

圆

L P W - 2 0 5

Explore the FG28: New Dual Band SoC

Chad Steider

FG28 Overview

Why FG28?

- Dual-Band (Sub-GHz + 2.4 GHz) Support with Series 2 Performance
 - Increased processor performance over FG1x devices including AI/ML hardware accelerator
- Multi-Protocol Support
 - Support for static and dynamic multi-protocol use cases for select Sub-GHz and Sub-GHz + Bluetooth scenarios
- Broader Ecosystem Support for Low Power Devices
 - Full support for Wi-SUN LFN low power nodes
 - Support for both Bluetooth LE and FSK PHYs for Amazon Sidewalk
- Up to 49 GPIOs for Better System Integration
 - Eliminate system complexity by incorporating more into FG28 (QFN68)
- Migration Path from Earlier FG Devices
 - Footprint compatible path from FG12 (QFN68) and FG23 (QFN48)

FG28: Dual-Band SoC for the Next Generation of IoT

Dual-Band Multi-protocol More GPIOs Secure

DEVICE SPECIFICATIONS

High Performance Dual-Band Radio

- Up to +20 dBm Sub-GHz
- -125.8 dBm RX @ 915 MHz 4.8 kbps O-QPSK
- Up to +10 dBm 2.4 GHz
- -94.2 dBm @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- Up to 78 MHz
- Up to 1024kB Flash, 256kB RAM

Low Power

- 82.8 mA TX Current (915 MHz, +20 dBm)
- 26.2 mA Tx Current (915 MHz, +14 dBm)
- 4.6 mA RX (915 MHz 4.8 kbps O-QPSK)
- 22.5 mA TX Current (2.4 GHz +10 dBm)
- 5.2 mA RX (BLE 1 Mbps)
- Active Current: 33 µA/MHz @39 MHz
- 1.3 µA EM2 (16 kB Retained)

Protocol Support

- Wi-SUN
- Amazon Sidewalk
- WM-BUS
- Proprietary
- Bluetooth LE
- Silicon Labs CONNECT

Package Options

• 6x6 QFN48 (31 GPIO), 8x8 QFN68 (49 GPIO)

DIFFERENTIATED FEATURES

Dual-Band

- Supports Sub-GHz + 2.4 GHz Bluetooth LE
- Secure Vault[™] Mid and High
- Allows for migration path as security needs change
 +20 dBm output power
- Eliminates the need for an external power amplifier **16-bit ADC**
- Up to 14-bit ENOB for better analog resolution

AI/ML Hardware Accelerator

- Reduces current consumption for AI/ML at the edge
 Preamble Sense
- Ultra low power receive mode
- Sub-GHz Antenna Diversity
- 6-8 dBm better link budget (Sub-GHz only)

Segment LCD

Lower system cost by integrating LCD controller

High GPIO count

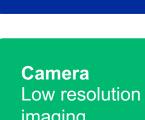
• Supports up to 49 GPIO

AI/ML on Edge Devices

Benefits of processing AI/ML in device

- Lower power
- Save Bandwidth
- Lower Latency
- Ensure Privacy
- Higher Security

Use Cases for AI/ML

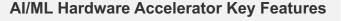

Audio mic array with beamforming

Audio mic input with Audio Front End, DSP

Image capture (incl. fingerprint reader)

Lower Cost

Camera Timeseries data on ADC or GPIO imaging


Sensors

Acceleration.

Temperature,

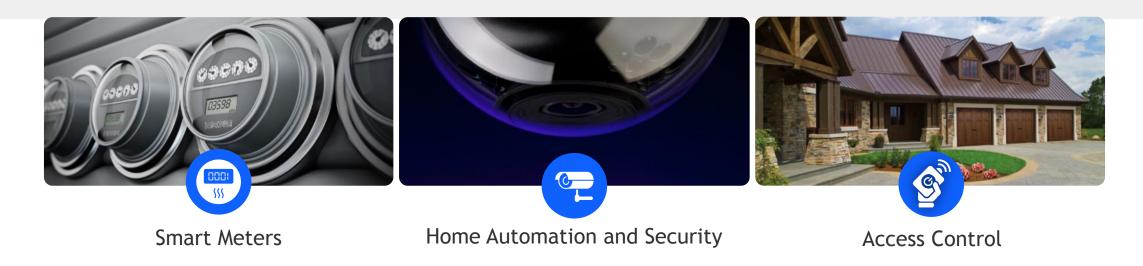
Microphones Analog or Digital

Current/Voltage

Event Detection

- Optimized Matrix processor to accelerate ML inferencing with a lot of processing power offloading the CPU
- Real and complex data

SILICON LABS


EFR32

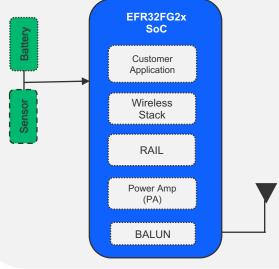
- 2x to 4x faster inferencing over Cortex-M
- Up to **6x lower power** for inferencing

AI/ML Hardware Accelerator enables efficient Edge ML inferencing

FG28 Target Applications

SILICON LABS

Simplicity Studio: Common Platform & Tools



Ŵ

SILICON LABS 7 © 2023 Silicon Laboratories Inc.

Battery Powered Sensor Node

DESIGN CONSIDERATIONS

- Battery Life
- Range
- Size
- Robust connectivity
- Environmental conditions

HARDWARE SOLUTIONS

- FG23
 - Superior RF Performance (Link budget of ~146 dB)
 - Lower cost BOM with integrated DC/DC power supply, PA and BALUN
 - Optimized for single protocol support
- FG28

RF

- High GPIO count (49)
- Al/ML Accelerator for battery power consumption
- Suitable for Wi-SUN battery-powered LFN nodes
- Dual band support (Sub-GHz, 2.4G BLE)
- Ideal for multi-protocol support

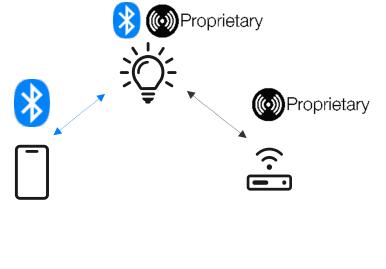
RECOMMENDED KITS

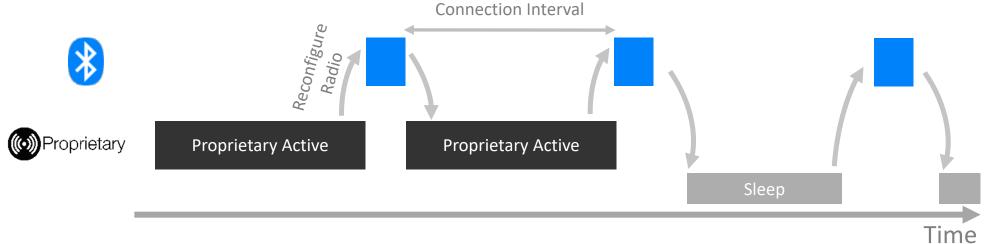
- FG23
 - xG23-PK6068A EFR32xG23 Pro Kit
- FG28
 - FG28-PK6025A Pro kit (+20 dBm)
 - xG28-EK2705A Explorer Kit

SOFTWARE SOLUTIONS

Wi-SUN (FG28)

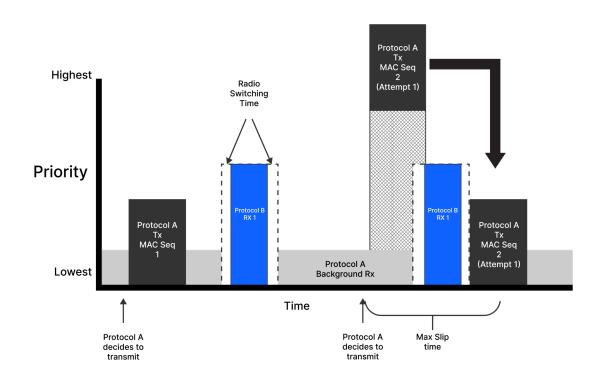
- Certified stack
- Complete ecosystem support -LFN (Limited Function Nodes) - FG28
- Amazon Sidewalk (FG28)
 - Sidewalk Application Layer library
 - Amazon Sidewalk Stack
 - Silicon Labs Platform Abstraction Layer
 - Bluetooth Stack
 - RAIL
- Power management solutions for low power by
 - Option to turn off the power to unused RAM blocks
 - Voltage Scaling
 - Peripheral Reflex System (PRS)
 - Low Energy Sensor Interface (LESENSE)
 - Optimized analog peripherals for low power performance

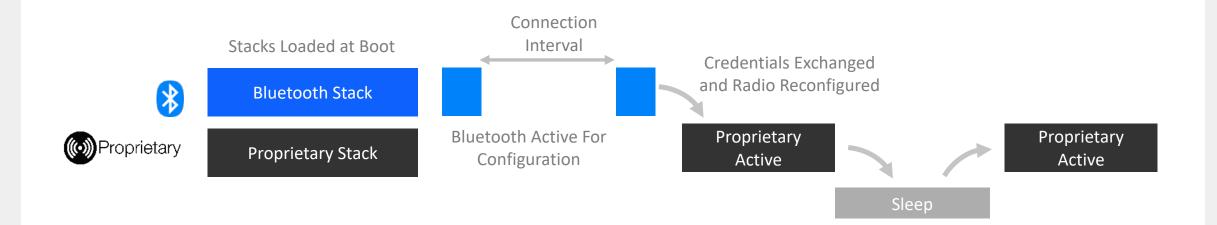



Multi-Protocol on xG28

Dynamic Multi-Protocol

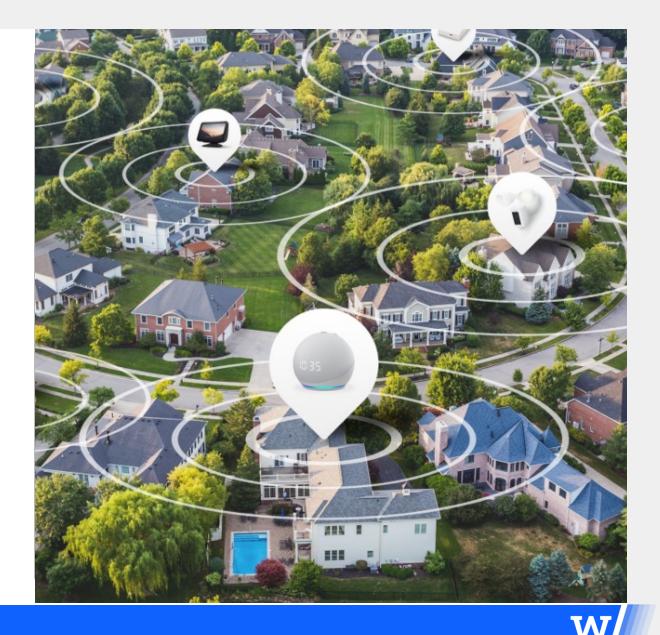
- Both stacks loaded at boot and active throughout operation
- Time-sliced operation between stacks running on the device
- Allows device to maintain active connections on both networks
- Typically managed by an RTOS


W


Dynamic Multi-Protocol Architecture

- Common API with single protocol RAIL library: DMP specific API is ignored in single protocol.
- Radio scheduler provides the tools for time-slicing between protocols
- Each protocol can have one radio operation running or requested
- Requesting radio:
 - startTime When the operation should start (part of the single protocol API)
 - priority Higher priority requests to the radio hardware preempt running operations
 - slipTime Amount of time a task can be delayed to let a lower priority protocol finish without interruption of the higher priority task
 - transactionTime Amount of time the radio hardware expected to be used
- Giving up the radio:
 - Protocol has the radio hardware until it yields it (or a higher priority protocol preempts it)

Static Multi-Protocol


- Implemented on the Dynamic Multi-Protocol architecture, but the application code is simpler
- Can switch from primary to secondary stack operation at any time as both are still active in program memory
- Application guarantees no protocol overlap
- Timing and Priority configuration can be ignored

Multi-PHY

Can be used by protocols or applications that utilize multiple PHYs

- WM-Bus: Mode T, C, S, N on the same hardware
- Amazon Sidewalk
- Wi-SUN Mode Switch
- Functionality currently supported with simple RAIL calls
 - Can switch between proprietary and standard PHYs quickly and easily
- Possibility to load full PHY configuration or just different register settings via changing channel during scan

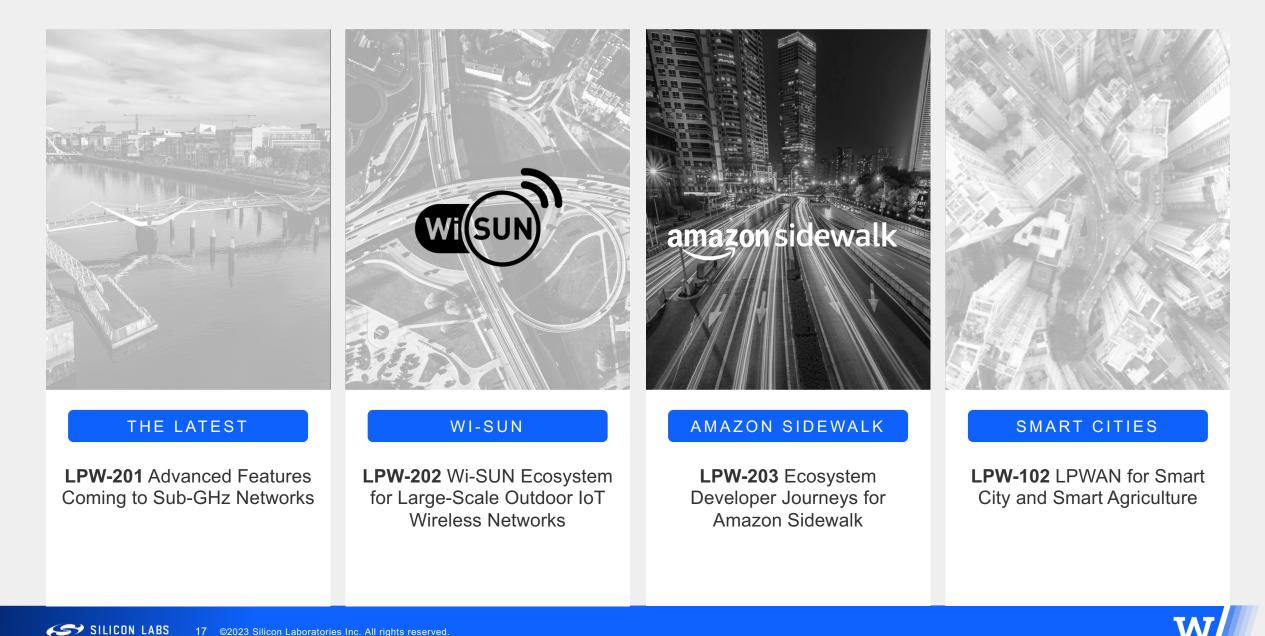
Dynamic Multi-Protocol, Static Multi-Protocol or Multi-PHY?

	Dynamic Multi-Protocol	Static Multi-Protocol	Multi-PHY
Protocol switch time	510 us	510 us	~150 (PHY-dependent) us
OS Requirement	Yes	Recommended	No
Memory footprint	RTOS dependent	RTOS dependent	Negligible
Typical usecase	Time-slicing between protocols	Provisioning	One protocol stack, multiple RF configurations

SILICON LABS 14 ©2023 Silicon Laboratories Inc. All rights reserved.

xG28 Protocol Support

Protocol		ZG28	FG28	SG28
Z-Wave		\checkmark		
Amazon Sidewalk (Bluetooth LE + FSK)		\checkmark	\checkmark	√
Wi-SUN		\checkmark	\checkmark	
Proprietary		\checkmark	\checkmark	
Bluetooth		\checkmark	\checkmark	
Static Multi-Protocol Support	Z-Wave + Amazon Sidewalk	Roadmap Item		
	Z-Wave + Amazon Sidewalk + Bluetooth LE	Roadmap Item		
	Amazon Sidewalk + Bluetooth LE	Roadmap Item	Roadmap Item	
	Proprietary + Bluetooth LE			
Dynamic Multi-Protocol Support	Proprietary + Bluetooth LE	\checkmark	\checkmark	



Dynamic Multiprotocol Demo

©2023 Silicon Laboratories Inc. All righ

Up Next: Join these related Works With Sessions

圆

Thank you!