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Predictive Maintenance
vs Condition Monitoring



Predictive Maintenance — Applications

Industries

▪ Chemical and Petroleum refinement

▪ Water filtration

▪ Pulp & Paper processing

▪ Power Plants

▪ Manufacturing & Warehousing

▪ Rail, Shipping & Logistics

▪ Construction & Farming vehicles

▪ HVAC & Refrigeration

Applications

▪ Motor & electrical drives

▪ Factory machinery/tool vibration

▪ Valves and pressure sensors and pumps

▪ Noise detection from bearings

▪ Heat measurement of lubricant/fluids
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Preventative VS Predictive VS Reactive Maintenance

P R E V E N TA T IV E

Unspecific and unintelligent

No information or insight gathered

Time-consuming

Causes routine down-time

P R E D IC T IV E

Intelligent and insightful for all 

machines

Automated and efficient

Adaptable and scalable 

No down-time

Maximized R.O.I

R E A C TIV E

Machine failure specific

Occurs after failure

Requires expensive human expertise 
and intervention

Causes extended down-time
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Predictive Maintenance – Methodology
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Intelligent Diagnostic 

System

Electrical monitoring 
(currents, voltages…)

Mechanical 
monitoring

Thermal 
monitoring

Flux 
monitoring

Partial discharge
monitoring

Chemical 
monitoring

Acoustic 
monitoring

Optical 
Monitoring



Predictive Maintenance – Life Cycle
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A machine’s maintenance profile can truly be predicted 



Predictive Maintenance VS Condition Monitoring

TH R E S H O L D  A N A LYS IS

Critical values defined based on 

machine specifications. 

Each sensor is monitored 

individually. 

Warnings occur only if critical 

values are surpassed.

S TA T IC  A N A LYS IS

Combining multiple timelines 

and all measurable parameters. 

Static rules for indirect failure 

prediction.

Health/risk score for equipment 

status.

D YN A M IC  A N A LYS IS

Dynamic models enable the 

prediction of failure likelihood.

Algorithms are model-trained 

based on anomaly detection.

Advanced processing required.
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Source: IoT Analytics



Predictive Maintenance Insights – R.U.L

▪ Anomalies and any major or minor 

incidents are recorded over time.

▪ Performance is plotted against a 

timeline to determine an overall asset 

health score

▪ Data is extrapolated following this 

algorithm to determine a trendline to an 

exact date (or number of days) when 

an asset is expected to fail
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R E M A I N I N G  U S E F U L  L I F E



IoT & AI/ML Solutions
Silicon Labs



IoT Benefits for Predictive Maintenance

▪ Industrial-IoT Coverage

• Long range signal strength for industrial environments 
and interference

▪ Industrial-IoT Reliability

• Large networks with low latency

• High payloads for Cloud or Edge computations

▪ Integration ROI

• AI/ML insights by modeling and training time series data

• Scalable networks (multiple sensor types and gateways)

• IoT for more than just a condition-monitoring data-pipe

• Integration with technician’s tools and legacy systems

▪ OEM & Retro-fitted use-cases

• High processing requirements

• Low power requirements
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IoT Technologies for Predictive Maintenance

B G 2 2 M G 2 4  -  M G 2 7  F G 2 5  -  F G 2 8  S I W 9 1 7

Silicon Labs solutions cover a variety of IoT 

protocols suited for different range, power and 

topography.

▪ Wi-Fi 6 + BLE combo

• Long range and dense networks

• AP connection or Cloud backhaul gateways

▪ Sub-GHz

• For end-nodes in crowded 2.4G environments

• For end-nodes with metal interference

• with BLE and Wi-SUN

▪ Proprietary, 15.4, BLE Mesh and Wirepas Mesh

• For very large networks with multiple hops and low 
latency
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AI/ML on Silicon Labs’ Wireless SoCs
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Higher Performance Platform

▪ ARM Cortex M33 (78 MHz)

▪ Improved radio performance

▪ Lower power (MCU active, TX/RX)

Improved Security

▪ Secure Vault - Mid

▪ Secure Vault - High (select OPNs)

Acceleration - MVP

▪ AI/ML acceleration

▪ Faster AoA/AoD calculation

▪ Math library (matrix and vector ops)

AI Software

▪ TensorFlow Lite for Microcontrollers with 

accelerated kernels in GSDK

▪ 3rd Party end-to-end tools

All Series 2 SoCs support ML

78MHz CortexM33

AI/ML accelerator
1.5MB / 256kB

2.4 GHz radio

20 dBm TX Power

Secure Vault 

Low power

180MHz CortexM4

160 MHz NWP

AI/ML accelerator

Up to 8MB / 672kB

2.4 GHz radio

21 dBm TX Power

PSA L2 Security

Low power

EFR32 Series 2 and Wi-Fi SoCs

xG24-DK2601B Developer kit

Broad Range of Sensors

▪ 9-axis Inertial Sensor

▪ 2 Digital Microphones

▪ PIR sensor

▪ Pressure Sensor

▪ Relative Humidity and Temperature 
Sensor 

▪ UV and Ambient Light Sensor

▪ Hall-effect Sensor

Ready to demonstrate ML

▪ Sample applications in GSDK

▪ Examples on GitHub

▪ Examples and tutorials in MLTK

▪ Many sample applications and demos 

from partners

▪ Plug&Play Sensor extensions with 
Sparkfun Qwiic

Common Machine Learning software and tools on our Wireless SoC portfolio
Use cases are dependent on RAM and wireless stack



xG24: Optimized for Battery Powered IoT Mesh Devices
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Sensing at 

the Edge
AI/ML Hardware Accelerator Key Features

▪ Optimized Matrix processor to accelerate ML 

inferencing with a lot of processing power 

offloading the CPU

▪ Real and complex data

▪ up to 8x faster inferencing over Cortex-M 

▪ Up to 6x lower power for inferencing

▪ Dedicated Math library to accelerate matrix and 

vector linear algebra ops

High Performance Radio

▪ -Up to +19.5 dBm TX

▪ -97.6 dBm RX @ BLE 1 Mbps

▪ -105.7 dBm RX @ BLE 125 kbps

▪ -104.5 dBm RX @ 15.4

▪ Improved Wi-Fi Coexistence

▪ RX Antenna Diversity

Low Power

▪ 5.0 mA TX @ 0 dBm 

▪ 19.1 mA TX @ +10 dBm

▪ 4.4 mA RX (BLE 1 Mbps)

▪ 5.1 mA RX (15.4)

▪ 33.4 µA/MHz

▪ 1.3 µA EM2 w ith 16 kB RAM

World Class Software

▪ Simplicity Studio 5

▪ Matter1

▪ Thread1

▪ Zigbee1

▪ Bluetooth (1M/2M/LR)

▪ Bluetooth mesh

▪ Dynamic multiprotocol1

▪ Proprietary

ARM® Cortex®-M33

▪ 78 MHz (FPU and DSP)

▪ Trustzone®

▪ Up to 1536kB of Flash

▪ Up to 256kB of RAM

Dedicated Security Core

▪ Secure Vault™ - Mid

▪ Secure Vault™ - High

▪ Low -power Peripherals

▪ EUSART, USART, I2C

▪ 20-bit ADC, 12-bit VDAC, ACMP

▪ Temperature sensor +/- 1.5°C

▪ 32kHz, 500ppm PLFRCO

AI/ML

▪ AI/ML Hardw are Accelerator

▪ SoCs and Modules

▪ 5x5 QFN40 (26 GPIO) -125ºC

▪ 6x6 QFN48 (28/32 GPIO) -125ºC

▪ 7x7 SiP Module (+10 dBm)

▪ 12.9x15.0 PCB Module (+10 dBm)

Low-Power SoCs and Modules Optimized for 

Battery Powered IoT Mesh Devices



Predictive Maintenance Processing on the Edge

Leverage more processing 

at the Edge

Offload main processor 

Accelerate time-series vector 

computations (4x, 8x)
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Machine Sensor IoT Radio Gateway Cloud Server

MCU / MPU

P R O C E S S I N G E D G E



Why AI/ML at the Edge?

Privacy and IP 

Protection, Security
Low Latency 

Required

Bandwidth and Power

Constraints

Offline Mode

Operation

Cost 

Reduction

Data processing is more efficient with AI/ML at the Tiny Edge – various new use cases enabled

▪ Network and infrastructure 

costs

▪ Data ingestion costs

▪ Data storage costs

▪ Cloud services

▪ Ops, maintenance

▪ Compact edge with ML 

solutions integrated to 

wireless SoC

▪ Mission or safety-critical 

applications require real-

time reactions

▪ Large data to process - 

typically at vision use 

cases - no time to upload 

to anywhere to process

▪ Long range, low power, 

and slow networks can’t 

transfer all TimeSeries 

data to process 

somewhere else

▪ Overloading of mesh 

network is an issue

▪ Large data to chunk

▪ Process vs. transmit 

tradeoff in power cons.

▪ Local system keeps 

operating standalone in 

case of any network issue

▪ Connectivity is occasional 

or blocked by admin

▪ Data never leaves the 

sensing device, only 

inference result/metadata 

is transferred

▪ Less sensitive data to 

transmit, less chance to be 

hacked

▪ Protecting IP
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Use Cases for AI/ML at the Edge in Predictive Maintenance
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Source: SensiML – WorksWith 2021



Machine Learning Development – Model Training

Create

Data Set

Train

Model

Test

Model

Convert

Model

Introduce 

exceptions and 
incorrect behavior 
from previously 

created data set

Using suite of tools 

and partners

Integrate Model Test & Run
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Based on anomaly 

detection, and run-
time life usage, 
create a profile of 

normal behavior

From usage data, 

create a profile of 
scenarios (ON, 
OFF, Scenario 1, 

Scenario 2, etc)

Develop (wireless)

embedded application



Machine Learning Development – Model Training

▪ Goal 

• What are you trying to achieve?

▪ Collect a dataset 

• Construct a dataset that you will use to train the model 
(anomalies)

• Some will be kept aside for testing the model.

▪ Design Model architecture 

• It is not the raw data that is inputted into the model, it is the 
pre-processed data.

• Therefore, we must choose a pre-processing block that is 
relevant for the type of data we are dealing with.

▪ Train the Model

• About 80% of the dataset should be used at this stage.

• The desired output is good predictions on generalized inputs.

• Need to avoid underfitting and overfitting.

▪ Test the Model

• Check the performance of the model

• Iterate and refine
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Silabs Tech Talk 

Predictive Maintenance Model Training

Watch Now

https://www.silabs.com/support/training/ml-in-predictive-maintenance-and-safety-applications


Machine Learning Development – Hierarchical Temporal Memory (HTM)

What is Hierarchical Temporal Memory?

▪ HTM simulates the structure and biological 

functionality of the neocortex (memory-based) 

and is particularly suitable for sequence learning 

and prediction

▪ HTM manipulates sensory data represented as 

simple ideas in the lower level and the idea gets 

more abstract in the higher level

When to use Hierarchical Temporal Memory?

▪ When using multiple input sources that are vastly 

different but contribute to a singular output.

▪ When data is input at high-speeds, but is not 

temporal (not time specific, can be re-ordered)

▪ When manipulating unlabeled and small-batch data

▪ When the model needs to learn continuously 

unsupervised

▪ When the model needs to make predictions based on 

previous learnings.

▪ Does not require accelerated computations and can 

adapt to high levels of noise and sub-sampling
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Machine Learning Development – Hierarchical Temporal Memory (HTM)

How does it work?

▪ Inputs from various input sources are semantically encoded as a sparse 

array (of 0s and 1's) called a sparse distributed representation (SDR)

▪ This encoded array goes through a processing called spatial pooling

▪ Spatial pooling (SP) is the process of converting the encoded SDR into a 

sparse array to normalize/standardize the input data from various sources 

into a sparse output vector or mini-columns of definitive size and fixed 

sparsity

▪ The temporal memory algorithm consists of two phases.

• 1st phase is to evaluate the SP output against predictions and choose a set of 
active cells.

• 2nd phase is to form a prediction by putting cells into a predictive state

▪ The system's ability to learn and remember can be set by adjusting the 

permanence value which controls how likely a cell's state is changed.
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AI & ML - Anomaly Detection 
DEMO – Predictive Maintenance Techniques



Anomaly Detection – HTM DEMO

23 ©2023 Silicon Laboratories Inc. All rights reserv ed.

HARDWARE: 

EFR32xG24 Dev Kit – DK2601B

SOFTWARE EXAMPLE: 

github.com/SiliconLabs/machine_learning_applications

PROCEDURE:

1. Import project and dependencies

2. Build and flash to device

3. Open serial display python script

4. DEMO:

1. Move the board in a non-random way - pendulum off a table

2. Introduce an anomaly – brute vibration to table

3. Graph anomaly score over time - average of past 10 scores, between 0 and 1 

(0: no anomaly ; 1: high anomaly) using Hierachical Temporal Memory (HTM) 
encoding

https://www.silabs.com/development-tools/wireless/efr32xg24-dev-kit
https://github.com/SiliconLabs/machine_learning_applications/tree/main/application/imu/imu_anomaly_detection


Anomaly Detection – HTM DEMO
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Anomaly Detection – BONUS DEMO – Electric Fan
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Electric hand-held fan – 3 anomalies introduced purposely



Additional Resources
Q&A



Solution Libraries

Machine Learning Development – Software and Tool Support

Python scripts and tutorials

M L  E X P E R T M L  E X P L O R E R M L  S O L U T I O N S

GUI Developer Tools

TFLite Flatbuffer

edgeimpulse.com

sensiml.com

siliconlabs.github.io/mltk

Machine Learning Toolkit*

Cortex M MVP (NPU)

CMSIS-NN Kernels
Silicon Labs HW-
based Kernels

TFLite-micro Interpreter

Cortex M MVP (NPU)

CMSIS-NN Kernels
Silicon Labs HW-
based Kernels

TFLite-micro Interpreter

Cortex M (& MVP) 

micro.ai

Anomaly

Detection

Wake Word /

Voice Command

sensory.com

System Integrators

*Machine Learning Toolkit is public but pre-alpha release

©2023 Silicon Laboratories Inc. All rights reserv ed.27

http://www.edgeimpulse.com/
http://www.sensiml.com/
https://silabs.github.io/mltk/
https://siliconlabs.github.io/mltk/
http://www.micro.ai/
http://www.sensory.com/


Additional Resources

▪ WorksWith 2023

• AIML-101 : Ensuring First Time Success of ML Applications

• AIML-102 : Machine Health and Condition Monitoring using 

        Edge Impulse

• IOT-103 : IoT Trends: Embedded ML in Edge Devices

▪ DEMOs:

• Silabs Tech Talk – Pred.Maint. Model Training

• WorksWith23 – Pred. Maint Anomaly Detection github

• SensiML – Pump & Fan Anomaly Detection

• Run-Time and Lifetime examples: coming in 23Q4

▪ Silicon Labs resources:

• Predictive Maintenance - landing page

• Machine Learning – landing page and docs

• Machine Learning – User Guide

• Machine Learning – ML Tool Kit github

▪ Partner resources:

• Edge Impulse

• SensiML

• MicroAI

• Capgemini
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https://www.silabs.com/support/training/ml-in-predictive-maintenance-and-safety-applications
https://github.com/SiliconLabs/machine_learning_applications/tree/main/application/imu/imu_anomaly_detection
https://sensiml.wistia.com/medias/8hc6omi11j
https://www.silabs.com/applications/industrial-iot/predictive-maintenance
https://www.silabs.com/applications/artificial-intelligence-machine-learning
https://docs.silabs.com/machine-learning/latest/machine-learning-overview/
https://www.silabs.com/documents/public/user-guides/ug103-19-machine-learning-fundamentals.pdf
https://siliconlabs.github.io/mltk/
https://docs.edgeimpulse.com/docs/development-platforms/officially-supported-mcu-targets/silabs-xg24-devkit
https://sensiml.com/partners/silabs/
https://micro.ai/
https://www.capgemini.com/ca-en/


CONCLUSION

▪ Predictive Maintenance is an insightful expansion to conventional Condition Monitoring.

▪ The IoT and advanced Edge computing are useful tools in creating and scaling a useful predictive 

maintenance network.

▪ Consult Silicon Labs and our valued partners for advice on Machine Learning methodologies for your 

Predictive Maintenance use-case.
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