Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Customer Support
Corporate Identity

- Corporate Overview
 - Click here for Silicon Labs’ Corporate Overview homepage

- Quality and Environmental Information
 - Highlights
 - ISO Certificates
 - Sony Green Partner Certificate
 - Quarterly Quality & Reliability Report
 - Additional information here

- Investor Relations, Annual Report and Recent News
 - Click here for Silicon Labs’ Investor Overview homepage
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier and Technology Selection Strategy
- Quality Overview
- Customer Support
New Product Development Major Milestones

Concept & Planning
• Customer
• Sales
• Design & Apps
• Manufacturing

Design
• Analog & Digital
• Software
• Test

Verification
• Applications
• Qualification
• Customer Sampling
• Launch

Production
• Foundry
• Assembly
• Test
• Pack & Ship
Product Development & Release to Manufacturing follows a rigorous process with Management Review & Approval at key milestones

- **Product Development Process**
 - Concept, Architecture, Design and PG (Tapeout) – reviews and checklists at each stage

- **Release to Manufacturing (RTM) Process**
 - Pre-Production > Initial Production > Full Production
 - Formal reviews and checklists at each stage
 - Ship quantity limits increase with each phase

- **RTM addresses the following (not inclusive)**
 - Probe – HW and SW
 - Final Test – HW and SW
 - Qualification
 - Validation & Verification
 - Test Optimization, offshore transfer
 - Cpk and statistical baselines for maverick lot detection
Design for Cost, Test and Manufacturing

- Every design is reviewed to assure robust manufacturability, testability, and cost optimization.
- Any risks identified are removed or minimized by methods such as:
 - Design changes
 - Extra qualification
 - Improved manufacturing capability or controls
 - Increased monitoring
- Reviews are held at the following milestones at a minimum:
 - Project approval/Architecture
 - Pre-PG
 - Initial Production
Test Strategy

- Design for Test Strategy
 - Scan used for synthesized logic
 - Functional test modes employed to isolate functional blocks
 - Built in Self Test (BIST) features also utilized

- Fault Coverage
 - Minimum fault coverage required for production test release

- At Speed Testing
 - Analog, Functional, and Memory tests are tested at datasheet speeds

- Test Insertions
 - Each product is tested at its worst-case temperature at a minimum
 - Promotion to single temperature test from multi-temperature test follows a rigorous process
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier and Technology Selection Strategy
- Quality Overview
- Customer Support
Silicon Labs uses industry standard test methods to evaluate products and follows the guidelines of:

- **EIA/JESD 47** - Stress-Test-Driven Qualification of Integrated Circuits
- **AEC-Q100** - Stress Qualification For Integrated Circuits
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Customer Support
Statistical Bin Limits (SBL)

- SBLs are used at these process steps
 - Foundry Wafer Acceptance Test (WAT)
 - Wafer Probe
 - Final Electrical Test

- Limits are established to identify abnormal (maverick) material lots

- Limits are based on overall yields or on specific tests or test groups

- The MRP system automatically places on hold lots that fail to meet limits

- There are two levels of hold/notification
 - Level 1 – Engineering: held for product engineer investigation and validation before release
 - Level 2 – MRB: held for product engineer and quality manager investigation and validation before release
Product Traceability

- Device packages are marked with a product identification number and a tracecode captured in our ERP system
- Tracecode is also marked on the packing labels
- Tracecode provides a link to the processing history, from wafer number to shipment

EXAMPLE: Si4763-A30-AM

- Package Type: 40L-QFN-6x6
- Mark Method: Laser
- Logo: None
- Tracecode Type: Standard
- Pin 1 Mark: Circle = 0.90mm diameter (Bottom-Left-Justified)
- Font Size (mm): 0.70mm Right-Justified
- Line 1 Mark Format: Device Number 4763A30
- Line 2 Mark Format: TTTTTT = Mfg Code (from the Assembly PO)
- Line 3 Mark Format:
 - YY = Year of the packaging/assembly start
 - WW = Work Week of the packaging/assembly start
Silicon Labs follows JEDEC as the preferred industry standard

Quality Monitors

- Electrical: production samples are retested to datasheet limits. This sample method identifies defects introduced at the test process step or that have escaped the test process.

- Visual/Mechanical: production is sampled prior to final pack. Inspections coverage includes mark, count, label, cover tape workmanship, moisture barrier bag visual, lead location, part placement, and other workmanship items.

- Reporting: failures drive corrective actions and process/product improvements

- Quality data is reported in quarterly Quality & Reliability Report
Silicon Labs follows JEDEC as the preferred industry standard

- Failure Rate Estimation: A long-term, steady-state failure rate calculation allows circuit and system engineers to allocate failure rates at the component level during system design.

- Failure in Time (FIT): FIT represents the number of failures in a billion hours of operation. Silicon Labs reports FIT rates in its quarterly Quality & Reliability Report as curves and in tables for specific temperatures and assumptions.

- Mean Time To Failure (MTTF): inverse of FIT rate \(1/\text{FIT}\)

- Failure Rate Calculation Method: Long-term failure rates are estimated by applying the Arrhenius equation to data collected from long term operating life tests. Confidence factors of 90% and 60% are reported
Critical to Quality (CTQ) parameters are controlled by Silicon Labs’ assembly partners.

Their performance is reported quarterly in CpK reports and reviewed by the Silicon Labs Supplier Managers.

<table>
<thead>
<tr>
<th>Process</th>
<th>CTQ Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Bond</td>
<td>Wire pull strength (g)</td>
</tr>
<tr>
<td></td>
<td>Ball shear strength (g)</td>
</tr>
<tr>
<td>Lead plating</td>
<td>Thickness (μ”)</td>
</tr>
<tr>
<td>Saw/Singulation</td>
<td>Package Dimension (mm)</td>
</tr>
</tbody>
</table>
Change Management

- Silicon Labs follows the principles of JEDEC J-STD-046 for change management and notification
- Change Action Boards review and assure compliance for both supplier and internally initiated changes
 - Wafer Fab Changes
 - Assembly Changes
 - Materials Changes
 - Qualification of changes to JEDEC requirements if applicable
- Customer Notification
 - PCN – 90 day notification provided to customer
 - EOL – 180 for last orders, 360 days for final delivery to customer
 - Exceptions require cross-functional review and approval
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Customer Support
Supply Chain Process Overview

- Partner with world-class suppliers
- Manage products from development to customer delivery
- Support unexpected surges in demand
- Reliable, high volume supply
- Quality-centered assembly and test
- Dual sourced for capacity assurance
- ISO9001/14001, certified company and ISO/TS 16949 compliance
IC Manufacturing Model - Fabless and Outsourced

- **FAB**
 - TSMC, SMIC & others

- **ASSEMBLY**
 - ASE, SPIL & others

- **TEST & SHIP**
 - ASE, KYEC & others

100% outsource

>90% outsource
Module Manufacturing Model – Outsourced Assembly

Components
- Silicon Labs ICs & Third Party Suppliers

PCB ASSEMBLY
- Delta, CDTech, Ryder, USI & others

TEST & SHIP
- Contract Manufacturers and Silicon Labs Intl.

>90% outsource
100% outsource
>90% outsource
Supplier & Technology Selection

- Process technology, package choice and test platforms are carefully chosen based on:
 - Technology availability and maturity at suppliers
 - Technology roadmap of suppliers
 - Technology reliability of suppliers
 - Past and present execution (quality, cycle time, deliveries, operational efficiencies) from suppliers
 - Material cost from the supplier and
 - Cost of doing business with that supplier

- Technology choices are made during development phase

- Silicon Labs provides a second source when appropriate to ensure continuity of supply
Supplier Management

- Asia-based Assembly and Test Supplier Management
 - Provides Supplier initial Evaluation, Selection, and on-going Assessment
 - Performs Semiannual Strategic Business Reviews (SBRs) with key suppliers to review overall business, market trends, performance, cost reduction, capacity plans, product roadmaps and specific projects
- Austin-based Foundry Engineering manages the above for the wafer fab suppliers
- Key Suppliers are audited at least annually
 - Quality management systems (ISO9001 and TS 16949)
 - Environmental, Health & Safety (including ISO14001)
 - Social Accountability (EICC Code of Conduct)
 - Business parameters (delivery, cost, service, capacity)
 - Technology
 - Self assessment from a supplier is occasionally deemed adequate
Supplier Quality Assurance Monitoring Process

Outsourcing of Manufacturing Process Quality Assurance

<table>
<thead>
<tr>
<th>Wafer Fab & Sort</th>
<th>Assembly</th>
<th>Final Test</th>
<th>Pack & Ship</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Defect Density</td>
<td>• DOE</td>
<td>• Product Characterization</td>
<td>• Outgoing Visual Mechanical Gate ppm</td>
</tr>
<tr>
<td>• FMEA / Control Plan</td>
<td>• FMEA / Control Plan</td>
<td>• FMEA / Control Plan</td>
<td>• FMEA / Control</td>
</tr>
<tr>
<td>• In-coming Material Control</td>
<td>• In-coming Material Control</td>
<td>• Test Program / Revision Control</td>
<td>• Shipping Label Information Accuracy</td>
</tr>
<tr>
<td>• SPC Monitoring</td>
<td>• SPC Monitoring</td>
<td>• SPC Monitoring</td>
<td></td>
</tr>
<tr>
<td>• Cpk Data Analysis</td>
<td>• Cpk Data Analysis</td>
<td>• Test Yield Monitoring</td>
<td></td>
</tr>
<tr>
<td>• Wafer Sort Probe Yield Monitoring</td>
<td>• Critical to Process / Product Monitoring</td>
<td>• QA Electrical Gate ppm</td>
<td></td>
</tr>
<tr>
<td>• Wafer Reliability Monitoring</td>
<td>• Assembly Yield Monitoring</td>
<td>• Reliability Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reliability Monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25
Supply Chain Planning Process Overview

- Silicon Labs conducts formal, monthly forecast meetings
 - Distributors/Sales/Representatives required to give 12-month rolling forecast secured from Customers
- Forecast provides base line for Silicon Labs supply chain
 - Drives material starts, such as wafer
 - Triggers capacity planning activities
 - Identifies gaps in supply / demand
 - Provides demand snap-shot for inventory management
 - Provides supply / demand snap-shot for product / process management (e.g., PCN planning)
- Supplier commitments input into the planning system
 - Commitment is measured to On Time Delivery to First Commit Date in SAP
- Real-time B2B process flows with key Suppliers and Distributors
Demand/Supply Performance

- **Demand**
 - Demand monitoring performed on an on-going, daily basis
 - Review of backlog against the build plan
 - Build plan adjustments made in real time to manage changes at the Customer/part level

- **Supply Chain Metrics**
 - On time delivery to the Customer Requested Dock Date
 - On time delivery to the First Commit Date
 - Units committed vs. units produced
 - Cycle time
 - Early warning (Planned Finish Date <> Scheduled Commit Date)
Silicon Labs Distribution Support

- Receive weekly POS reports from Distributor
 - Includes shipments, backlog and forecast
- Monitor inventory at Distributor monthly
- Daily/Weekly communication with Distributor on current issues
- Provide latest delivery dates to Distributors on demand via reporting portal
Supply Chain Process Overview

Planning
- Monthly
 - Demand Plan Consensus
 - Manufacturing Requirements
 - Supply / Demand Review
 - Customer Allocation
 - Supply Disconnects
 - Operations Plan
 - Revenue and Shipment Plan (Units, $)

Execution
- Trigger Wafer start
 - Monthly Execution
 - Weekly Execution
 - Wafer
 - Probe
 - Factory Schedules
 - Order Scheduling
 - Assembly
 - Test
 - Backlog
 - Inventory
 - Orders
 - Delivery Commitments

Customer
- CDP
- SCP
Packing & Labeling

- Packing media available: tape & reel, tray and tube
- All finished goods are packed in a vacuum sealed Moisture Barrier Bag (MBB), including a Humidity Indicator Card (HIC) and desiccant
- Labels are automatically printed from the ERP System (SAP)
- Handling Units (HUs) may not contain more than two Batches

<table>
<thead>
<tr>
<th>Reel / MBB Inner Box / HU Label</th>
<th>Outer Box Shipping Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer or Silicon Labs P/N</td>
<td>Supplier Address</td>
</tr>
<tr>
<td>Handling Unit #</td>
<td>Customer Address</td>
</tr>
<tr>
<td>Date Code / Trace Code</td>
<td>Customer or Silicon Labs P/N</td>
</tr>
<tr>
<td>Seal Date</td>
<td>Handling Unit #</td>
</tr>
<tr>
<td>Assembly Country</td>
<td>Assembly Country</td>
</tr>
<tr>
<td>Quantity</td>
<td>Quantity</td>
</tr>
<tr>
<td>MSL, Reflow Temperature, Bake Time “Pb-Free” (if applicable) & Plating Type (e#)</td>
<td>“Pb-Free” symbol (if applicable)</td>
</tr>
</tbody>
</table>
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Customer Support
Quality & Environmental Systems

- Registered to ISO 9001:2008 since Jun’00 ([link](#))
- Registered to ISO14001:2004 since Dec’06 ([link](#))
- Certified Sony Green Partner since Aug’08 ([link](#))

Quality Policy
Silicon Labs is committed to total customer satisfaction by:
- Providing differentiated products, solutions and services for a more connected world
- Exceeding customer needs through innovation and simplicity
- Continually improving our world-class quality management system

Environmental Policy
At Silicon Labs, we manage environmental matters as an integral part of our business by our commitment to:
- Designing, marketing, and selling environmentally friendly products,
- Continually improving our environmental performance and pollution prevention,
- Complying with applicable legal and other requirements that relate to our environmental aspects, and
- Minimizing the negative environmental impact of our business activities.
Quality Organization

Department Head

- VP of Quality & Central Engineering
 - Director of Quality & Corporate Test Engineering
 - Quality Engineering Director
 - Quality & Environmental Systems Manager
 - Supplier & Asia Quality Manager
 - Device Analysis Lab Manager

Location

- Austin
- Singapore
Content

- Corporate Overview
- Development Process
- Qualification Process
- Manufacturing Process
- Supplier/Technology Selection Strategy, Supply Chain Management
- Quality Overview
- Customer Support
Customer Support – Analysis & Response

- Corrective Action & Continual Improvement
 - Based on the Eight Discipline (8D) methodology

- World Class In-House FA lab
 - Decap, SEM, FIB capabilities
 - Cooperative with supplier FA capabilities as needed

- Standard FA and 8D response times
 - Initial Failure Analysis: 2 workdays from suspect product receipt
 - 8D Containment: 5 workdays from customer notification or proof of failure (after Initial FA)
 - Final Failure analysis: 12 workdays after Initial Failure analysis
 - 8D Root Cause and Corrective Action Plan: 14 workdays from customer notification or root cause discovery (after Final FA)
Customer Support – DA Lab Capabilities

Facility: 1580 sq.ft.

Imaging Equipment
- 2 High Power Optical Microscopes (1 with confocal capability)
- 2 Low Power Stereo Zoom Microscopes
- Image capturing HW/SW for above
- Dual Beam FIB; FEI Helios Nanolab 660
- Jeol 5600 SEM (70 KX max)
- Jeol 7600 FE-SEM (750 KX max) with EDAX EDS System
- GE Micromex X-ray with CT capability
- OKOS Scanning Acoustic Microscope (C-SAM)

Deprocessing
- Reactive Ion Etcher
- Ion Wave 10 Plasma Etcher
- 3 Polishing/Cross-section Stations and ASAP backside milling machine
- Wet Lab with Chemicals, 2 exhausted Chemical Hood, etc.

Debug
- 3 u-Probe Stations with HP Semiconductor Curve Tracers and miscellaneous bench equipment
- QFI Scanning Optical Laser (1064nM & 1340nM)
- QFI Photo Emission Si-CCD (500nm – 1000nm)
- Multiprobe AFM Nanoprober
- Optotherm Thermal Camera

ESD Characterization and Qualification
- Barth Transmission Line Pulse Tester
- 2 MK2 ESD and Latchup Testers
- Orion CDM Tester
- HPPI VF-TLP Tester
Customer Support – Materials Data

Self-Serve Part Homogeneous Materials Data

Location: www.silabs.com/quality

(requires registration and login)

After registration, you can access:

- RoHS, Halogen-free, PFOS/PFOA and REACH quick results and Certificates of Compliance
- Downloadable Material Declaration Data sheets (Acrobat pdf sheet or IPC 1752 class 6 XML format)
- Downloadable Homogeneous Materials test results
Customer Support – FAQs

Several categories of frequently asked questions and answers can be found at www.silabs.com/quality including:

- **Corporate** (e.g. Governance, Locations, Financials)
- **Product** (e.g. Qualification, Traceability, Reporting)
- **Environmental** (e.g. Substance Database, Awards)
- **Quality** (e.g. Failure Analysis, 8Ds, ISO Registrations)
- **Operations** (e.g. Logistics, Supplier Management, Ordering)
Thank you!