

How to Build Edge Al Applications that Work

Examination of common challenges & issues encountered in real-world projects

Chris Knorowski | August 2023

Our Technology

ACOUSTIC EVENT DETECTION

ACTIVITY RECOGNITION

ANOMALY DETECTION

GESTURE RECOGNITION

KEYWORD SPOTTING

VIBRATION CLASSIFICATION

SensiML Supported Development Kit	Processor	Wireless Gecko EFR32™ Arm® Cortex-M33, 32-bit (EFR32MG24)		
ADC :::	Pre-enabled Sensor Types	TDK ICM-20648 6DoF accel + gyro (data collection firmware), TDK ICS-43434 microphone (left side mic is active in default data collection firmware)		
	Additional Available Sensors	<u>Si7021</u> temp/humidity sensor, <u>VEML6035</u> light sensor, <u>BMP384</u> pressure sensor, <u>CCS811</u> VoC sensor, <u>Si7210</u> hall-effect sensor		
	Available External Sensor Interfaces	UART, I2C, SPI, ADC (12-bit @ 1 Msps,16-bit @ 76.9 ksps)		
	Pre-enabled Connectivity	USB, Serial, BLE 5.3 (integrated EFR32 multi-protocol wireless)		
	Programming Environment	IDEs: Silicon Labs Simplicity Studio IDE Compilers: Simplicity Studio, gcc, IAR, Keil		
	Firmware Flashing	xG24 Dev Kit has built-in programming and debugger via microUSB connection to PC, no separate board or debug cable req'd		
	SensiML Knowledge Pack Formats	Binary, Library, C Source		
Silicon Labs xG24 Dev Kit (xG24-DK2601B)	Useful Links	SensiML Getting Started Guide, Solution Brief, Smart Building IoT Video Workshop, xG24 Smart Door Lock Demo		

Understanding the Machine Learning Workflow

Steps to Build An Edge Al Model

Data Capture Lab

Analytics Studio

Knowledge Pack

Qualifying and Application

Edge AI: The Right Tool for the Application?

Steps to Build an Application that Uses Edge Al

Edge Al Application Customer Engagement Process

- Customer wants feature X
- Do initial demo of tools/model with internal PoC similar to their use case convince yourselves this can be done and convince them externally that the feature is possible.
- Come up with an SoW to work on a PoC for their specific application
- Come up with data collection protocol/plan for PoC
- Carry out data collection plan with customer device
- Build model
- Integrate model into PoC for test and validation
- Customer happy with PoC, but now wants it in the product

What are the Keys to the Success of an Edge Al Application?

MACHINE LEARNING
DATA SCIENCE
ANALYTICS

EMBEDDED FIRMWARE

HARDWARE

CONNECTIVITY

BUSINESS
EXPERTISE

Data Set Creation

Understanding the Sensors for your Application

Defining the Model Scope and Context

Rapid Model Test and Validation Framework

Training Neural Networks For Edge Devices

Training Neural Networks for EdgeAl

- Collect your data set, then use augmentation to tailor it to the specific environment the model will operate in as well as expand the number of examples of each event
- 2. Select a **foundation model** that was trained on a large corpus of keywords and acoustic sounds and has the appropriate architecture
- 3. Use **transfer learning** to train your new model to detect your specific keywords along with **feature augmentation** to prevent overfitting
- 4. Use quantization aware training to tune the model for an edge device
- 5. Use **post training quantization** to quantize the model and make it suitable for deploying at the edge

Building a Good Test Data Set

DSP Preprocessing

KnowledgePack – DSP Pipeline and Classifier Firmware

- Segmentation can help reduce false positives and class confusion
- Segmentation prevents running classifier unnecessarily, reducing power consumption
- Feature extraction can make a complicated problem simple
- Features with good class separation reduce the classifier complexity
- Less features reduces the model complexity
- Less model complexity -> lower latency and memory required

Event Triggering and Segmentation

Feature Transformation/Extraction

ld	Label	Start	Length	1
2	KA_1	273	143	
3	KA_2	547	161	
4	KA_3	808	154	450,0 450
5	Back_to_Start	1,063	144	~150x3=450
6	KA_1	1,46)	209	
7	KA_2	1,762	150	
8	KA_3	1,995	124	
				-

Use The Right Classifier For Your Application

AutoML Hyperparameter Search with Cross-Fold Validation

- Linear Regression models << 1k
- KNN models 1 K < 50 K
- Decision Tree Models 10 K < 50 K
- Boosted Decision Tree Models 25 K < 200
- Bonsai Decision Tree Models 10K < 25 K
- TensorFlow Models 25 K < 1 MB

AutoML Rapidly searches across all classifiers

89.08	PME	RBF with Neuron Allocation Optimization	19	3460	91.30	88.87	0
71.09	PME	RBF with Neuron Allocation Optimization	3	3456	73.91	73.26	1
66.82	PME	Hierarchical Clustering with Neuron Optimization	33	3460	78.26	75.66	1
48.33	Decision Tree Ensemble	Random Forest	19	3460	64.35	58.89	1
43.47	Decision Tree Ensemble	Random Forest	4	3456	58.26	51.39	1
	TensorFlow Lite for Microcontrollers	Train Fully Connected Neural Network	12	3460	5.22		1
28.14	PME	Hierarchical Clustering with Neuron Optimization	19	3460	50.43	42.22	1
	TensorFlow Lite for Microcontrollers	Train Fully Connected Neural Network	49	3460	5.22		1
76.09	Decision Tree Ensemble	Random Forest	16	3460	85.22	80.37	1

Questions?

Visit us at https://sensiml.com

Chris Knorowski | chris.Knorowski@sensiml.com | August 2023

