Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing

EMBEDDED WORLD 2018

SAULI LEHTIMAKI, SILICON LABS
Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing

Agenda

- Motivation – What and Why?
- History of Direction Finding
- Bluetooth AoA
- Bluetooth AoD
- Example applications
- Challenges
- Some Comparative Positioning Technologies
- Antenna Arrays
- Direction of Arrival Theory
- Summary
The term Real-Time Locationing (RTLS)?
- Target is to get real-time estimates of object positions (or angles), in this case using RF-waves
- GPS vs indoor locationing
- Bluetooth Angle of Arrival and Angle of Departure are upcoming technologies

Why Real-Time Location?
- Find or track assets/people
- Find yourself
- IoT’s best friend – new applications not yet invented...

History of direction finding methods goes back over 100 years
- Direction finding technology is already used in many applications like medical equipment, aviation, security applications, military ...
The Bluetooth AoA/AoD specifications developed by the Bluetooth SIG are mature but not yet final.

- We’ll talk about general concepts and will not refer to the spec

General idea: In Angle of Arrival the tracked device is sending a special beacon signal using 1 antenna

- Receiver devices called locators
 - Have multiple antennas arranged in an array
 - Take IQ-samples from the received signal while sequentially switching the currently active antenna
 - Angle of arrival estimate is calculated based on the input data

- Antennas in the receiving array will (theoretically) see phase differences because of different line-of-sight distances to the TX
 - Light speed vs. wave length vs. antenna distance
 - In practice not easy: multi-path and antenna array properties
- One IQ-sample is a pair of in-phase and quadrature-phase samples.
- The AoA-calculation algorithm takes in the IQ-data and calculates an estimate for the arrival angle.
 - Phase and amplitude information
- In Bluetooth, control data related to the positioning is transferred over the traditional data channel.
Bluetooth Angle of Departure – Basic Idea

- In Angle of Departure, the fundamental idea of measuring phase differences is the same but device roles are swapped.
 - The tracked device is using only one antenna. Beaconing devices use multiple antennas.

- From the application point of view, the fundamental difference to Angle of Arrival is:
 - AoD: the receiving device can calculate its own position in space using angles from multiple beacons and their positions.
 - When in AoA: the receiving device tracks arrival angles for individual objects.

- All kinds of combinations are possible. When measuring RSSI / distance data, we’ll get even more possibilities.

- Expected accuracy can be around a half meter.
Theoretical Example Applications (from my own life)

- Problem 1: Dude, where’s my car? (lost in a parking building) (AoA)
 - Take a connection to the car
 - Ask the car to send a narrowband tone
 - IQ-sample the received tone using antenna array
 - Feed the IQ-data to a direction of arrival algorithm to get an angle estimate
 - Get the car

- Problem 2: Find my way out of a shopping mall (AoD)
 - Open mobile phone app with a map of the shopping mall
 - Listen to the multiple fixed-position beacons installed in the mall
 - IQ-sample the beacons coming from the known locations
 - Calculate my own position using the angle estimates and beacon device positions
 - Escape and celebrate freedom
Challenges in RTLS

- How to calculate angle estimates based on the sampled data
- Multipath
 - Two signals are coherent if one is a delayed and scaled version of the other
 - When indoors, there can be several reflections, i.e. the receiving device sees coherent reflections of the original incident signal coming in from several other angles
- Polarization
 - Cannot control orientation of the mobile device
- Signal noise, clock jitter, signal propagation delays, switching timings, etc.
 - Errors in the signals affect accuracy of the estimates
- RAM / CPU performance in an embedded device
 - Some data needs to be buffered for the calculations
 - Estimation algorithms are CPU intensive
- Antenna array size limitations
Some Comparative Technologies

- RSSI (Received Signal Strength Indicator)
 - Measure strength of the received signal to get distance approximation
 - Trilaterate position based on multiple distance measurements from different points
 - Requires only one antenna per device
 - Usually not very accurate indoors

- ToA/ToF (Time of Arrival / Time of Flight), TDoA (Time Difference of Arrival)
 - Measure travel-time and trilaterate
 - In ToA, all devices are time-synchronized. In TDoA only receiving stations are time-synchronized.
 - Requires only one antenna per device
 - Requirement for very high time resolution / clocks

- Solutions for these technologies already exist for Bluetooth from several manufacturers. Only phase-based technologies (AoA/AoD) have a specification by the Bluetooth SIG.
Direction of Arrival Theory
Antenna Arrays

- Antenna arrays play a significant role in Direction of Arrival (DoA) systems.
- Arrays are commonly divided into separate categories and have different properties and performance.
- The most common ones are:
 - Uniform Linear Array – ULA
 - Uniform Rectangular Array – URA
 - Uniform Circular Array – UCA

- Azimuth vs elevation angle
- Algorithms often require certain properties from the array geometry to work properly.
- Designing a proper antenna array is not a copy-paste process.
Problem definition: Estimate arrival angle of an emitted (narrowband) signal arriving at the receiving array

Given a data set of IQ-samples for each antenna in the array. Let the data vector be \(x \)
- Assume the signals to be phase shifted and scaled sinusoidal (narrowband) signals
 \[
 x(t) = a(\theta) s(t) + n(t)
 \]
- Where \(a \) is a mathematical model of the antenna array, the so-called array steering vector
- The term \(s \) is the incoming signal and \(n \) a noise term

We can calculate the so-called sample covariance matrix \(R_{xx} \) by calculating

\[
R_{xx} \approx \frac{1}{N} \sum_{t=1}^{N} x(t)x^H(t)
\]

The sample covariance matrix will be used as input for the estimator algorithm
Let’s consider the so-called conventional (Bartlett) beamformer to solve the problem of DoA

Idea for a uniform linear array

Formulate steering vector \(a \) for the ULA

\[
a(\theta) = [1, e^{j2\pi dsin(\theta)/\lambda}, \ldots, e^{j2\pi (m-1)dsin(\theta)/\lambda}]
\]

Calculate the so-called spatial spectrum using the steering vector \(a \) and covariance matrix \(R_{xx} \)

\[
P(\theta) = \frac{a^H(\theta)R_{xx}a(\theta)}{a^H(\theta)a(\theta)}
\]

While this approach is quite simple, it’s resolution could be better
One type of estimator algorithm is the so-called subspace based estimator, and a popular algorithm in that category is called MUSIC.

The idea is to perform eigendecomposition on R_{xx} (the covariance matrix):

$$R_{xx} = VAV^{-1}$$

Where A is a diagonal matrix containing eigenvalues and V contains the corresponding eigenvectors of R_{xx}.

With the help of V we compute the so-called pseudo spectrum:

$$P(\theta) = \frac{1}{a^H(\theta)VV^Ha(\theta)}$$

Where a is the steering vector of the antenna array.

The last step is to find the largest peak of the pseudospectrum, which corresponds to the angle of arrival.
Example of a 2-dimensional pseudo spectrum, where the sender is located at azimuth = 50 and elevation = 45
Coherent signals are problematic and confuse the estimator algorithm
- Pseudo spectrum shows peaks at incorrect angles
- Solution: multipath “filtering,” aka spatial smoothing

Calculate subarray average of the covariance matrix
- In the 2 dimensional case, spatial smoothing is defined:

\[
\overline{R} = \frac{1}{M_s N_s} \sum_{m=1}^{M_s} \sum_{n=1}^{N_s} R_{mn}
\]

- This will reduce the size of covariance matrix but “separate” the coherent signals
Summary

- Bluetooth Angle of Arrival and Angle of Departure are new emerging technologies that can be used for tracking assets as well as for indoor positioning/way finding.
- A phase-based direction finding system requires an antenna array, RF switch/multi-channel ADC and processing power to run the algorithms.
- Proper antenna array and algorithm design is essential for an RTLS system.
- Good performing DoA algorithms are often not computationally cheap.
- Other comparative technologies include RSSI based locationing systems and Time of Arrival.
Thank you!

SILABS.COM