITU-T J.83 Annex B).

The Si2169D offers an on-chip blind scan algorithm for DVB-S/S2/S2X and DVB-C standards, as well as a blind lock function. The Si2169D programmable transport stream output interface provides a flexible range of output modes and is fully compatible with all MPEG decoders or conditional access modules to support any customer application.

Features

- Pin-to-pin compatible with all Si216x/8x single demods family
- API compatible with all single and dual demods families
- DVB-T2 (ETSI EN 302 755-V1.4.1) with T2-Lite (Annex I)
 - Bandwidth: 1.7, 5, 6, 7, and 8 MHz
 - NorDig Unified 2.5 and D-Book 8 compliant
- DVB-S2 (ETSI EN 302 307-1 V1.4.1)
 - QPSK/8PSK demodulator
 - QPSK/8PSK, 8/16/32APSK demodulator
 - Roll-off factors from 0.05 to 0.35
- DVB-T (ETSI EN 300 744)
 - OFDM demodulator and enhanced FEC decoder
 - NorDig Unified 2.5 and D-Book 8 compliant
- DVB-C (ETSI EN 300 393-2) and ITU-T J.83 Annex A/B/C
 - QAM demodulator and FEC decoder
 - 1 to 7.2 MSymbol/s
- DVB-S (ETSI EN 300 421) and DSS supported
 - QPSK demodulator and enhanced FEC decoder
 - 1 to 45 MSymbol/s for all satellite standards (<40 MSp/s in 32APSK)
 - LDPC and BCH FEC decoding for T2 and S2 standards
 - I2C serial bus interfaces (master and host)
 - Firmware control (embedded ROM/NVM)
 - Upgradeable with patch download via fast SPI or I2C (broadcast mode supported)
 - Flexible TS output interface (serial, parallel, and slave)
 - DiSEqC™ 2.0 interface and Unicable™ support for satellite
 - Fast lock times for all media
 - Low power consumption
 - Two power supplies: 1.2 and 3.3 V
 - 7x7 mm, QFN-48 pin package, Pb-free/RoHS compliant

Applications

- iDTV: on-board design or in a NIM
- Advanced multimedia STB, PVR, and Blu-ray recorders
- PC-TV accessories
Si2169-D60
DVB-T2/T/C/S2/S2X Digital TV Demodulator

Selected Electrical Specifications
($T_A = –10$ to $75 \, ^\circ C$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input clock reference</td>
<td></td>
<td>4</td>
<td>—</td>
<td>30</td>
<td>MHz</td>
</tr>
<tr>
<td>Supported XTAL frequency</td>
<td></td>
<td>16</td>
<td>—</td>
<td>30</td>
<td>MHz</td>
</tr>
<tr>
<td>Total power consumption DVB-T2</td>
<td></td>
<td>—</td>
<td>356</td>
<td>—</td>
<td>mW</td>
</tr>
<tr>
<td>DVB-T2'</td>
<td></td>
<td>—</td>
<td>182</td>
<td>—</td>
<td>mW</td>
</tr>
<tr>
<td>DVB-C3</td>
<td></td>
<td>—</td>
<td>142</td>
<td>—</td>
<td>mW</td>
</tr>
<tr>
<td>DVB-S2</td>
<td></td>
<td>—</td>
<td>421</td>
<td>—</td>
<td>mW</td>
</tr>
<tr>
<td>DVB-S5</td>
<td></td>
<td>—</td>
<td>230</td>
<td>—</td>
<td>mW</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>2 layer PCB</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>4 layer PCB</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>°C/W</td>
</tr>
<tr>
<td>Power Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{DD_V_CORE}$</td>
<td></td>
<td>1.14</td>
<td>1.20</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>$V_{DD_V_ANA}$</td>
<td></td>
<td>3.00</td>
<td>3.30</td>
<td>3.60</td>
<td>V</td>
</tr>
<tr>
<td>$V_{DD_V_IO}$</td>
<td></td>
<td>3.00</td>
<td>3.30</td>
<td>3.60</td>
<td>V</td>
</tr>
</tbody>
</table>

Notes:
1. Test conditions: 8 MHz, 256-QAM, 32K FFT, CR = 3/5, GI = 1/128, PP7, C/N at picture failure, parallel TS.
2. Test conditions: 8 MHz, 8K FFT, 64-QAM, parallel TS.
3. Test conditions: 6.9 Mbaud, 256-QAM, parallel TS.
4. Test conditions: 32 Mbaud, CR = 3/5, 8PSK, pilots On, C/N at picture failure, parallel TS.
5. Test conditions: 30 Mbaud, CR = 7/8, at QEF: BER = 2 x 10^{-4}, parallel TS.

Pin Assignments

Selection Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si2169-D60-GM</td>
<td>DVB-T2/T/C/S2/S2X Digital TV Demodulator, 7x7 mm QFN-48</td>
</tr>
</tbody>
</table>