

圆

LPW-201

Advanced Features Coming to Sub-GHz Networks

Eric Mauger

Advanced Features Coming to Sub-GHz Networks: Content

- This session focusses on
 - Wi-SUN, and in particular some system features
 - Mode switch
 - Concurrent detection
 - LFN (Limited Function Node)
 - SUN/ Wi-SUN PHYs and their respective benefits for both Wi-SUN and proprietary applications
 - Wi-SUN FSK
 - Wi-SUN OFDM
 - SUN O-QPSK

SUN: Smart Utility Networks (802.15.4 reference)

Wi-SUN: Wireless Smart Ubiquity Networks (Wi-SUN alliance specifications)

System aspects of Wi-SUN

Mode Switch

- Wi-SUN introduces a mode switch mechanism option
 - Different from 802.15.4

• Principle:

- A Wi-SUN network is using a given FSK as base PHY
- A given transmission can be done using an **alternate PHY**, with <u>higher bit rate</u>
 - Can be FSK to FSK or FSK to OFDM
 - Can be on a wider channel
- To achieve this, a signaling packet is sent to provide the information on the new PHY
- The devices can then communicate with the new PHY
- See AN1403: Wi-SUN PHY mode switch on EFR32FG25

Benefit

- · Increase of the bit rate for a dedicated period/purpose
- · Backward compatible

Drawback

· Requires a signaling packet

Concurrent Detection

Concurrent detection further improves network performance

• Principle:

- The device listens to both FSK and OFDM at the same time
- · The first incoming signal triggers reception, the other one is aborted
- Behaves like mode switch, without the need for the signaling packet
- Benefit
 - Allows hybrid networks, FSK for robustness and legacy, OFDM for high bit rates
 - Increase throughputs without the overhead of a signaling packet
- Note: this is not specified in Wi-SUN, but a capability of EFR32FG25

LFN: Limited Function Node

LFN allows battery powered applications as nodes can be sleeping most of time

- Introduced within Wi-SUN FAN 1.1
- The typical use case is a node transmitting 1-2 kB per day
 - The goal is to reach a battery life of 20 years
- These nodes cannot be routers, so this is limited to leaf nodes
- Available for both EFR32FG28 (FSK only) and EFR32FG25 (FSK & OFDM)

SUN and Wi-SUN PHYs

Wi-SUN FSK

Wi-SUN FSK PHYs are a subset of SUN-FSK specification (IEEE802.15.4g)

- Specification: Wi-SUN PHY Working Group (PHYWG) PHY Technical Profile Specification (TPS) <u>Rev 2V01</u>
 - Now covers FSK worldwide and OFDM in a single document
- 5 data rates coming with different channel spacing
 - Flexibility is limited
 - The more bit rate you want, the more bandwidth you need
- FEC is available and brings ~2 to 4 dB better sensitivity, but
 - it has strong impact as it divides by 2 the bit rates
 - Or requires a wider bandwidth for similar bit rate
 - => in practice, this is barely used

Bit rate (kbps)	Modulation index	BW – ch spacing (KHz)	Operating mode	With FEC: Net bit rate (kbps)
50	0.5	100	#1a	25
50	1.0	200	#1b	25
100	0.5	200	#2a	50
100	1.0	400	#2b	50
150	0.5	200 - 400*	#3	75
200	0.5	400	#4a	100
200	1.0	600	#4b	100
300	0.5	400 - 600*	#5	150

*: depends on the region

FSK: Frequency Shift Keying, FEC: Forward Error Correction

W

Wi-SUN FSK

- Example of FSK performance for North America (NA) modes
 - EFR32FG25 sensitivity figures

Summary on FSK

Advantages

- Simple, well known, a lot of use cases
- Low complexity
- Constant envelope
 - Can use a Power Amplifier at saturation
 - Power efficient at Tx side
 - \Rightarrow low power

Drawbacks

- · Limited flexibility
- Increased bit rate requires higher bandwidth
- FEC not really helpful, except for 50 kbps mode

M

• Limited performance

Wi-SUN OFDM: Introduction

- OFDM
 - Orthogonal Frequency Division Multiplex
 - Invented in 1980's for DAB
 - Became popular in 1990's with Digital TV (Europe and Japan), then in Wi-Fi (802.11g/n/...)
- Main advantages
 - Multi-carrier modulation
 - · Combines carriers which brings robust synchronization and data carriers which very efficient modulation and coding
 - · OFDM has built-in flexibility/scalability
 - Same synchronization for all MCS modes
 - In-packet signaling => easy switch between modes without configuration
 - Robustness to multipath
- Main drawback
 - OFDM is sensitive to non-linearity, then requires a linear Power Amplifier which has higher power consumption

SUN & Wi-SUN OFDM

SUN OFDM

- Part of IEEE.802.15.4g specification
- · Defines 4 options for different bandwidth
- Each option has 7 Modulation and Coding Schemes
 - MCS0 (low bit rate) to MCS6, in-packet signaling
 - Sometimes referred to as MR-OFDM (multi rate)
 - Packet by packet flexibility
- Wide bit rate range
- Flexible performance levels
- Wi-SUN specifies a subset of SUN OFDM modes
- EFR32FG25 supports all SUN OFDM modes
 - And adds MCS7 (*) to bring 50% bit rate increase
 - Up to 3.6 Mbps in option 1
- OFDM PHYs can be used in proprietary applications, not only for Wi-SUN

 \mathbf{V}

OFDM Characteristics: Option 4 MCS6 Example

1 CC0 Raw Main Time V

Power vs time: High PAPR => requires linearity

Scale/Div 10.00 dB Scale/Div 10.00 dB Ref Value 5.00 dBm -5.00 0.00 -15.0 -10.0 Flat spectrum => 25.0 والمراجع -35.0 good spectrum usage -30.0 -45.0 فيالافارا بالطارات -40.0 -55.0 -65.0 -50.0 -60.0 -75.0 -70.0 -85.0 -80.0 Ctr: 915.000000 MHz Width: 400 kHz Start: 0.00 ns Stop: 50.00 ms Res BW: 34.58 Hz 3 CC0 IQ Meas Time 4 CC0 Error Summary V . I-Q EVM is the indicator EVM/MER -44.81 dB -36.63 dB IQ Offset 1.20 16QAM constellation EVM/Peak -34.02 dB IQ Qual Err 0.09 deg of signal quality: 898 m Pilot Evm -45.52 dB IQ Gain Imb 0.0045 dB (data in blue) 598 m highly affected by Data Evm -44.61 dB 299 m Pilots and preamble Pmbl Evm -49.80 dB linearity SNR/MER 44.81 dB (white & red) -299 m -598 m Freg Error -40.03 Hz Tx Pwr (CC0) -0.09 dBm 898 m Sym Clk Err -0.07 ppm Tx Pwr (Total) -0.09 dBm -1.20 CPE 0.57 % Sync Corr 0.9309 -2.910 2.910

2 CC0 Spectrum

Δ.

PAPR: Peak to Average Power Ratio, QAM: Quadrature Amplitude Modulation, EVM: Error Vector Magnitude

M

High Bit Rates Benefits

• Higher bit rate translates to <u>higher throughputs</u>

=> Throughputs is important for some use cases like Firmware update (OTA)

- Higher bit rates translates to <u>shorter on-air</u> frame duration
 - Example for a 1500-Byte PHY Payload

bandwidth (KHz)	modulation	bit rate (kbps)	Tx duration (ms)	
200	FSK 1b	50	241.92	
	FSK 2a	100	120 .96	
	OFDM 4 MCS6	300	41.52	
400	FSK 3	150	80.85333333	
	FSK 4a	200	60.64	
	OFDM 3 MCS6	600	21.48	
600	FSK 5	300	40.74666667	
800	OFDM 2 MCS6	1200	11.52	
1200	OFDM 1 MCS6	2400	6.12	

- Shorter on-air duration brings significant advantages
 - <u>Better network performance</u> and <u>less congestion in a</u> dense environment or in countries with narrow bands.
 - ► E. g. India band is 3MHz only
 - More <u>robustness</u> to pulse interferers
 - Reduced Tx duration also <u>reduces Power Amplifier</u> <u>consumption</u>

SUN O-QPSK

SUN O-QPSK

- Part of IEEE.802.15.4g specification
- Targets low sensitivity with low/medium bit rates
 - Uses DSSS (Direct Sequence Spread Spectrum)
- In-packet signaling: MR-O-QPSK (multi rate)
- · Defines 2 options, each of them with 4 Rate Modes

SUN O-QPSK is not part of Wi-SUN yet

• Planned within FAN 1.2 or 2.x

Chip rates (kcps)	Bandwidth (kHz)	Main regions	Bit rates (kbps)	Sensitivity (dBm)
100	200	Worldwide	6.25 to 50	-124 to -119
1000	2000	NA, BZ, KR	31.25 to 500	-116 to -109

O-QPSK: Offset Quaternary Phase Shift Keying kcps: kilo chip per second

NA: North America, BZ: Brazil, KR: Korea

EFR32FG25 supports all SUN O-QPSK modes

- Except MDSSS modes
- SUN O-QPSK PHYs are available for use in Proprietary applications, not only with Wi-SUN

Performance Comparison: Europe – India

Europe, India mainly use 200 kHz channel spacing

• OFDM advantage vs FSK:

- A: increased bit rate for same range
 - ▶ +30 to 50%
 - + 200% from FSK 50kbps (100 KHz BW)
- B: improved range for same bit rate
 - About 4 dB better sensitivity
- C: can be a combination of both
 - ▶ +50% and 2 dB

O-QPSK complement to OFDM

- O-QPSK brings another step on range extension
- 4 to 5 dB better sensitivity

Performance Comparison: North America

- North America group allows the use of all these schemes
- Fair comparisons must be done with similar bandwidth: higher bit rate is expected with wider bandwidth

M

EFR32 devices supporting the features presented

Feature		xG12	xG23	FG25	xG28
system	Mode switch	Ν	Ν	FSK to FSK FSK to OFDM	FSK to FSK
	Concurrent detection	Ν	Ν	Υ	Ν
	LFN support	Y	Ν	Υ	Y
PHY	Wi-SUN FSK	Y	Y	Y	Y
	SUN OFDM	Ν	Ν	Υ	Ν
	SUN O-QPSK	Ν	Ν	Υ	Ν

SILICON LABS 17 ©2023 Silicon Laboratories Inc. All rights reserved.

Demonstration

<u>Goal:</u>

 Compare FSK vs OFDM performance based on Ping and iPerf tests.

Prerequisites:

- 3 x EFR32FG25
- 3 x Wireless Pro Kit Mainboard
- Simplicity Studio v5
- GSDK 4.3.0

Network PHY Configuration:

- FSK: 50kbps, 100 KHz spacing
 - EU 1 32
- OFDM: Option 4 MCS6, 300kbps, 200 kHz spacing
 - EU 86 37

Wi-SUN - SoC Network Measurement

Wi-SUN - SoC Network Measurement

圆

Thank You