

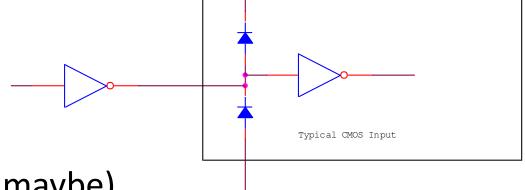
Product Development from start to success™

APP-201 Optimization of Battery Life

- Wireless IoT environment
- Where does power get use
- Strategies to reduce power consumption
- Battery selection
- CPU / Radio power management
- Using SiLabs power estimation tool

Wireless Network Power

- Gateways and Border Routers
 - Mains powered
 - Manage the network
- Routers
 - Mains powered (usually)
 - Mesh routing services
- End Devices
 - Often battery powered
 - Spend most of their time sleeping


What Consumes Power?

- CPU
- Radio(s)
- I/O
- Self Discharge / Leakage

Strategies to reduce power

- Just turn it off!
 - Use I/O to turn on/off sensors
 - I/O pins sometimes have adequate drive (look for I_{OH}(max) on the data sheet)
 - Use a high side driver
 - Watch out for the zombies

Lower the voltage (maybe)

Local Power Regulation

- Direct from battery
 - No excess power consumed for the purpose of regulation
 - Poor voltage regulation
- Linear Regulators (LDO)
 - Clean power, low RF emissions
 - Burns the excess voltage off as heat (V=IR, P=IV)
 - Requires battery voltage higher than the output rail
- Switch mode power supplies
 - Can be very efficient and provide good regulation
 - Flexible selection of battery voltage
 - May contribute RF emissions and power rail noise

Self Discharge & Leakage

- Batteries have self discharge issues
 - Primary cells list a "shelf life" which is time to 80% charge
 - Secondary cells list a "self discharge" or "capacity retention"
- Capacitors have leakage
 - Listed as "leakage current"
 - Electrolytic caps often have high leakage
- Model as a resistor in parallel

- Primary Cells
 - Non-chargeable
 - Alkaline, Lithium-metal, Lithium Thionyl
 Cloride
- Secondary
 - Chargeable
 - Lithium Ion, Lithium Polymer, NiCad, NiMH,
 Lead Acid

Primary vs secondary cells

- Availability of charging power
- Limitations on recharge cycles
- Availability of replacement cells
- Complexity and cost of charging circuits
- Perceived operating cost vs actual operating costs
- Self discharge of secondary cells
- Usage model

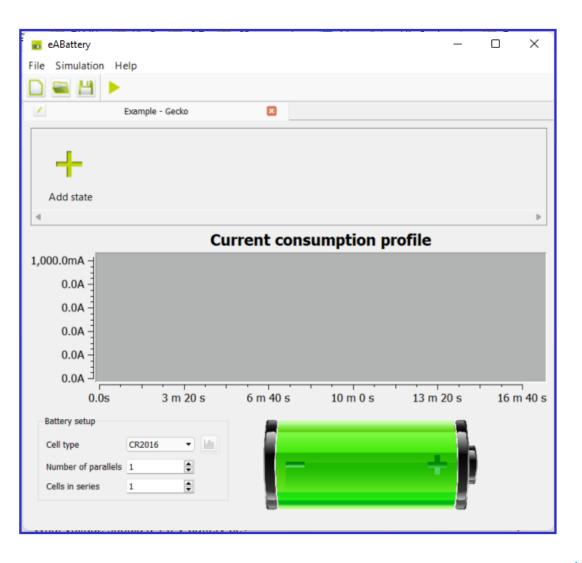
CPU Energy Management Unit (EMU

- Feature of SiLabs Devices
 - Manages energy modes and power routing
 - Internal DC/DC control
 - Reset management
 - Brown Out Detection
 - Supply Voltage Scaling / LDO Control
- Modes (High power to low powr)
 - EM0 (run) → EM1(sleep) → EM2(deep sleep) → EM3(stop) → EM4(shutoff)

Estimating Battery Life

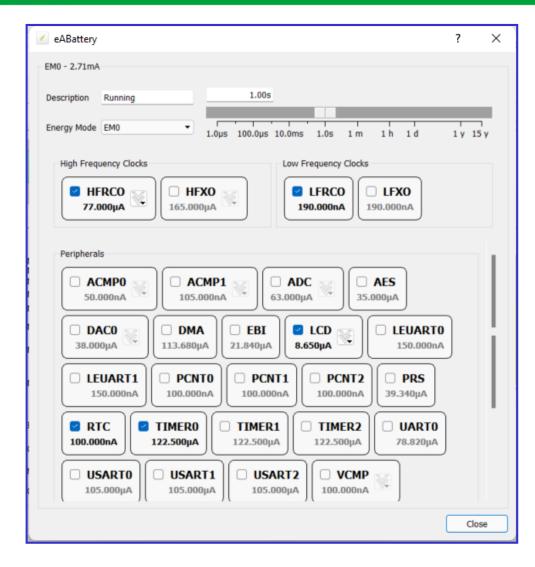
- Power is in Watt-Hours ALWAYS
 - AA Battery 1.5V 2.5 AH = 3.75 WH
 - -2 in parallel = 1.5V, 5 AH, 7.5 WH
 - -2 in series = 3.0V, 2.5 AH, 7.5 WH

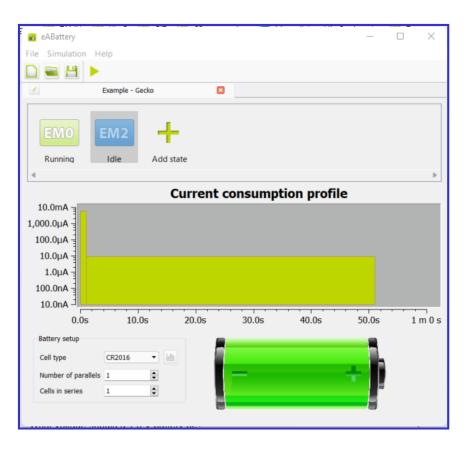
Split the time into periodic and aperiodic events

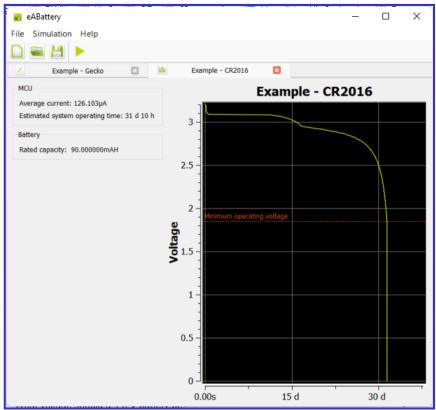

Power Consumption Model

- Series of repeated states
 - Sleep
 - Measure
 - Receive
 - Transmit
 - Repeat
- One time / Infrequent events
 - Updates
 - Log Querry

Energy Aware Battery Tool


• EV5 Tools




Create a State

Product Development from start to success™

Demo of Tool