

GW-101: Gateways Insights on SW/HW for Connecting IoT Products to the Cloud

David Ewing
President

Donnie Pitts

Design Engineer

Meet Your Presenters

David Ewing

President, Firia

Donnie Pitts

Design Engineer, Firia

Rationale for a Gateway device

- Provides a connection to the *Internet!*
 - ...Or connects to private network infrastructure
 - ...Or just to act as a "Hub" device...
- Facilitates limitations of reduced-function devices
 - CPU
 - Memory
 - Storage
 - Connectivity

Connecting. Every. Thing.

- For the past 10 years, loT has been the Wild West of wireless protocols!
- From the Matter / CHIP charter:

"The goal of the first specification release will be Wi-Fi [...], Thread [...], and IP implementations for BLE [...] for the network and physical wireless protocols." 太 matter

But also...

"The [Matter / CHIP] Working Group will likely also embrace other IP-bearing technologies like Ethernet, Cellular, Broadband, and others."

Gateways in the Wild – SmartHome Hubs

- Remember the "Bad Old Days?"
 - Necessary Evil
 - Subject of consumer frustration
 - Obsolescence trap
- Nowadays they Hide behind other features
 - Smart Speakers (Alexa, Siri, g-Assistant)
 - Above, as licensed technologies and services...
 - The future of residential gateways?

Gateways in the Wild – WiFi APs and Routers

- But is this really a Gateway?
- Workhorse at the Edge
- Sets design expectation baseline

- For embedded Wi-Fi products, this may be all the Gateway you need...
 - Unless you need aggregation, low-latency, offline spooling, etc!

Gateways in the Wild – Industrial

Diverse requirements

- Rugged environmentals
- Long operational lifetime

Wireless protocol diversity

- Same protocols as consumer...
- But also WirelessHART, ISA-100.
- And proprietary protocols

Purpose-Built Gateway: Case Study 1

- Gateway for inventory tracking.
 - 500,000+ assets in a single warehouse, reporting to the Cloud or local site server.
- Power over Ethernet (PoE) Port for power and communication
- Raspberry Pi Compute Module CM3+
- 2x 2.4 GHz EFR32 BG1 transceivers, proprietary long-range radio protocol, dual internal high-gain patch antennas
- MQTT protocol over TCP to backend / cloud

Purpose-Built Gateway: Case Study 2

IoT gateway for a Healthcare sensor manufacturer

- Raspberry Pi Compute Module CM4
 - Integrated Wi-Fi and basic BLE support
- Expansion via mPCle card interface
 - Cellular modem options
- Gigabit Ethernet
- USB Type-C power
- MicroSD Card slot
- LEDs and speaker UI

Firia XG1"Open Gateway" - Requirements

- Edge Compute resources for non-trivial applications
 - Local in-memory aggregation
 - Data compression, de-duplication (e.g. asset tracking)
- Software development environment
 - Software is the biggest long-term expense
 - Open platform, availability of libraries for everything
- Wireless multi-radio options
 - Wi-Fi, BLE, 802.15.4, subGHz, Cellular,... expansion!
- Rugged, fanless operation

Open Platform

- Raspberry Pi Compute Module CM3+
 - Extended temperature range -25° to +75°C
 - Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz
 - 1GB LPDDR2 SDRAM
 - 32GB eMMC Flash
 - Availability commitment through 1/2026
 - Unmatched design runtime and software stability

 Complete MIT licensed source code and examples at: firia.com/xg1

Onboard Radio Modules

ECO-Processor

- MGM12P runs on an independent "ECO" power rail
 - Can fully control main system power (jumper enabled)
 - System sleep modes down to 250uA
 - I2C access to system RTC (Linux clock) with interrupt capability
 - Dedicated expansion port wakeup on external sensors
 - Remote Debug / Packet Trace Interface (PTI)

Power and Security

Robust and Efficient Power Section

- Industrial grade ESD and surge protection
- Wide power input range (6-30VDC), with EMI filtering and reverse-voltage protection
- Advanced Security Controller Hardware (EAL4+ Certified)
 - Trusted Platform Module (TPM)
 - Tamper-resistant crypto key storage
 - FIPS 140-2 level 2 (Physical Security Level 3)

Connectivity and Expansion

- Multi-carrier end-device certified Skywire modem options: LTE-M, NB-IoT, and LTE CAT4
- Expansion connectors provide power, analog/digital IO, serial ports

Local Application Services - Edge Computing

- **Network management and commissioning** applications require software running on the Gateway.
- Wireless stacks must be initialized and maintained
 - Node provisioning and security
 - Failover when peer-gateways become unavailable
- Spooling data when backend connection is unavailable
- On-premises Cloud Functions
 - Containerized Edge Computing
 - Amazon Greengrass
 - Azure IoT Edge

To the Cloud!

- Making sure your Gateway can handle **ALL the Cloud throws at it!**
- Software library availability
 - MQTT, AMQP
 - Protobufs
 - HTTPS / TLS connection
- Secure certificate management (TPM)
- CPU, RAM and FLASH resources
 - Edge processing
 - Local services

AWS IoT Core

Greengrass service can run Lambdas on the Gateway

Full Stack: Device - Cloud - User

Understanding the data flow: Azure example Event Grid Triggered HTTP Triggered General Storage Cloud Function Cloud Function protobuf · Holds & serves static web files · deserialize protobuf · Runs Apollo (GraphQL) server · write to database · Reads/writes to/from database Checks user access to devices & settings · Responds to GraphQL queries Translates GraphQL mutations to protobuf messages & sends to device(s) protobuf X.509 protobut **Function Proxy** IOT Hub **IOT Device** Proxies HTTP requests to correct destinations Browsers · Commissions device IDs · Verifies certificate chain

works with

BY SILICON LABS

VIRTUAL CONFERENCE

