Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Corporate Identity

- **Corporate Overview**
 - Click [here](#) for Silicon Labs’ Corporate Overview homepage

- **Quality and Environmental Information**
 - Sony Green Partner Certificate
 - Quarterly Quality & Reliability Report
 - Additional information [here](#)

- **Investor Relations, Annual Report and Recent News**
 - Click [here](#) for Silicon Labs’ Investor Overview homepage
Content

▪ Corporate Overview
▪ Development Process
▪ Qualification Process
▪ Manufacturing Process
▪ Supplier/Technology Selection Strategy, Supply Chain Management
▪ Quality Overview
▪ Software Quality
▪ Customer Support
New Product Development Major Milestones

- **Concept & Planning**
 - Customer
 - Sales
 - Design & Apps
 - Manufacturing

- **Design**
 - Analog & Digital
 - Software
 - Test

- **Verification**
 - Applications
 - Qualification
 - Customer Sampling
 - Launch

- **Production**
 - Foundry
 - Assembly
 - Test
 - Pack & Ship
Product Development & Release to Manufacturing

Product Development & Release to Manufacturing follows a rigorous process with Management Review & Approval at key milestones

- **Product Development Process**
 - Concept, Architecture, Design and PG (Tapeout) – reviews and checklists at each stage

- **Release to Manufacturing (RTM) Process**
 - Engineering > Initial Production > Full Production
 - Formal reviews and checklists at each stage
 - Ship quantity limits increase with each phase
 - RTM addresses the following (not inclusive)
 - Probe – HW and SW
 - Final Test – HW and SW
 - Qualification
 - Validation & Verification
 - Test Optimization, offshore transfer
 - Cpk and statistical baselines for maverick lot detection
Design for Cost, Test and Manufacturing

- Every design is reviewed to assure robust manufacturability, testability, and cost optimization.
- Any risks identified are removed or minimized by methods such as:
 - Design changes
 - Extra qualification
 - Improved manufacturing capability or controls
 - Increased monitoring
- Reviews are held at the following milestones at a minimum:
 - NPI1
 - Pre-PG
 - Initial Production
Test Strategy

- **Design for Test Strategy**
 - Scan used for synthesized logic
 - Functional test modes employed to isolate functional blocks
 - Built in Self Test (BIST) features also utilized

- **Fault Coverage**
 - Minimum fault coverage required for production test release

- **At Speed Testing**
 - Analog, Functional, and Memory tests are tested at datasheet speeds

- **Test Insertions**
 - Each product is tested at its worst-case temperature at a minimum
 - Promotion to single temperature test from multi-temperature test follows a rigorous process
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Silicon Labs uses industry standard test methods to evaluate products and follows the guidelines of:

- EIA/JESD 47 - Stress-Test-Driven Qualification of Integrated Circuits
- AEC-Q100 - Stress Qualification For Integrated Circuits
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Statistical Bin Limits (SBL)

- SBLs are used at these process steps
 - Foundry Wafer Acceptance Test (WAT)
 - Wafer Probe
 - Final Electrical Test
- Limits are established to identify abnormal (maverick) material lots
- Limits are based on overall yields or on specific tests or test groups
- The manufacturing requirements system (MRP) system automatically places on hold lots that fail to meet limits
- There are two levels of hold/notification
 - Level 1 – Engineering: held for product engineer investigation and validation before release
 - Level 2 – Material review board (MRB): held for product engineer and quality manager investigation and validation before release
Product Traceability

- Device packages are marked with a product identification number and a tracecode captured in our ERP system
- Tracecode is also marked on the packing labels
- Tracecode provides a link to the processing history, from wafer number to shipment

EXAMPLE: EFM8BB21F16I-C-QFN20R

- Package Type: 20-QFN-3x3
- Mark Method: Laser
- Logo: None
- Tracecode Type: Standard
- Pin 1 Mark: Circle = 0.25mm diameter (Top Left corner)
- Font Size (mm): 0.50mm Right-Justified
- Line 1 Mark Format: Device Number (BB21)
- Line 2 Mark Format: Device Number (F16I)
- Line 3 Mark Format: TTTTTT = Mfg Code (from the Assembly PO)
- Line 4 Mark Format:
 - YY = Year of the packaging/assembly start
 - WW = Work Week of the packaging/assembly start
 - # = Device revision (A, B, etc.)
Silicon Labs follows JEDEC as the preferred industry standard

Quality Monitors

- **Electrical**: production samples are retested to datasheet limits. This sample method identifies defects introduced at the test process step or that have escaped the test process.

- **Visual/Mechanical**: production is sampled prior to final pack. Inspections coverage includes mark, count, label, cover tape workmanship, moisture barrier bag visual, lead location, part placement, and other workmanship items.

- **Reporting**: failures drive corrective actions and process/product improvements

- Quality data is reported in quarterly Quality & Reliability Report
Silicon Labs follows JEDEC as the preferred industry standard

- **Failure Rate Estimation:** A long-term, steady-state failure rate calculation allows circuit and system engineers to allocate failure rates at the component level during system design.

- **Failure in Time (FIT):** FIT represents the number of failures in a billion hours of operation. Silicon Labs reports FIT rates in its quarterly Quality & Reliability Report as curves and in tables for specific temperatures and assumptions.

- **Mean Time To Failure (MTTF):** inverse of FIT rate (1/FIT)

- **Failure Rate Calculation Method:** Long-term failure rates are estimated by applying the Arrhenius equation to data collected from long term operating life tests. Confidence factors of 90% and 60% are reported.
Critical to Quality (CTQ) parameters are controlled by Silicon Labs’ assembly partners.
Their performance is reported quarterly in CpK reports and reviewed by the Silicon Labs Supplier Managers.

<table>
<thead>
<tr>
<th>Process</th>
<th>CTQ Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Bond</td>
<td>Wire pull strength (g)</td>
</tr>
<tr>
<td></td>
<td>Ball shear strength (g)</td>
</tr>
<tr>
<td>Lead plating</td>
<td>Thickness (μ")</td>
</tr>
<tr>
<td>Saw/Singulation</td>
<td>Package Dimension (mm)</td>
</tr>
</tbody>
</table>
Change Management

- Silicon Labs follows the principles of JEDEC J-STD-046 for change management and notification
- Change Action Boards review and assure compliance for both supplier and internally initiated changes
 - Wafer Fab Changes
 - Assembly Changes
 - Materials Changes
 - Qualification of changes to JEDEC requirements if applicable
- Customer Notification
 - PCN – 90 day notification provided to customer
 - EOL – 180 for last orders, 360 days for final delivery to customer
 - Exceptions require cross-functional review and approval
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Supply Chain Process Overview

- Partner with world-class suppliers
- Manage products from development to customer delivery
- Support unexpected surges in demand
- Reliable, high volume supply
- Quality-centered assembly and test
- Dual sourced for capacity assurance
Global Supply Chain

- Taiwan
- China
- USA
- Europe
- Singapore

Wafer Fab

- Taiwan
- China
- Malaysia

Bump / Probe

- Taiwan
- Korea
- Malaysia
- Thailand
- China
- Singapore
- Philippines

Assembly / Test

- Taiwan
- Korea
- Malaysia
- Thailand
- China
- Singapore
- USA

Drop Ship

- Taiwan
- Korea
- Malaysia
- Thailand
- Singapore
- USA

- Distributors
- Direct customers
- Hubs

Customers

>20k customers
>20 distributors
IC Manufacturing Model - Fabless and Outsourced

FAB
TSMC, SMIC & others

ASSEMBLY TEST & SHIP
ASE, SPIL & others
ASE, KYEC & others

100% outsource
>90% outsource
Module Manufacturing Model – Outsourced Assembly

Components: Silicon Labs ICs & Third Party Suppliers
PCB ASSEMBLY: Delta, CDTech, Ryder, USI & others
TEST & SHIP: Contract Manufacturers and Silicon Labs Intl.

>90% outsource 100% outsource >90% outsource
Process technology, package choice and test platforms are carefully chosen based on:
- Technology availability and maturity at suppliers
- Technology roadmap of suppliers
- Technology reliability of suppliers
- Past and present execution (quality, cycle time, deliveries, operational efficiencies) from suppliers
- Material cost from the supplier and
- Cost of doing business with that supplier

Technology choices are made during development phase

Silicon Labs provides a second source when appropriate to ensure continuity of supply
Supplier Management

- Asia-based Assembly and Test Supplier Management
 - Provides Supplier initial Evaluation, Selection, and on-going Assessment
 - Performs Semiannual Strategic Business Reviews (SBRs) with key suppliers to review overall business, market trends, performance, cost reduction, capacity plans, product roadmaps and specific projects

- Austin-based Foundry Engineering manages the above for the wafer fab suppliers

- Key Suppliers are audited at least annually
 - Quality management systems (ISO 9001:2015 and IATF 16949:2016)
 - Environmental, Health & Safety (including ISO 14001:2015)
 - Social Accountability (RBA Code of Conduct)
 - Business parameters (delivery, cost, service, capacity)
 - Technology
 - Self assessment from a supplier is occasionally deemed adequate
Supplier Quality Assurance Monitoring Process

Outsourcing of Manufacturing Process Quality Assurance

Wafer Fab & Sort
- Defect Density
- FMEA / Control Plan
- In-coming Material Control
- SPC Monitoring
- Cpk Data Analysis
- Wafer Sort Probe Yield Monitoring
- Wafer Reliability Monitoring

Assembly
- DOE
- FMEA / Control Plan
- In-coming Material Control
- SPC Monitoring
- Cpk Data Analysis
- Critical to Process / Product Monitoring
- Assembly Yield Monitoring
- Reliability Monitoring

Final Test
- Product Characterization
- FMEA / Control Plan
- Test Program / Revision Control
- SPC Monitoring
- Test Yield Monitoring
- QA Electrical Gate ppm
- Reliability Monitoring

Pack & Ship
- Outgoing Visual Mechanical Gate ppm
- FMEA / Control
- Shipping Label Information Accuracy
Supply Chain Planning Process Overview

- **Silicon Labs conducts formal, monthly forecast meetings**
 - Distributors/Sales/Representatives required to give 12-month rolling forecast secured from Customers

- **Forecast provides base line for Silicon Labs supply chain**
 - Drives material starts, such as wafer
 - Triggers capacity planning activities
 - Identifies gaps in supply / demand
 - Provides demand snap-shot for inventory management
 - Provides supply / demand snap-shot for product / process management (e.g., PCN planning)

- **Supplier commitments input into the planning system**
 - Commitment is measured to On Time Delivery to First Commit Date in SAP

- **Real-time B2B process flows with key Suppliers and Distributors**
Demand/Supply Performance

- **Demand**
 - Demand monitoring performed on an on-going, daily basis
 - Review of backlog against the build plan
 - Build plan adjustments made in real time to manage changes at the Customer/part level

- **Supply Chain Metrics**
 - On time delivery to the Customer Requested Dock Date
 - On time delivery to the First Commit Date
 - Units committed vs. units produced
 - Cycle time
 - Early warning (Planned Finish Date <> Scheduled Commit Date)
Silicon Labs Distribution Support

- Receive weekly POS reports from Distributor
 - Includes shipments, backlog and forecast
- Monitor inventory at Distributor monthly
- Daily/Weekly communication with Distributor on current issues
- Provide latest delivery dates to Distributors on demand via reporting portal
Supply Chain Process Overview

Planning
- Demand Plan Consensus
- Manufacturing Requirements
- Supply / Demand Review
- Customer Allocation
- Supply Disconnects
- Operations Plan
- Revenue and Shipment Plan (Units, $)

Execution
- Trigger Wafer start
 - Monthly Execution
 - Weekly Execution
- Factory Schedules
- Backlog
- Inventory
- Orders
- Delivery Commitments

Customer
- CDP
- SCP

Customer Allocation
- Supply Disconnects
- Operations Plan
- Revenue and Shipment Plan (Units, $)

Planning
- Forecast, Backlog

Execution
- Daily Execution : AR Release
- Assembly
- Test
- Order Scheduling

Customer
- CDP
- SCP
Packing & Labeling

- Packing media available: tape & reel, tray and tube
- All finished goods are packed in a vacuum sealed Moisture Barrier Bag (MBB), including a Humidity Indicator Card (HIC) and desiccant
- Labels are automatically printed from the ERP System (SAP)
- Handling Units (HUs) may **not** contain more than two Batches

<table>
<thead>
<tr>
<th>Reel / MBB Inner Box / HU Label</th>
<th>Outer Box Shipping Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer and/or Silicon Labs P/N</td>
<td>Supplier Address</td>
</tr>
<tr>
<td>Trans ID#</td>
<td>Customer Address</td>
</tr>
<tr>
<td>Date Code / Trace Code</td>
<td>Customer or Silicon Labs P/N</td>
</tr>
<tr>
<td>Seal Date</td>
<td>Handling Unit #</td>
</tr>
<tr>
<td>Assembly Country</td>
<td>Assembly Country</td>
</tr>
<tr>
<td>Quantity</td>
<td>Quantity</td>
</tr>
<tr>
<td>MSL, Reflow Temperature, Bake Time, RoHS, “HF” and “Pb-Free” (if applicable) & Plating Type (e#)</td>
<td>“RoHS”, “HF” and “Pb-Free” symbol (if applicable)</td>
</tr>
</tbody>
</table>
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Quality & Environmental Systems

- Registered to ISO 9001 since Jun’00. Certified to ISO9001:2015 by TUV Rheinland of North America (link)
- Registered to ISO14001 since Dec’06. Certified to ISO14001:2015 by TUV Rheinland of North America (link)
- Certified Sony Green Partner since Aug’08 (link)

Quality Policy
Silicon Labs is committed to total customer satisfaction by:
- Providing differentiated products, solutions and services for a more connected world
- Exceeding customer needs through innovation and simplicity
- Continually improving our world-class quality management system

Environmental Policy
At Silicon Labs, we manage environmental matters as an integral part of our business by our commitment to:
- Designing, marketing, and selling environmentally friendly products,
- Continually improving our environmental performance and pollution prevention,
- Complying with applicable legal and other requirements that relate to our environmental aspects, and
- Minimizing the negative environmental impact of our business activities.
Quality Organization

Department Head

- Senior VP Worldwide Operations
 - Vice President and Business Executive
 - Quality & Environmental Systems Manager
 - Product Quality Engineering Manager
 - Device Analysis Lab Manager
 - Senior Director, Manufacturing & Quality
 - Supplier & Asia Quality Manager

- Location
 - Austin
 - Singapore
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Software Quality Summary

Software Quality Activities

- Software Development is driven by internal Software Quality Policy
- Practices are compatible with multiple standards (e.g., ISO 9001:2015)
- Execution of development is driven by business units
- Software Quality Compliance is assessed by the Quality team
- Evaluation methods include:
 - Internal Audits
 - Metrics, Key Product Indicators (KPIs)
 - Quality Incidents (QIs) and Software Quality Incidents (SQI)
 - Corrective Action Preventive Actions (CAPAs)
 - 3rd party Audits
 - Customer feedback
 - Customer Audits
Secure Software practices

- Silicon Labs has a Product Security Incident Response Team (PSIRT) and Process
- Product Incidents are tracked across business areas, by rate of arrivals, source of discovery, etc.
- Security advisories are issued based on multiple factors of issue involved
- Several security policies and procedures are in place and overseen by our Corporate Security team
- Internal initiatives drive improvements for secure software life cycle activities
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Software Quality
- Customer Support
Customer Support – Analysis & Response

- **Corrective Action & Continual Improvement**
 - Based on the Eight Discipline (8D) methodology

- **World Class In-House FA lab**
 - Decap, SEM, FIB capabilities
 - Cooperative with supplier FA capabilities as needed

- **Standard FA and 8D response times per JESD671**
 - Initial Failure Analysis: 7 workdays from suspect product receipt
 - 8D Containment: 5 workdays from customer notification or proof of failure (after Initial FA)
 - Final Failure analysis: 22 workdays from suspect product receipt
 - 8D Root Cause and Corrective Action Plan: 14 workdays from customer notification or root cause discovery (after Final FA)
Customer Support – Materials Data

Self-Serve Part Homogeneous Materials Data

Location: www.silabs.com/quality (requires registration and login)

After registration, you can access:

- RoHS, Halogen-free, PFOS/PFOA and REACH quick results and Certificates of Compliance
- Downloadable Material Declaration Data sheets (Acrobat pdf sheet or IPC 1752 class 6 XML format)
- Downloadable Homogeneous Materials test results
Customer Support – DA Lab Capabilities

Facility: 1580 sq.ft.

Debug
- 2 u-Probe Stations with various Semiconductor Parameter Analyzers and miscellaneous bench equipment
- QFI Scanning Optical Laser (1064nM & 1340nM) for TIVA/LIVA fault isolation
- QFI Photo Emission Si-CCD (500nm –1000nm)
- QFI MWIR-512 Thermography tool
- Hamamatsu Phemos 1000 EMMI/OBIRCH tool
- Multiprobe AFM Nanoprober
- Kleindieck SEM nanprober
- Optotherm Thermal Camera

ESD Characterization and Qualification
- Barth Transmission Line Pulse Tester
- 2 MK2 ESD and Latchup Testers
- Orion CDM Tester
- HPPI VF-TLP Tester

Imaging Equipment
- 3 High Power Optical Microscopes (1 with confocal capability)
- 2 Low Power Stereo Zoom Microscopes
- Image capture HW/SW for above
- Dual Beam FIB; FEI Helios Nanolab 660
- Jeol 7600 FE-SEM (750 KX max) with EDAX EDS System
- GE Micromex X-ray with 3D-CT capability
- OKOS Scanning Acoustic Microscope (C-SAM)
- Zygo Nexview Optical Surface Profiler

Deprocessing
- Reactive Ion Etcher
- 3 Polishing/Cross-section Stations and 2 ASAP backside milling machines
- Full wet lab for chemical deprocessing, etc.
Customer Support – FAQs

Several categories of frequently asked questions and answers can be found at www.silabs.com/quality including:

- **Corporate** (e.g. Governance, Locations, Financials)
- **Product** (e.g. Qualification, Traceability, Reporting)
- **Environmental** (e.g. Substance Database, Awards)
- **Quality** (e.g. Failure Analysis, 8Ds, ISO 9001:2015 & ISO 14001:2015 Registrations)
- **Operations** (e.g. Logistics, Supplier Management, Ordering)
Thank you!

SILABS.COM