
1

8051 Instruction Set

2

2

8051 Instruction Set

 Introduction

 CIP-51 architecture and memory organization review

 Addressing modes
 Register addressing

 Direct addressing

 Indirect addressing

 Immediate constant addressing

 Relative addressing

 Absolute addressing

 Long addressing

 Indexed addressing

 Instruction types
 Arithmetic operations

 Logical operations

 Data transfer instructions

 Boolean variable instructions

 Program branching instructions

In this lecture we will look at the various addressing modes and the instructions. The 8051
Architecture course would be helpful in understanding some of the concepts presented in
this course.

3

3

Introduction

 A computer instruction is made up of an operation code
(op-code) followed by either zero, one or two bytes of
operands

 The op-code identifies the type of operation to be performed
while the operands identify the source and destination of the
data

 The operand can be:
 The data value itself

 A CPU register

 A memory location

 An I/O port

 If the instruction is associated with more than one operand,
the format is always:

Instruction Destination, Source

An instruction is made up of an operation code (op-code) followed by operand(s). The
operand can be one of these- data to operate on, CPU register, memory location or an I/O
port.

4

4

CIP-51 Architecture Review

This is the architecture of the C8051. See the 8051 Architecture course for a more in depth
look at the core.

5

5

Sample Memory Organization

 The memory
organization of
C8051F93x is
similar to that of a
standard 8051

 Program and data
memory share the
same address
space but are
accessed via
different instruction
types

The memory organisation of C8051F93x is very similar to that of the basic 8051, especially
the internal data memory and its layout in terms of register banks, bit-addressable space and
location of SFRs. Many more SFRs have been added as the peripheral mix has been
expanded.

6

6

Internal Data Memory

0x00

0x7F
0x80

0xFF

Here is the memory map of the lower data RAM area of the C8051. Addresses 0x00
through 0x1F are the banked registers R0-R7. The active bank is controlled via the bits in
the Program Status Word (PSW). From this chart we see the bit addressable memory
located from 0x20 through 0x2F which provides 128 bits of bit addressable memory. The
upper portion is used as general purpose RAM and can be accessed by any addressing mode
(direct or indirect).

7

7

Special Function Registers
 The SFRs provide control and data exchange with the C8051 resources and peripherals

 The memory organization of C8051 is similar to that of a standard 8051 with additional SFRs
added for enhanced peripherals

 Upper data memory and SFR memory share the same address space but are accessed via
different addressing modes (direct vs. indirect)

 SFR access via direct addressing only

C8051F93x shown

Note: Abbreviated SFR names are defined in the
family specific header files. For example, the F930
SFRs are in the “C8051F930_defs.h” header file.

As you can see from this chart the number of SFRs has grown significantly over the original
8051. The SFRs are used as the configuration registers for peripherals within the device as
well as control functions for the core. For example, the P0MDIN is a special function
register responsible for I/O pin control. The PSW is the Program Status Word and controls
register banking and arithmetic bits like carry and overflow. All SFRs are accessed via the
direct addressing mode. Indirect addressing to these memory locations access the upper
RAM portion.

In C, abbreviated SFR names are defined in the family specific header files. For example,
the F900 SFRs are in the “C8051F930_defs.h” and “compiler_defs.h” header files.

8

8

Addressing Modes

 Eight modes of addressing are available with the C8051

 The different addressing modes determine how the operand
byte is selected

MOVC A,@A+PCIndexed

LJMP FARLong*

AJMP within 2KAbsolute*

SJMP +127/-128 of PCRelative*

ADD A,#80HImmediate Constant

ADD A,@R0Indirect

MOV 30H,ADirect

MOV A, BRegister

InstructionAddressing Modes

* Related to program branching instructions

There are 8 addressing modes. The addressing mode determines how the operand byte is
selected. The direct and indirect addressing modes are used to distinguish between the SFR
space and data memory space. The relative instructions are based on the value of the
program counter. The absolute instructions operate in the same manner. Indexed
instructions use a calculation to generate the address used as part of the instruction.

9

9

Register Addressing

 The register addressing instruction involves information
transfer between registers

 Example:

MOV R0, A

 The instruction transfers the accumulator content into the R0
register. The register bank (Bank 0, 1, 2 or 3) must be
specified prior to this instruction.

In the Register Addressing mode, the instruction involves transfer of information between
registers.

The accumulator is referred to as the A register.

10

10

Direct Addressing

 This mode allows you to specify the operand by giving its actual memory
address (typically specified in hexadecimal format) or by giving its
abbreviated name (e.g. P3)

 Used for SFR accesses

Example:

MOV A, P3 ;Transfer the contents of

;Port 3 to the accumulator

MOV A, 020H ;Transfer the contents of RAM
;location 20H to the accumulator

In Direct Addressing mode you specify the operand by giving its actual
memory address (in Hexadecimal) or by giving its abbreviated name (e.g. P3).

.

11

11

Indirect Addressing

 This mode uses a pointer to hold the effective address of the operand
 Only registers R0, R1 and DPTR can be used as the pointer registers
 The R0 and R1 registers can hold an 8-bit address, whereas DPTR can hold a 16-bit

address
 Used for the upper data memory area

 Examples:

MOV @R0,A ;Store the content of
;accumulator into the memory
;location pointed to by the contents
;of register R0. R0 could have an
;8-bit address, such as 60H.

MOVX A,@DPTR ;Transfer the contents from
;the memory location
;pointed to by DPTR into the
;accumulator. DPTR could have a
;16-bit address, such as
;1234H.

In the Indirect Addressing mode, a register is used to hold the effective address of the
operand. This register, which holds the address, is called the pointer register and is said to
point to the operand.

Only registers R0, R1 and DPTR can be used as pointer registers.

R0 and R1 registers can hold an 8-bit address whereas DPTR can hold a 16-bit address.
DPTR is useful in accessing operands which are in the external memory.

12

12

Immediate Constant Addressing

 This mode of addressing uses either an 8- or 16-bit
constant value as the source operand

 This constant is specified in the instruction, rather than in
a register or a memory location

 The destination register should hold the same data size
which is specified by the source operand

 Examples:

ADD A,#030H ;Add 8-bit value of 30H to

;the accumulator register

;(which is an 8-bit register).

MOV DPTR,#0FE00H ;Move 16-bit data constant
;FE00H into the 16-bit Data
;Pointer Register.

In the Immediate Constant Addressing mode, the source operand is an 8- or 16-bit constant
value.

This constant is specified in the instruction itself (rather than in a register or a memory
location).

The destination register should hold the same data size which is specified by the source
operand.

13

13

Relative Addressing

 This mode of addressing is used with some type of jump
instructions, like SJMP (short jump) and conditional jumps
like JNZ

 These instructions transfer control from one part of a
program to another

 The destination address must be within -128 and +127 bytes
from the current instruction address because an 8-bit offset
is used (28 = 256)

 Example:

GoBack: DEC A ;Decrement A

JNZ GoBack ;If A is not zero, loop back

The Relative Addressing mode is used with some type of jump instructions like SJMP (short
jump) and conditional jumps like JNZ. This instruction transfers control from one part of a
program to another.

14

14

Absolute Addressing

 Two instructions associated with this mode of addressing
are ACALL and AJMP instructions

 These are 2-byte instructions where the 11-bit absolute
address is specified as the operand

 The upper 5 bits of the 16-bit PC address are not modified.
The lower 11 bits are loaded from this instruction. So, the
branch address must be within the current 2K byte page of
program memory (211 = 2048)

 Example:

ACALL PORT_INIT ;PORT_INIT should be
;located within 2k bytes.

PORT_INIT: MOV P0, #0FH ;PORT_INIT subroutine

In Absolute Addressing mode, the absolute address, to which the control is transferred, is
specified by a label. Two instructions associated with this mode of addressing are ACALL
and AJMP instructions. These are 2-byte instructions.

15

15

Long Addressing

 This mode of addressing is used with the LCALL and LJMP
instructions

 It is a 3-byte instruction and the last 2 bytes specify a 16-bit
destination location where the program branches

 It allows use of the full 64 K code space

 The program will always branch to the same location no
matter where the program was previously

 Example:
LCALL TIMER_INIT ;TIMER_INIT address (16-bits

;long) is specified as the
;operand; In C, this will be a
;function call: Timer_Init().

TIMER_INIT: ORL TMOD,#01H ;TIMER_INIT subroutine

This mode of addressing is used with the LCALL and LJMP instructions. It is a 3-byte
instruction and the last 2 bytes specify a 16-bit destination location where the program
branches to. It allows use of the full 64K code space.

16

16

Indexed Addressing

 The Indexed addressing is useful when there is a need to retrieve data
from a look-up table

 A 16-bit register (data pointer) holds the base address and the
accumulator holds an 8-bit displacement or index value

 The sum of these two registers forms the effective address for a JMP or
MOVC instruction

 Example:
MOV A,#08H ;Offset from table start

MOV DPTR,#01F00H ;Table start address

MOVC A,@A+DPTR ;Gets target value from the table
;start address + offset and puts it
;in A.

 After the execution of the above instructions, the program will branch to
address 1F08H (1F00H+08H) and transfer into the accumulator the data
byte retrieved from that location (from the look-up table)

The Indexed addressing is useful when there is a need to retrieve data from a look-up table
(LUT). A 16-bit register (data pointer) holds the base address and the accumulator holds an
8-bit displacement or index value. The sum of these two registers forms the effective
address for a JMP or MOVC instruction.

17

17

Instruction Types

 The C8051 instructions are divided into five functional
groups:

Arithmetic operations

Logical operations

Data transfer operations

Boolean variable operations

Program branching operations

The C8051F instructions are divided into five functional groups. We will discuss each
group separately.

18

18

Arithmetic Operations
 With arithmetic instructions, the C8051 CPU has no special knowledge of the data

format (e.g. signed/unsigned binary, binary coded decimal, ASCII, etc.)
 The appropriate status bits in the PSW are set when specific conditions are met,

which allows the user software to manage the different data formats (carry, overflow
etc…)

 [@Ri] implies contents of
memory location pointed to by
R0 or R1

 Rn refers to registers R0-R7 of
the currently selected register
bank

This group of operators perform arithmetic operations. Arithmetic operations effect the
flags, such as Carry Flag (CY), Overflow Flag (OV) etc, in the PSW register.

19

19

Logical Operations

 Logical instructions perform
Boolean operations (AND,
OR, XOR, and NOT) on
data bytes on a bit-by-bit
basis

 Examples:

ANL A, #02H ;Mask bit 1

ORL TCON, A ;TCON=TCON OR A

Logical instructions perform standard Boolean operations such as AND, OR, XOR, NOT
(compliment). Other logical operations are clear accumulator, rotate accumulator left and
right, and swap nibbles in accumulator.

20

20

Data Transfer Instructions
 Data transfer instructions can be

used to transfer data between an
internal RAM location and an SFR
location without going through the
accumulator

 It is also possible to transfer data
between the internal and external
RAM by using indirect addressing

 The upper 128 bytes of data RAM
are accessed only by indirect
addressing and the SFRs are
accessed only by direct addressing

Exchange low order digitsXCHD A,@Ri

A = [@Rn], [@Rn] = AXCH A, @Ri

A = [direct], [direct] = AXCH A, direct

A = [Rn], [Rn] = AXCH A,Rn

Pop from stackPOP direct

Push into stackPUSH direct

External[@DPTR] = AMOVX @DPTR,A

External[@Ri] = AMOVX @Ri, A

A = Data byte from external ram [@DPTR]MOVX A,@DPTR

A = Data byte from external ram [@Ri]MOVX A,@Ri

A = Code byte from [@A+PC]MOVC A,@A+PC

A = Code byte from [@A+DPTR]MOVC A,@A+DPTR

[DPTR] = immediate dataMOV DPTR, #data 16

[@Ri] = immediate dataMOV @Ri, #data

[@Ri] = [direct]MOV @Ri, direct

DescriptionMnemonic

Data transfer instructions are used to transfer data between an internal RAM location and
SFR location without going through the accumulator. Data can also be transferred between
the internal and external RAM by using indirect addressing.

21

21

Boolean Variable Instructions

 The C8051 processor can perform
single bit operations

 The operations include set, clear,
and, or and complement instructions

 Also included are bit–level moves or
conditional jump instructions

 All bit accesses use direct
addressing

 Examples:

SETB TR0 ;Start Timer0.

POLL: JNB TR0, POLL ;Wait
until timer overflows.

if specified bit set then clear it and
jump

JBC bit,rel

Jump if specified bit not setJNB bit,rel

Jump if specified bit setJB bit,rel

Jump if C not setJNC rel

Jump if C setJC rel

MOV C to bitMOV bit,C

MOV bit to CMOV C,bit

OR NOT bit with CORL C,/bit

OR bit with CORL C,bit

AND NOT bit with CANL C,/bit

AND bit with CANL C,bit

Complement direct bitCPL bit

Complement cCPL C

Set direct bitSETB bit

Set CSETB C

Clear direct bitCLR bit

Clear CCLR C

DescriptionMnemonic

The Boolean Variable operations include set, clear, as well as and, or and complement
instructions. Also included are bit–level moves or conditional jump instructions. All bit
accesses use direct addressing.

22

22

Program Branching Instructions

 Program branching
instructions are used to
control the flow of program
execution

 Some instructions provide
decision making capabilities
before transferring control
to other parts of the
program (conditional
branches).

No OperationNOP

DJNZ direct,rel
Decrement and Jump if Not Zero

DJNZ Rn,rel

CJNE @Ri,#data,rel

CJNE Rn,#data,rel

CJNE A,#data,rel
Compare and Jump if Not Equal

CJNE A,direct,rel

Jump if A NOT=0JNZ rel

Jump if A=0JZ rel

Jump indirectJMP @A+DPTR

Short jumpSJMP rel

Long jumpLJMP addr16

Absolute jumpAJMP addr11

Return from interruptRETI

Return from subroutineRET

Long subroutine callLCALL addr16

Absolute subroutine callACALL addr11

DescriptionMnemonic

Program branching instructions are used to control the flow of actions in a program. Some
instructions provide decision making capabilities and transfer control to other parts of the
program e.g. conditional and unconditional branches.

23

24

24

Arithmetic Operations

 [@Ri] implies contents
of memory location
pointed to by R0 or R1

 Rn refers to registers
R0-R7 of the currently
selected register bank

The arithmetic operations are – addition, subtraction, increment, decrement, multiplication
and division. The operations use different addressing modes discussed earlier.

25

25

ADD A,<source-byte> ADDC A,<source-byte>

 ADD adds the data byte specified by the source operand to
the accumulator, leaving the result in the accumulator

 ADDC adds the data byte specified by the source operand,
the carry flag and the accumulator contents, leaving the
result in the accumulator

 Operation of both the instructions, ADD and ADDC, can
affect the carry flag (CY), auxiliary carry flag (AC) and the
overflow flag (OV)
 CY=1 If there is a carryout from bit 7; cleared otherwise

 AC =1 If there is a carryout from the lower 4-bit of A i.e. from bit 3;
cleared otherwise

 OV=1 If the signed result cannot be expressed within the number
of bits in the destination operand; cleared otherwise

26

26

SUBB A,<source-byte>

 SUBB subtracts the specified data byte and the carry flag together from
the accumulator, leaving the result in the accumulator
CY=1 If a borrow is needed for bit 7; cleared otherwise

AC =1 If a borrow is needed for bit 3, cleared otherwise

OV=1 If a borrow is needed into bit 6, but not into bit 7, or into bit 7,
but not into bit 6.

 Example:

The accumulator holds 0C1H (11000001B), Register1 holds 40H
(01000000B) and the CY=1.The instruction,

SUBB A, R1

gives the value 70H (01110000B) in the accumulator, with the CY=0 and
AC=0 but OV=1

27

27

INC <byte>

 Increments the data variable by 1. The instruction is used in register,
direct or register direct addressing modes

 Example:

INC 6FH

If the internal RAM location 6FH contains 30H, then the instruction
increments this value, leaving 31H in location 6FH

 Example:

MOV R1, #5E
INC R1
INC @R1

 If R1=5E (01011110) and internal RAM location 5FH contains 20H, the
instructions will result in R1=5FH and internal RAM location 5FH to
increment by one to 21H

28

28

DEC <byte>

 The data variable is decremented by 1

 The instruction is used in accumulator, register, direct or
register direct addressing modes

 A data of value 00H underflows to FFH after the operation

 No flags are affected

29

29

INC DPTR

 Increments the 16-bit data pointer by 1

 DPTR is the only 16-bit register that can be incremented

 The instruction adds one to the contents of DPTR directly

30

30

MUL AB

 Multiplies A & B and the 16-bit result stored in [B15-8], [A7-0]

 Multiplies the unsigned 8-bit integers in the accumulator and the B
register

 The Low order byte of the 16-bit product will go to the accumulator
and the High order byte will go to the B register

 If the product is greater than 255 (FFH), the overflow flag is set;
otherwise it is cleared. The carry flag is always cleared.

 If ACC=85 (55H) and B=23 (17H), the instruction gives the product
1955 (07A3H), so B is now 07H and the accumulator is A3H. The
overflow flag is set and the carry flag is cleared.

31

31

DIV AB

 Divides A by B

 The integer part of the quotient is stored in A and the
remainder goes to the B register

 If ACC=90 (5AH) and B=05(05H), the instruction leaves 18
(12H) in ACC and the value 00 (00H) in B, since 90/5 = 18
(quotient) and 00 (remainder)

 Carry and OV are both cleared

 If B contains 00H before the division operation (divide by
zero), then the values stored in ACC and B are undefined
and an overflow flag is set. The carry flag is cleared.

32

32

DA A

 This is a decimal adjust instruction

 It adjusts the 8-bit value in ACC resulting from operations
like ADD or ADDC and produces two 4-bit digits (in packed
Binary Coded Decimal (BCD) format)

 Effectively, this instruction performs the decimal conversion
by adding 00H, 06H, 60H or 66H to the accumulator,
depending on the initial value of ACC and PSW

 If ACC bits A3-0 are greater than 9 (xxxx1010-xxxx1111), or
if AC=1, then a value 6 is added to the accumulator to
produce a correct BCD digit in the lower order nibble

 If CY=1, because the high order bits A7-4 is now exceeding
9 (1010xxxx-1111xxxx), then these high order bits will be
increased by 6 to produce a correct proper BCD in the high
order nibble but not clear the carry

33

33

Logical Operations

 Logical instructions perform Boolean operations (AND,
OR, XOR, and NOT) on data bytes on a bit-by-bit basis

Logical instructions perform standard Boolean operations such as AND, OR, XOR, NOT
(compliment). Other logical operations are clear accumulator, rotate accumulator left and
right, and swap nibbles in accumulator.

34

34

ANL <dest-byte>,<source-byte>

 This instruction performs the logical AND operation on the
source and destination operands and stores the result in the
destination variable

 No flags are affected

 Example:
ANL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the
result of the instruction is ACC=51H (01010001)

 The following instruction is also useful when there is a need
to mask a byte

 Example:
ANL P1,#10111001B

35

35

ORL <dest-byte>,<source-byte>

 This instruction performs the logical OR operation on the
source and destination operands and stores the result in the
destination variable

 No flags are affected

 Example:
ORL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the
result of the instruction is ACC=F7H (11110111)

 Example:
ORL P1,#11000010B

This instruction sets bits 7, 6, and 1 of output Port 1

36

36

XRL <dest-byte>,<source-byte>

 This instruction performs the logical XOR (Exclusive OR)
operation on the source and destination operands and
stores the result in the destination variable

 No flags are affected

 Example:
XRL A,R0

If ACC=C3H (11000011) and R0=AAH (10101010), then the
instruction results in ACC=69H (01101001)

 Example:
XRL P1,#00110001

This instruction complements bits 5, 4, and 0 of
output Port 1

37

37

CLR A and CPL A

CLR A
 This instruction clears the accumulator (all bits set to 0)
 No flags are affected
 If ACC=C3H, then the instruction results in ACC=00H

CPL A
 This instruction logically complements each bit of the

accumulator (one’s complement)

 No flags are affected

 If ACC=C3H (11000011), then the instruction results in
ACC=3CH (00111100)

38

38

RL A

 The 8 bits in the accumulator are rotated one bit to the left.
Bit 7 is rotated into the bit 0 position.

 No flags are affected

 If ACC=C3H (11000011), then the instruction results in
ACC=87H (10000111) with the carry unaffected

39

39

RLC A

 The instruction rotates the accumulator contents one bit to
the left through the carry flag

 Bit 7 of the accumulator will move into carry flag and the
original value of the carry flag will move into the Bit 0
position

 No other flags are affected

 If ACC=C3H (11000011), and the carry flag is 1, the
instruction results in ACC=87H (10000111) with the carry
flag set

40

40

RR A

 The 8 bits in the accumulator are rotated one bit to the right.
Bit 0 is rotated into the bit 7 position.

 No flags are affected

 If ACC=C3H (11000011), then the instruction results in
ACC=E1H (11100001) with the carry unaffected

41

41

RRC A

 The instruction rotates the accumulator contents one bit to
the right through the carry flag

 The original value of carry flag will move into Bit 7 of the
accumulator and Bit 0 rotated into carry flag

 No other flags are affected

 If ACC=C3H (11000011), and the carry flag is 0, the
instruction results in ACC=61H (01100001) with the carry
flag set

42

42

SWAP A

 This instruction interchanges the low order 4-bit nibbles
(A3-0) with the high order 4-bit nibbles (A7-4) of the ACC

 The operation can also be thought of as a 4-bit rotate
instruction

 No flags are affected

 If ACC=C3H (11000011), then the instruction leaves
ACC=3CH (00111100)

43

43

Data Transfer Instructions

 Data transfer instructions can be used to transfer data
between an internal RAM location and SFR location without
going through the accumulator

 It is possible to transfer data between the internal and
external RAM by using indirect addressing

 The upper 128 bytes of data RAM are accessed only by
indirect addressing and the SFRs are accessed only by
direct addressing

Data transfer instructions are used to transfer data between an internal RAM location and
SFR location without going through the accumulator. Data can also be transferred between
the internal and external RAM by using indirect addressing.

44

44

Data Transfer Instructions

Exchange low order digitsXCHD A,@Ri

A = [@Rn], [@Rn] = AXCH A, @Ri

A = [direct], [direct] = AXCH A, direct

A = [Rn], [Rn] = AXCH A,Rn

Pop from stackPOP direct

Push into stackPUSH direct

External[@DPTR] = AMOVX @DPTR,A

External[@Ri] = AMOVX @Ri, A

A = Data byte from external ram [@DPTR]MOVX A,@DPTR

A = Data byte from external ram [@Ri]MOVX A,@Ri

A = Code byte from [@A+PC]MOVC A,@A+PC

A = Code byte from [@A+DPTR]MOVC A,@A+DPTR

[DPTR] = immediate dataMOV DPTR, #data 16

[@Ri] = immediate dataMOV @Ri, #data

[@Ri] = [direct]MOV @Ri, direct

DescriptionMnemonic

The Data transfer instructions are move, push, pop and exchange.

45

45

MOV <dest-byte>,<source-byte>

 This instruction moves the source byte into the destination location

 The source byte is not affected, neither are any other registers or flags

 Example:

MOV R1,#60 ;R1=60H

MOV A,@R1 ;A=[60H]

MOV R2,#61 ;R2=61H

ADD A,@R2 ;A=A+[61H]

MOV R7,A ;R7=A

 If internal RAM locations 60H=10H, and 61H=20H, then after the
operations of the above instructions R7=A=30H. The data contents of
memory locations 60H and 61H remain intact.

46

46

MOV DPTR, #data 16

 This instruction loads the data pointer with the 16-bit
constant and no flags are affected

 Example:

MOV DPTR,#1032

 This instruction loads the value 1032H into the data pointer,
i.e. DPH=10H and DPL=32H.

47

47

MOVC A,@A + <base-reg>

 This instruction moves a code byte from program memory into ACC
 The effective address of the byte fetched is formed by adding the original 8-bit

accumulator contents and the contents of the base register, which is either the
data pointer (DPTR) or program counter (PC)

 16-bit addition is performed and no flags are affected
 The instruction is useful in reading the look-up tables in the program memory
 If the PC is used, it is incremented to the address of the following instruction

before being added to the ACC
 Example:

CLR A
LOC1: INC A

MOVC A,@A + PC
RET

Look_up DB 10H
DB 20H
DB 30H
DB 40H

 The subroutine takes the value in the accumulator to 1 of 4 values
defined by the DB (define byte) directive

 After the operation of the subroutine it returns ACC=20H

48

48

MOVX <dest-byte>,<source-byte>

 This instruction transfers data between ACC and a byte of external data
memory

 There are two forms of this instruction, the only difference between them
is whether to use an 8-bit or 16-bit indirect addressing mode to access
the external data RAM

 The 8-bit form of the MOVX instruction uses the EMI0CN SFR to
determine the upper 8 bits of the effective address to be accessed and
the contents of R0 or R1 to determine the lower 8 bits of the effective
address to be accessed

 Example:
MOV EMI0CN,#10H ;Load high byte of

;address into EMI0CN.
MOV R0,#34H ;Load low byte of

;address into R0(or R1).
MOVX A,@R0 ;Load contents of 1034H

;into ACC.

49

49

MOVX <dest-byte>,<source-byte>

 The 16-bit form of the MOVX instruction accesses the memory location
pointed to by the contents of the DPTR register

 Example:
MOV DPTR,#1034H ;Load DPTR with 16 bit

;address to read (1034H).

MOVX A,@DPTR ;Load contents of 1034H
;into ACC.

 The above example uses the 16-bit immediate MOV DPTR instruction to
set the contents of DPTR

 Alternately, the DPTR can be accessed through the SFR registers DPH,
which contains the upper 8 bits of DPTR, and DPL, which contains the
lower 8 bits of DPTR

50

50

PUSH Direct

 This instruction increments the stack pointer (SP) by 1

 The contents of Direct, which is an internal memory location or a SFR,
are copied into the internal RAM location addressed by the stack pointer

 No flags are affected

 Example:

PUSH 22H

PUSH 23H

 Initially the SP points to memory location 4FH and the contents of
memory locations 22H and 23H are 11H and 12H respectively. After the
above instructions, SP=51H, and the internal RAM locations 50H and
51H will store 11H and 12H respectively.

51

51

POP Direct

 This instruction reads the contents of the internal RAM location
addressed by the stack pointer (SP) and decrements the stack pointer
by 1. The data read is then transferred to the Direct address which is an
internal memory or a SFR. No flags are affected.

 Example:
POP DPH
POP DPL

 If SP=51H originally and internal RAM locations 4FH, 50H and 51H
contain the values 30H, 11H and 12H respectively, the instructions
above leave SP=4FH and DPTR=1211H

POP SP
 If the above line of instruction follows, then SP=30H. In this case, SP is

decremented to 4EH before being loaded with the value popped (30H)

52

52

XCH A,<byte>

 This instruction swaps the contents of ACC with the
contents of the indicated data byte

 Example:
XCH A,@R0

 Suppose R0=2EH, ACC=F3H (11110011) and internal RAM
location 2EH=76H (01110110). The result of the above
instruction leaves RAM location 2EH=F3H and ACC=76H.

53

53

XCHD A,@Ri

 This instruction exchanges the low order nibble of ACC (bits
0-3), with that of the internal RAM location pointed to by Ri
register

 The high order nibbles (bits 7-4) of both the registers remain
the same

 No flags are affected

 Example:
XCHD A,@R0

If R0=2EH, ACC=76H (01110110) and internal RAM
location 2EH=F3H (11110011), the result of the instruction
leaves RAM location 2EH=F6H (11110110) and
ACC=73H (01110011)

54

54

Boolean Variable Instructions

 The C8051 processor can
perform single bit operations

 The operations include set,
clear, as well as and, or and
complement instructions

 Also included are bit–level
moves or conditional jump
instructions

 All bit accesses use direct
addressing

if specified bit set then clear it and
jump

JBC bit,rel

Jump if specified bit not setJNB bit,rel

Jump if specified bit setJB bit,rel

Jump if C not setJNC rel

Jump if C setJC rel

MOV C to bitMOV bit,C

MOV bit to CMOV C,bit

OR NOT bit with CORL C,/bit

OR bit with CORL C,bit

AND NOT bit with CANL C,/bit

AND bit with CANL C,bit

Complement direct bitCPL bit

Complement cCPL C

Set direct bitSETB bit

Set CSETB C

Clear direct bitCLR bit

Clear CCLR C

DescriptionMnemonic

The Boolean Variable operations include set, clear, as well as and, or and complement
instructions. Also included are bit–level moves or conditional jump instructions. All bit
accesses use direct addressing.

55

55

CLR <bit>

 This operation clears (reset to 0) the specified bit indicated
in the instruction

 No other flags are affected

 CLR instruction can operate on the carry flag or any directly-
addressable bit

 Example:
CLR P2.7

If Port 2 has been previously written with DCH (11011100),
then the operation leaves the port set to 5CH (01011100)

56

56

SETB <bit>

 This operation sets the specified bit to 1

 SETB instruction can operate on the carry flag or any
directly-addressable bit

 No other flags are affected

 Example:
SETB C

SETB P2.0

 If the carry flag is cleared and the output Port 2 has the
value of 24H (00100100), then the result of the instructions
sets the carry flag to 1 and changes the Port 2 value to 25H
(00100101)

57

57

CPL <bit>

 This operation complements the bit indicated by the operand

 No other flags are affected

 CPL instruction can operate on the carry flag or any directly-
addressable bit

 Example:
CPL P2.1

CPL P2.2

 If Port 2 has the value of 53H (01010011) before the start of
the instructions, then after the execution of the instructions it
leaves the port set to 55H (01010101)

58

58

ANL C, <source-bit>

 This instruction ANDs the bit addressed with the carry bit and stores the result in
the carry bit itself

 If the source bit is a logical 0, then the instruction clears the carry flag; else the
carry flag is left in its original value

 If a slash (/) is used in the source operand bit, it means that the logical
complement of the addressed source bit is used, but the source bit itself is not
affected

 No other flags are affected

 Example:
MOV C,P2.0 ;Load C with input pin

;state of P2.0.
ANL C,P2.7 ;AND carry flag with bit 7 of P2
MOV P2.1,C ;Move C to bit 1 of Port 2
ANL C,/OV ;AND with inverse of OV flag

 If P2.0=1, P2.7=0 and OV=0 initially, then after the above instructions,
P2.1=0, CY=0 and the OV remains unchanged, i.e. OV=0

59

59

ORL C, <source-bit>

 This instruction ORs the bit addressed with the carry bit and stores the result in
the carry bit itself

 It sets the carry flag if the source bit is a logical 1; else the carry is left in its
original value

 If a slash (/) is used in the source operand bit, it means that the logical
complement of the addressed source bit is used, but the source bit itself is not
affected

 No other flags are affected

 Example:
MOV C,P2.0 ;Load C with input pin

;state of P2.0.
ORL C,P2.7 ;OR carry flag with

;bit 7 of P2.
MOV P2.1,C ;Move C to bit 1 of

;port 2.
ORL C,/OV ;OR with inverse of OV

;flag.

60

60

MOV <dest-bit>,<source-bit>

 The instruction loads the value of source operand bit into the destination
operand bit

 One of the operands must be the carry flag; the other may be any
directly-addressable bit

 No other register or flag is affected

 Example:

MOV P2.3,C

MOV C,P3.3

MOV P2.0,C

 If P2=C5H (11000101), P3.3=0 and CY=1 initially, then after the above
instructions, P2=CCH (11001100) and CY=0

61

61

JC rel

 This instruction branches to the address, indicated by the label, if the
carry flag is set, otherwise the program continues to the next instruction

 No flags are affected

 Example:

CLR C

SUBB A,R0

JC ARRAY1

MOV A,#20H

 The carry flag is cleared initially. After the SUBB instruction, if the value
of A is smaller than R0, then the instruction sets the carry flag and
causes program execution to branch to ARRAY1 address, otherwise it
continues to the MOV instruction.

62

62

JNC rel

 This instruction branches to the address, indicated by the label, if the
carry flag is not set, otherwise the program continues to the next
instruction

 No flags are affected. The carry flag is not modified.

 Example:

CLR C

SUBB A,R0

JNC ARRAY2

MOV A,#20H

 The above sequence of instructions will cause the jump to be taken if the
value of A is greater than or equal to R0. Otherwise the program will
continue to the MOV instruction.

63

63

JB <bit>,rel

 This instruction jumps to the address indicated if the
destination bit is 1, otherwise the program continues to the
next instruction

 No flags are affected. The bit tested is not modified.

 Example:
JB ACC.7,ARRAY1

JB P1.2,ARRAY2

 If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY2

64

64

JNB <bit>,rel

 This instruction jumps to the address indicated if the
destination bit is 0, otherwise the program continues to the
next instruction

 No flags are affected. The bit tested is not modified.

 Example:
JNB ACC.6,ARRAY1

JNB P1.3,ARRAY2

 If the accumulator value is 01001010 and Port 1=57H
(01010111), then the above instruction sequence will cause
the program to branch to the instruction at ARRAY2

65

65

JBC <bit>,rel

 If the source bit is 1, this instruction clears it and branches to
the address indicated; else it proceeds with the next
instruction

 The bit is not cleared if it is already a 0. No flags are
affected.

 Example:
JBC P1.3,ARRAY1

JBC P1.2,ARRAY2

 If P1=56H (01010110), the above instruction sequence will
cause the program to branch to the instruction at
ARRAY2, modifying P1 to 52H (01010010)

66

66

Program Branching Instructions

 Program branching
instructions are used to
control the flow of actions
in a program

 Some instructions provide
decision making
capabilities and transfer
control to other parts of the
program, e.g. conditional
and unconditional branches

No OperationNOP

DJNZ direct,rel

Decrement and Jump if Not
Zero

DJNZ Rn,rel

CJNE @Ri,#data,rel

CJNE Rn,#data,rel

CJNE A,#data,rel
Compare and Jump if Not Equal

CJNE A,direct,rel

Jump if A NOT=0JNZ rel

Jump if A=0JZ rel

Jump indirectJMP @A+DPTR

Short jumpSJMP rel

Long jumpLJMP addr16

Absolute jumpAJMP addr11

Return from interruptRETI

Return from subroutineRET

Long subroutine callLCALL addr16

Absolute subroutine callACALL addr11

DescriptionMnemonic

Program branching instructions are used to control the flow of actions in a program. Some
instructions provide decision making capabilities and transfer control to other parts of the
program e.g. conditional and unconditional branches.

67

67

ACALL addr11

 This instruction unconditionally calls a subroutine indicated by the
address

 The operation will cause the PC to increase by 2, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

 The PC is now loaded with the value addr11 and the program execution
continues from this new location

 The subroutine called must therefore start within the same 2 kB block of
the program memory

 No flags are affected

 Example:
ACALL LOC_SUB

 If SP=07H initially and the label “LOC_SUB” is at program memory
location 0567H, then executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H will contain 32H
and 02H respectively and PC=0567H

68

68

LCALL addr16

 This instruction calls a subroutine located at the indicated address

 The operation will cause the PC to increase by 3, then it pushes the 16-
bit PC value onto the stack (low order byte first) and increments the
stack pointer twice

 The PC is then loaded with the value addr16 and the program execution
continues from this new location

 Since it is a Long call, the subroutine may therefore begin anywhere in
the full 64 kB program memory address space

 No flags are affected

 Example:
LCALL LOC_SUB

 Initially, SP=07H and the label “LOC_SUB” is at program memory
location 2034H. Executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H contain 33H
and 02H respectively and PC=2034H

69

69

RET

 This instruction returns the program from a subroutine

 RET pops the high byte and low byte address of PC from
the stack and decrements the SP by 2

 The execution of the instruction will result in the program to
resume from the location just after the “call” instruction

 No flags are affected

 Suppose SP=0BH originally and internal RAM locations 0AH
and 0BH contain the values 30H and 02H respectively. The
instruction leaves SP=09H and program execution will
continue at location 0230H.

70

70

RETI

 This instruction returns the program from an interrupt
subroutine

 RETI pops the high byte and low byte address of PC from
the stack and restores the interrupt logic to accept additional
interrupts

 SP decrements by 2 and no other registers are affected.
However the PSW is not automatically restored to its pre-
interrupt status

 After the RETI, program execution will resume immediately
after the point at which the interrupt is detected

 Suppose SP=0BH originally and an interrupt is detected
during the instruction ending at location 0213H
 Internal RAM locations 0AH and 0BH contain the values 14H and

02H respectively

 The RETI instruction leaves SP=0BH and returns
program execution to location 0214H

71

71

AJMP addr11

 The AJMP instruction transfers program execution to the
destination address which is located at the absolute short
range distance (short range means 11-bit address)

 The destination must therefore be within the same 2 kB
block of program memory

 Example:
AJMP NEAR

 If the label NEAR is at program memory location 0120H, the
AJMP instruction at location 0234H loads the PC with
0120H

72

72

LJMP addr16

 The LJMP instruction transfers program execution to the
destination address which is located at the absolute long
range distance (long range means 16-bit address)

 The destination may therefore be anywhere in the full 64 kB
program memory address space

 No flags are affected

 Example:
LJMP FAR_ADR

 If the label FAR_ADR is at program memory location 3456H,
the LJMP instruction at location 0120H loads the PC
with 3456H

73

73

SJMP rel

 This is a short jump instruction, which increments the PC by 2
and then adds the relative value ‘rel’ (signed 8-bit) to the PC

 This will be the new address where the program would branch
to unconditionally

 Therefore, the range of destination allowed is from -128 to
+127 bytes from the instruction

 Example:
SJMP RELSRT

 If the label RELSRT is at program memory location 0120H
and the SJMP instruction is located at address 0100H,
after executing the instruction, PC=0120H.

74

74

JMP @A + DPTR

 This instruction adds the 8-bit unsigned value of the ACC to the 16-bit
data pointer and the resulting sum is returned to the PC

 Neither ACC nor DPTR is altered

 No flags are affected

 Example:

MOV DPTR, #LOOK_TBL

JMP @A + DPTR

LOOK_TBL: AJMP LOC0

AJMP LOC1

AJMP LOC2

If the ACC=02H, execution jumps to LOC1

 AJMP is a two byte instruction

75

75

JZ rel

 This instruction branches to the destination address if
ACC=0; else the program continues to the next instruction

 The ACC is not modified and no flags are affected

 Example:
SUBB A,#20H
JZ LABEL1
DEC A

 If ACC originally holds 20H and CY=0, then the SUBB
instruction changes ACC to 00H and causes the program
execution to continue at the instruction identified by
LABEL1; otherwise the program continues to the DEC
instruction

76

76

JNZ rel

 This instruction branches to the destination address if any
bit of ACC is a 1; else the program continues to the next
instruction

 The ACC is not modified and no flags are affected

 Example:
DEC A

JNZ LABEL2

MOV RO, A

 If ACC originally holds 00H, then the instructions change
ACC to FFH and cause the program execution to continue
at the instruction identified by LABEL2; otherwise the
program continues to MOV instruction

77

77

CJNE <dest-byte>,<source-byte>,rel

 This instruction compares the magnitude of the dest-byte and the
source-byte and branches if their values are not equal

 The carry flag is set if the unsigned dest-byte is less than the unsigned
integer source-byte; otherwise, the carry flag is cleared

 Neither operand is affected

 Example:

CJNE R3,#50H,NEQU

… … ;R3 = 50H
NEQU: JC LOC1 ;If R3 < 50H

… … ;R3 > 50H

LOC1: … … ;R3 < 50H

78

78

DJNZ <byte>,<rel-addr>

 This instruction is ”decrement jump not zero”
 It decrements the contents of the destination location and if the resulting

value is not 0, branches to the address indicated by the source operand
 An original value of 00H underflows to FFH
 No flags are affected

 Example:
DJNZ 20H,LOC1
DJNZ 30H,LOC2
DJNZ 40H,LOC3

 If internal RAM locations 20H, 30H and 40H contain the values 01H,
5FH and 16H respectively, the above instruction sequence will cause a
jump to the instruction at LOC2, with the values 00H, 5EH, and 15H in
the 3 RAM locations
 Note, the first instruction will not branch to LOC1 because the [20H] = 00H,

hence the program continues to the second instruction
 Only after the execution of the second instruction (where the

location [30H] = 5FH), then the branching takes place

79

79

NOP

 This is the no operation instruction

 The instruction takes one machine cycle operation time

 Hence it is useful to time the ON/OFF bit of an output port

 Example:

CLR P1.2

NOP

NOP

NOP

NOP

SETB P1.2

 The above sequence of instructions outputs a low-going output pulse on
bit 2 of Port 1 lasting exactly 5 cycles
 Note a simple SETB/CLR generates a 1 cycle pulse, so four additional

cycles must be inserted in order to have a 5-clock
pulse width

80

80

Learn More at the Education Resource Center

 Visit the Silicon Labs website to get more information on Silicon Labs
products, technologies and tools

 The Education Resource Center training modules are designed to get
designers up and running quickly on the peripherals and tools needed
to get the design done
 http://www.silabs.com/ERC

 http://www.silabs.com/mcu

 To provide feedback on this or any other training go to:

http://www.silabs.com/ERC and click the link for feedback

Visit the Silicon Labs Education Resource Center to learn more about the MCU
products.

81

www.silabs.com/MCU

