- AN762
SILICON LABS

MODULAR BOOTLOADER FRAMEWORK FOR SILICON LABS
SIMXXXXX MICROCONTROLLERS

1. Introduction

A bootloader enables device firmware upgrades (DFU) without the need for dedicated, external programming
hardware. All Silicon Labs SiMxxxxx MCUs with Flash memory are “self-programmable”, i.e., code running on the
MCUs can erase and write other parts of the code memory. A bootloader can be programmed into these devices to
enable initial programming or field updates of the application firmware without using a Serial Wire or JTAG adapter.
The firmware update is delivered to the MCU via a communication channel that is typically used by the application
for its normal operation, such as UART, USB, SPI, 12C, CAN, Ethernet, or over a wireless link.

This application note describes a modular bootloader framework that can be used to implement a bootloader
system for any communication channel. The framework is structured in such a way as to be able to both re-use
most of the code as-is across different Silicon Labs MCU families and to use it with various communication
channels and data sources. Additional related application notes describe the interface-specific implementation
details for various communication channels, such as UART or USB. These documents are available at
http://www.silabs.com/products/MCU/Pages/ApplicationNotes.aspx

2. SiMxxxxx Modular Bootloader Framework Overview

The SiMxxxxx modular bootloader framework consists of the following components:
m Target MCU

m Master programmer

m Data source

The goal of the bootloader framework, shown in Figure 1, is to provide a mechanism for transferring a firmware
image stored in the data source to the target MCU’s flash memory. The framework provides the software necessary
to manage the firmware update process and is based on the USB Device Firmware Upgrade specification. To
ensure compatibility with all SiMxxxxx devices, all device-specific and protocol-specific functionality is abstracted,
making possible a variety of different and inter-operable implementations. For example, a master programmer and
data source implemented in a PC application can support communication over USB or UART to accommodate
different classes of target MCUs that all utilize the same framework. The master programmer can also be
implemented in a dedicated hardware solution to reduce programming time and maintain compatibility with a PC
based solution.

Target MCU Master Programmer Data Source
Firmware A [\ A A\
Flash Control . Comm. Comm. Data Source
Interface Ir'clage A Interface () Interface Interface () (D [P
anager | 4
A
A 4
i . X . Non-Volatile Memory
Device Firmware Upgrade (DFU) Device Firmware Upgrade (DFU)
Device State Machine Host State Machine
Target MCU Filrr:]n;/\éaere Filrr:’]n;/\éaere
Flash M
D Iy File #1 File #2
. User (.DFU) (.DFU)
Device Boot Handler e

Figure 1. SiMxxxxx Modular Bootloader Framework Overview

Rev. 0.1 5/13 Copyright © 2013 by Silicon Laboratories AN762

http://www.silabs.com/products/MCU/Pages/ApplicationNotes.aspx

AN762

3. Related Documentation

This framework description relies upon the USB Device Class Specification for Device Firmware Upgrade available
from http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf

Application Note AN763 documents an example implementation of a UART and USB bootloader based on this
framework. The target device family is the SiM3U1xx, and the master programmer is implemented as a PC
application that uses the Windows file system as its data source. Full source code for the target MCU and master

programmer are distributed with the framework code as part of the software accompanying AN762.

I

I I

Target MCU Master Programmer
Firmware |\ SLABDFU.dII
Flash Control Image File Comm. (UART 0SB)
Interface Interface
Manager N | 4 Comm.

Data Source

Windows File System

Interface

Device Firmware . .

Device Firmware Upgrade (DFU) Upgrade (DFU) Fixed or Removable Drive

Device State Machine Host State Machine

Target MCU i Firmware Firmware
Image Image
Flasn Memory File #1 File #2
Device Boot Handler Grﬁ][:::fcag:er (.DFU) (.DFU)

Figure 2. UART/USB Bootloader Implementation
. L4
2 Rev. 0.1 @

http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/devclass_docs/usbdfu10.pdf
http://www.usb.org/developers/devclass_docs/usbdfu10.pdf

AN762

4. Using the SiMxxxxx Bootloader Framework Software

The framework software for the target MCU bootloader distributed with this application note consists of the
following modules:

m DFU — hardware and protocol independent implementation of the DFU device state machine. This module is
handed code execution during the firmware update process and performs API function calls into COMM and
FILEMGR as needed to perform the firmware update. All shared memory buffers reside in the DFU module and
are accessed from the other modules with a pointer.

m FILEMGR — hardware and protocol independent DFU file manager responsible for decoding and validating
incoming DFU files and committing them to Flash memory. This module is also responsible for assembling a
DFU file containing the current firmware image on firmware uploads.

FLCTL — hardware specific flash module responsible for performing low level Flash operations.
COMM — hardware specific communication interface responsible for the guaranteed delivery and reception of
error-free data packets to support communication between the DFU module and the master programmer.

m DEVICE — hardware specific boot handler responsible for checking the validity of the application image in
Flash, checking for trigger sources, and setting the appropriate trigger flag if a firmware update is required.

m MAIN — starting point of code execution and responsible for jumping to the user application unless a firmware
update is pending.

In addition, the framework software has a user configuration file userconfig.h containing various compile time
options. The global.h header file contains all symbols defined in the project and is included at the top of every C
source file.

. L4
@ Rev. 0.1 3

SILICON LABS

AN762

5. Target MCU Bootloader Design

The target MCU bootloader is the entry point of code execution following each device reset (or “boot”). The main
purpose of the bootloader is to run (or “load”) an application or operating system. The bootloader performs
application image verification prior to transferring control and also manages firmware updates. The bootloader
resides at the beginning of program memory and co-exists with other applications.

5.1. Target MCU Bootloader Functional Description

Figure 3 shows a block diagram of the target MCU bootloader. The first module executed from reset is the device
boot handler, which makes a decision to transfer control to the user application or initiate a firmware upgrade
operation. During normal operation, the device boot handler is transparent to the main application. If the device
boot handler determines that a firmware upgrade is needed, then control is transferred to the Device Firmware
Upgrade (DFU) device state machine. The DFU device state machine receives a firmware image over the
communication interface and passes it onto the firmware image file manager which validates the new firmware
image and programs it into Flash. The Flash control interface provides low-level write and erase functionality.

Target MCU
Firmware
Flash Control ImagelEils Comm.
Interface Interface
Manager

Device Firmware Upgrade (DFU)
Device State Machine

Target MCU
Flash Memory

Device Boot Handler

Figure 3. Target MCU Bootloader

5.2. Device Boot Handler

The device boot handler begins executing after each device reset and makes a decision to transfer control to the
user application or initiate a firmware upgrade. Each device specific implementation of the device boot handler
needs to perform the following functions:

1. Disable watchdog timer and enable the APB clock to all modules.
2. Determine the amount of Flash and RAM in the device. This will later be used to validate incoming firmware
image files.

3. Check for any firmware update trigger conditions. The trigger conditions will vary by implementation and are
meant to provide a mechanism by which a firmware update can be requested by the main application or by the
end user (e.g. a factory reset button on an end device).

4. Validate the main application firmware image. The validation will vary by implementation with a minimum
implementation checking only that a valid stack pointer and reset vector address are present. A full-featured
implementation can perform a CRC check on the entire application space to determine validity.

5. If a valid application is detected and none of the firmware updated triggers have been set, then the main routine
will transfer control to the user application. Otherwise, set the appropriate trigger so that upon exit, control is
transferred to the DFU device state machine to perform a firmware update.

. L4
4 Rev. 0.1 @

SILICON LABS

AN762

5.3. DFU Device State Machine

The DFU device state machine is the primary command interpreter for the device once it has entered bootload
mode. Figure 4 shows a layout of the active framework modules when the device is in bootload mode. The DFU
device state machine manages the firmware update process and receives commands directly over the
communication interface by calling the COMM Receive (buffer, length) function provided by the COMM
module.

Target MCU (Bootload Mode)

Flash Control Firmware DFU Device Communication
Target MCU Interface Image File State Interface
> Manager —— Machine
Flash Memory
(FLCTL) (FILEMGR) (DFU) (COMM)

Figure 4. Target MCU Bootloader in Bootload Mode

The two primary operations that can be requested by the master programmer are firmware upload and download.
Upon receiving the appropriate command to initiate an operation, the DFU module calls the API functions provided
by FILEMGR to recall (upload) or store (download) a firmware image file. The DFU state machine is agnostic of the
contents or format of the firmware image file and relies on the FILEMGR module to handle all tasks related to
validating and decoding the firmware image file in a download operation or creating a firmware image file in an
upload operation. The DFU module sends data back to the host by calling the COMM Transmit (buffer,
length) function provided by the COMM module.

The DFU device state machine implementation is based on the firmware upgrade procedure described in the USB
Device Firmware Upgrade Specification, Revision 1.1, with added flexibility to allow the firmware update to take
place over any communication interface. In this implementation, the bitManifestationTolerant defined in the
specification will always be set to 1 and the USB Reset has been replaced by the vendor specific DFU_RESET
command. The command format, which is based on the USB DFU specification, is shown in Figure 5. All multi-byte
fields are encoded in little endian.

\

DFU Command Format

bRequest wValue windex wlLength Data
DFU Reserved Reserved Tr;etzgrir:]bﬁ]reof \/Lzrrl]att):]e

Command| Setto 0x0000 Set to 0x0000 yies in g
Data field Data Field

Figure 5. DFU Device State Machine Command Format

. L4
@ Rev. 0.1 5

SILICON LABS

AN762

Figure 6 shows a typical data exchange between the DFU state machines on the master programmer and the
target device. In this simple example, the master programmer is downloading a firmware image file that contains
three blocks, with 1024 bytes per block. The firmware image file is representative of a small application, such as
blinky, that has 2 kB of executable code and a 1 kB information page. Block 0 of the file is the information page and
Block 1 and Block 2 contain executable code.

povice Master
Device prapaster

dfulDLE

dfuDNLOAD-
SYNC

f,——————————

FILEMGR
Validate

FILEMGR
Initialize
E——

dfuDNLOAD-
IDLE

dfuDNLOAD-
SYNC

l———————————

FILEMGR
Continue

o

dfuDNLOAD-
IDLE

dfuDNLOAD-
SYNC

f———————

FILEMGR
Continue

E—

dfuDNLOAD-
IDLE

dfuMANIFEST-
SYNC

I —

FILEMGR
Finish

I

dfulDLE

DFU_DNLOAD (Block 0 — information block, 1024 bytes)
DFU_GETSTATUS

”

DFU DNLOAD (Block 1, 1024 bytes)
DFU_GETSTATUS

”

DFU_DNLOAD (Block 2, 1024 bytes)
DFU_GETSTATUS

s

DFU_DNLOAD (0 bytes)
DFU_GETSTATUS

”

Figure 6. Data Exchange During Download Operation

g &
Rev. 0.1 @

SILICON

LABS

AN762

The DFU device state machine has six states and seven commands used to transition between states. DFU device
states and commands are listed in Table 1 and Table 2. The DFU state machine is initialized to the dfulDLE state if
the application space contains a valid firmware image and a firmware upgrade is requested through one of the
internal or external trigger sources. If a corrupted application image is detected, then the state machine is initialized
to the dfuERROR state. The master programmer must transition the state machine to the dfulDLE state by sending
a DFU_CLRSTATUS command before beginning an upload or download operation. The DFU device state machine
is shown in Figure 7. Please see the USB DFU specification for a detailed description of each state and command.

DFU_Firmware_Update(initialstate)

State
2,3,5,6,9,10

State
2,59,10

FW Verify Failed

DFU_ABORT

DFU_GETSTATE DFU_GETSTATUS

Note: Device will remain in
dfuDNLOAD-SYNC until
the block is complete.

DFU_RESET
(software reset)

DFU_DNLOAD 3
(wLength > 0, bitCanDnload=1) dfuDNLOAD-SYNC

DFU_UPLOAD
(bitCanUpload=1)

DFU_GETSTATUS
(block complete)

DFU_UPLOAD
(Short Frame)

DFU_DNLOAD
(wLength > 0)

DFU_UPLOAD

9

DFU_DNLOAD
(wLength = 0)

5
dfuDNLOAD-IDLE

dfuMANIFEST-
SYNC

dfuUPLOAD-IDLE

Figure 7. DFU Device State Machine Transition Diagram

. L4
@ Rev. 0.1 7

SILICON LABS

AN762

Table 1. DFU Device States

State Number Description
dfulDLE 2 The Idle state
dfuDNLOAD-SYNC 3 Used for synchronizing firmware downloads
dfuDNLOAD-IDLE 5 Used for synchronizing firmware downloads. Indicates block complete
dfuMANIFEST-SYNC 6 Provides current state information to the master programmer
dfuUPLOAD-IDLE 9 Used for uploading the firmware image from the target MCU
dfuERROR 10 Used to indicate an error condition
Note: The appIDLE, appDETACH, dfuDNBUSY, dfuMANIFEST, and dfuMANIFEST-WAIT-RESET states are not
implemented.
Table 2. DFU Device Commands
Command Value Description
DFU_DNLOAD 1 Used for downloading a firmware image file to the target MCU
DFU_UPLOAD 2 Used for uploading the current firmware image from the target MCU
DFU_GETSTATUS 3 Allows the master programmer to obtain detailed information about the
error when the target MCU is in the dfuERROR state
DFU_CLRSTATUS 4 Allows the master programmer to clear the error condition
DFU_GETSTATE 5 Provides current state information to the master programmer
DFU_ABORT 6 Allows a firmware upgrade to be aborted
DFU_RESET 7 Used to trigger a software reset on the target MCU

Note: The DFU_DETACH command is not implemented. This command should be supported in the main application
when the primary communication interface is USB. The DFU_RESET command is vendor specific.

. L4
8 Rev. 0.1 @

SILICON LABS

AN762

5.4. Communication Interface (COMM)

The communication interface module (COMM) provides the DFU state machine with a protocol independent API
for communicating with the master programmer, and it is responsible for guaranteed delivery and reception of
error-free data. The following features should be implemented by the communication interface:

m Variable Payload Size

m Error Checking

m Acknowledgment

m Automatic Retransmission

The COMM interface may be implemented using any communication protocol available to the target MCU. In a

USB implementation, the error checking, acknowledgment, and automatic retransmission are automatically
handled by hardware. In other protocol implementations, such as UART, these functions are handled in software.

The COMM module implements the following API functions:

B void COMM Init (void)
Initializes the communication interface.

B uint32 t COMM Receive (uint8 t* rx buff, uint32 t length)
Blocking function receives up to <length> bytes over the communication interface and stores them at <rx_buff>.
Returns a status code indicating the number of bytes in the receive buffer.

B uint32 t COMM Transmit (uint8 t* tx buff, uint32 t length)
Blocking function transmits <length> bytes from <tx_buff> over the communication interface and waits for an
acknowledgment. Returns the number of bytes successfully transmitted.

5.5. Firmware Image File Manager

The firmware image file manager is responsible for receiving firmware image files during downloads and for
generating firmware image files during uploads. The files generated during uploads must be usable in a
subsequent download to allow the master programmer to retrieve and archive a device’s firmware prior to
downloading a different firmware image.

The FILEMGR module implements the following API functions:

B uint32 t FILEMGR Get Block Size (void)
Returns the block size of the underlying program memory. The block size is typically the Flash sector size.

B uint32 t FILEMGR Validate Dnload(uint8 t* buffer, uint32 t length)
Verifies the first block of the firmware image file and erases the entire application space. Returns a status code
indicating success or failure.

B uint32 t FILEMGR Initialize Dnload(uint8 t* buffer, uint32 t length)
Verifies the first block of the firmware image file and erases the entire application space. Returns a status code
indicating success or failure.

B uint32 t FILEMGR Continue Dnload(uint8 t* buffer, uint32 t length)
Writes a block of the firmware image file to the application space and verifies that it was properly written. Blocks
must be sent consecutively. Returns a status code indicating successful block processing.

B uint32 t FILEMGR Finish Dnload(void)
Typically called after a zero-length packet is received indicating that the download is complete. This function
verifies the entire application image and returns a status code which indicates success or failure.

B uint32 t FILEMGR Start Upload(uint8 t* buffer, uint32 t length)
Fills <buffer> with the first block of the firmware image file. Returns the number of valid bytes in <buffer>.

B uint32 t FILEMGR Continue Upload(uint8 t* buffer, uint32 t length)
Copies a block from application space into <buffer>. Blocks must be read consecutively. Returns a status code
which includes the number of bytes written into <buffer>. A return value of zero indicates upload complete.

. L4
@ Rev. 0.1 9

SILICON LABS

AN762

The FILEMGR implementation included in the bootloader framework defines a specific format for the firmware
image file. The firmware image file manager will reject any firmware images that do not follow this format and will
always return image files in this format in response to an upload command.

FIRMWARE uint8_t bDfuFileRevision_Minor;

IMAGE FILE uint8_t bDfuFileRevision_Major;
INFORMATION | uint8 t bAppRevision_Minor;

BLOCK uint8_t bAppRevision_Major;

char sAppName[16]; // null terminated string
char sTargetFamily[16]; / null terminated string
uint8_t bReserved[12];
uint32_t wAppSize;
uint32_t wCrgc;
uint32_t wSignature;
uint32_t wlLock;
uint32_t wAppStartAddress;
uint32_t wBlockSize;
uint32_t wFlashKey_A;
uint32_t wFlashKey_B;

Pad with 0x00 to achieve a full block with wBlockSize bytes.

EXECUTABLE |[Executable code with a maximum of wAppLength bytes.
CODE Pad with OxFF to achieve an integer number of blocks, each
block is wBlockSize bytes.

Figure 8. DFU File Format

5.6. Flash Control Interface

The flash control interface provides low-level routines to write and erase flash memory.
The FLCTL module implements the following API functions:
B uint32 t FLCTL Init(void)
Performs any Flash module initialization.
B uint32 t FLCTL Get Sector Size(void)
Returns the number of bytes in each Flash sector.
B uint32 t FLCTL Write(uint8 t* buffer, uint32 t address, uint32 t length)
Copies <length> bytes from buffer to flash starting at <address>. Returns number of bytes written.
B uint32 t FLCTL PageErase(uint32 t address)
Erases one flash page starting at <address>. Returns a status code indicating success or failure.

. L4
10 Rev. 0.1 @

SILICON LABS

AN762

5.7. Target MCU Flash Memory Usage

Program memory on Cortex-M series MCUs is located at address 0x0000_0000 through Ox1FFF_FFFF. The target
MCU’s program memory is divided into two sections, one for the bootloader and another for the application. On
reset, code execution always begins at 0x0000_0000 and this is where the bootloader is located. The size of the
bootloader depends on the implementation. The bootloader also stores information about the application image at
the end of Flash. Figure 9 shows the target MCU program memory map.

0x0000_0000 —m»

Bootloader FW Project

Application Start

0x0000_1000

Application FW Project

Maximum Application —
Size

Bootloader Info Block [TOCK

Flash Size |

RESERVED

0x1FFF_FFFF

Figure 9. Target MCU Program Memory Map

5.8. Target MCU Bootloader Features

A number of features that improve the robustness of the system and allow it to tolerate unexpected events such as
power failures or cable disconnects during the firmware update process are recommended. These fault-tolerance
enhancements and other features are described in the following sections.

5.8.1. Self-Update Prevention

To prevent the device from becoming inaccessible over the communication interface, it is recommended that the
bootloader be designed to disallow self-updates. This can easily be implemented by including boundary checks on
the received firmware image to prevent erasure of the bootloader firmware itself.

5.8.2. Independent Interrupt Vector Table

The Cortex-M architecture makes it very easy to re-direct interrupt vectors. The address of the interrupt vector
table is stored in an NVIC register called the vector table offset register. Using a CMSIS compliant library, the offset
can be accessed by “SCB->VTOR”. The bootloader sets the interrupt vector table offset to the start of the
application firmware immediately prior to transferring control to application. Since the bootloader and the
application have independent interrupt vector tables, the bootloader itself can utilize interrupts without affecting the
interrupt latency of the main application.

5.8.3. Non-Resident Flash Keys

If the MCU experiences an out-of-spec power ramp-up, a noisy external system clock, or other condition which
disrupts normal code execution, it is possible for the Flash write/erase routines in the bootloader to be inadvertently

. L4
@ Rev. 0.1 11

SILICON LABS

AN762

executed. To remove the possibility of Flash corruption due to inadvertent writes and erases, it is recommended
that the Flash unlock key codes not reside within the bootloader firmware. In the absence of these key codes, the
MCU will not be able to modify the contents of Flash. During a firmware update process, the Flash key codes can
be passed to the bootloader through the firmware image file and held in RAM until the firmware update completes.
After the firmware update, the bootloader may clear the key codes from RAM, which prevents the possibility of
Flash being modified after the new firmware image is programmed.

5.8.4. Page-by-Page CRC Check

To ensure that the image sent is written to Flash memory without any errors, a page-by-page CRC check may be
performed during the firmware update process. If the CRC calculated on the contents of flash does not match the
CRC of the RAM buffer, the firmware update is aborted, and the device enters the dfuERROR state.

5.8.5. Fail-Safe Bootloader Entry

Under normal circumstances, the bootloader will be entered when application code sets a trigger. If application
code ever becomes stuck in a state where it is not able to call the bootloader (due to a firmware bug), a fail-safe
bootloader entry method that checks a port pin state on device reset can be implemented. If this GPIO pin is
asserted at that time, the bootloader will immediately enter bootload mode.

5.8.6. Application Signature and CRC

In some implementations, a signature and CRC may be appended at the end of the application to allow the
bootloader code to verify the application image after each reset.

6. Master Programmer and Data Source Design

The master programmer initiates the firmware update process and transfers the firmware image file stored in the
data source to the target MCU. The master programmer can also retrieve the current firmware image from the
target MCU for archiving prior to performing a firmware update. The master programmer can be implemented in
custom hardware or as a PC application.

6.1. Master Programmer Functional Description

A block diagram of the master programmer is shown in Figure 10. The DFU host state machine communicates with
the DFU device state machine over the communication interface to perform firmware uploads and downloads. The
data source interface provides a place to read or write the firmware image file. In most implementations, the DFU
host state machine will also provide a user interface with progress indicator. This may be in the form of a PC
application or an LCD on a custom hardware solution.

Master Programmer Data Source

Interface Interface

! ! §

Device Firmware Upgrade (DFU)
Host State Machine

Comm. Data Source < > Data Port

Non-Volatile Memory

A

Firmware Firmware
A Image Image
User File #1 File #2
Interface (.DFU) (.DFU)

Figure 10. Master Programmer and Data Source

. L4
12 Rev. 0.1 @

SILICON LABS

AN762

6.2. Communication Interface

The master programmer communication interface should be compatible with the communication interface on the
target device.

6.3. Data Source

The data source provides the application firmware image to the master programmer. Example data source
implementations include an OS file system, an EEPROM, or an SD flash memory card. The key requirement of the
data source is the ability to store and recall firmware image files in non-volatile memory. It is also important that the
data source have both read and write capability so that the firmware image file may be updated from time to time or
to support device backup and restore operations.

The data source interface can be implemented using a number of protocols that provide the ability to transfer data.
It is expected that the data read and written over the data source interface is reliable. The data source interface can
vary based on the implementation of the master programmer and the data source with an endless number of
implementation possibilities. For example, some systems may benefit from having the latest firmware image file
downloaded over a cellular network using a smartphone which is subsequently used to program the target MCU.

6.4. DFU Host State Machine

The DFU host state machine implements the firmware upgrade procedure described in the USB Device Firmware
Upgrade Specification, Revision 1.1, for a host device. It navigates the DFU device state machine described in
detail in "5.3. DFU Device State Machine" on page 5. The commands in Table 2 are used to transfer between
states to upload or download firmware.

6.5. User Interface

The user interface allows the user to initiate an upload or download operation and provide feedback on the
bootloader progress. The user interface will vary by implementation and could be a PC application or an LCD and
push-button interface.

7. Making an Application Bootloader-Aware

A stand-alone application that was designed to work on a target MCU can be modified to make it bootloader-aware
so that it can co-exist with the bootloader firmware. Because the bootloader does not share any on-chip resources
other than code space while the application is active, the modifications needed for the application are minimal. The
following steps can be used to make an application bootloader-aware:

1. Modify the starting address to be located at APPLICATION_START. This is typically done using a scatter file.
2. Ensure that the code size does not exceed the maximum application image size.

3. [Optional] Add code to allow the application to trigger a bootload operation.

8. Initial Programming Options

The target MCU needs to be programmed with the bootloader via the SerialWire interface before a firmware update
can take place via the chosen communication interface. During development, initial programming can be done
using the Silicon Labs IDE and the USB Debug Adapter. For a production environment, many options are available
based on production volume and need for serialization. The available programming options can be found here:
http://www.silabs.com/products/MCU/Pages/ProgrammingOptions.aspx

There are two ways to initialize the target MCU in a production environment:

1. Program just the bootloader firmware image on the target MCU using the SerialWire programming interface.
Application code is subsequently programmed using the bootloader.

2. Program a combined bootloader + application firmware image on the target MCU using the SerialWire
programming interface. Application code is programmed at the same time as the bootloader, saving a step in
the production flow and allowing the bootloader to be used primary for field updates.

. L4
@ Rev. 0.1 13

SILICON LABS

http://www.silabs.com/products/mcu/Pages/ProgrammingOptions.aspx

http://www.silabs.com/products/MCU/Pages/ProgrammingOptions.aspx

AN762

CONTACT INFORMATION

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

. L4
14 Rev. 0.1 @

SILICON LABS

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	2. SiMxxxxx Modular Bootloader Framework Overview
	3. Related Documentation
	4. Using the SiMxxxxx Bootloader Framework Software
	5. Target MCU Bootloader Design
	5.1. Target MCU Bootloader Functional Description
	5.2. Device Boot Handler
	Table 1. DFU Device States
	Table 2. DFU Device Commands

	5.5. Firmware Image File Manager
	5.6. Flash Control Interface
	5.8. Target MCU Bootloader Features
	5.8.1. Self-Update Prevention
	5.8.2. Independent Interrupt Vector Table
	5.8.3. Non-Resident Flash Keys
	5.8.4. Page-by-Page CRC Check
	5.8.5. Fail-Safe Bootloader Entry
	5.8.6. Application Signature and CRC

	6. Master Programmer and Data Source Design
	6.1. Master Programmer Functional Description
	6.2. Communication Interface
	6.3. Data Source
	6.4. DFU Host State Machine
	6.5. User Interface

	7. Making an Application Bootloader-Aware
	8. Initial Programming Options

