
SEC-301: Hands on with 

CPMS Security

Benjamin Thorell



CPMS

 What is CPMS?

• CPMS (Custom Part Manufacturing Service) is a 

service offered by Silicon Labs that allows you to 

order custom parts that have your firmware and 

security settings programmed into them before 

they are sent to the CM

 Why is this important?

• IoT security is complex, and it’s easy to 

accidentally leave a system vulnerable. CPMS 

provides a “checklist” of easily enabled security 

features

• IoT devices are at their most vulnerable during 

production. CPMS allows you to secure your 

parts from the moment they’re programmed

 Where is it?

• https://cpms.silabs.com/

https://cpms.silabs.com/


Customization Options



 CPMS allows you to select the Secure Element firmware version that is programmed into your custom parts

• We recommend using the latest SE version to ensure all patches are in place

SE Version



 CPMS allows you to select the state of the debug lock when the part is shipped to the CM

 Series 2 devices have 4 options for the debug lock:

• Permanent – the debug port is locked and cannot be unlocked

• Standard – the debug port is locked, but it can be unlocked with a full flash erase

• Secure – the debug port is locked, but it can be unlocked with a full flash erase or with a debug unlock token. The debug 

unlock token is verified with a public key stored in the device, and it only unlocks the debug port until the next reset

• Unlocked – the debug port is unlocked 

Debug Lock



Initialize OTP Settings

 CPMS allows you to configure OTP security 

settings. Since these settings are One Time 

Programmable, once set, they cannot be cleared

• Enable Secure Boot requires that any code on 

the device must have a valid signature or 

certificate in order to run. This ensures that only 

approved code runs on the device.

• Require Verify Certificate before secure boot

requires that certificates be used in the Secure 

Boot chain, rather than direct signing. This 

reduces the need to access the private key 

corresponding to the signing public key on the 

device.

• Enable Anti Rollback prevents applications from 

“updating” to older (potentially vulnerable) 

versions of the firmware

• Flash Page Locking prevents applications from 

writing to certain flash pages



 CPMS allows you to configure responses for 27 tamper sources

 When a tamper source is triggered, the device can choose to either:

• Ignore it

• Generate an Interrupt

• Increment the Filter Counter

• Trigger a System Reset

• Erase the OTP memory (note that this will make the device and all wrapped secrets unrecoverable. After this response, the 

device will no longer be able to boot.)

Tamper Response Configuration



 Every tamper source has the option to increment the “Filter Counter”

 The Counter resets to 0 at a pre-defined period

 Once the Counter reaches a pre-determined Trigger Threshold, the Filter Counter tamper source is triggered

 Both the Reset Period and the Trigger Threshold can be configured in CPMS

Tamper Response Configuration – Filter Counter



 CPMS also lets you configure a “Reset Threshold”

• If the device undergoes that many consecutive tamper resets, it will enter a safe diagnostic state

 Lastly, CPMS allows you to configure whether the digital glitch detector runs continually or only when the 

SE is performing operations 

Tamper Response Configuration – Other



Filter Counter Example

 In the example on the right, the Digital glitch 

tamper source has been configured to increment 

the Filter Counter when it triggers

 Every ~1 hour, the Counter resets to 0

 Once the Counter reaches 32, the Filter Counter 

tramper source will trigger, resulting in a System 

Reset

 After 10 System Resets (triggered by the Filter 

Counter or any other tamper source), the device 

enters a safe diagnostic state



 CPMS allows you to provision standard security keys into the device

• The Secure Boot Key is a public key used as the root of trust during the secure boot process to authenticate the firmware

• The Command Key is a public key used to validate Secure Debug tokens

• The OTA Decryption Key is a symmetric key used for decrypting GBL firmware upgrades

Standard Security Keys



Custom Keys

 In addition to the standard Security Keys, CPMS 

allows you to provision custom keys

 These custom keys will be wrapped by the 

Secure Element, then stored at a specified 

address in user flash

 To provision a custom key, you must provide:

• Key Value – the value of the key to be wrapped

• Key Address – the address where the wrapped 

key will be stored

• Key Metadata – a 32-bit key specification used 

by the SE (this value can be generated from a 

key descriptor using sli_se_key_to_keyspec)

• Key Auth – an 8-byte password used to allow 

access to the wrapped key



 CPMS allows you to specify how to incorporate your own certificate chains into the Silicon Labs cert chain

 Cert chain implementations vary by use case, so certificate field details should be provided in the “Special 

Instructions” section 

Custom Identity



 CPMS allows you to program your application and/or bootloader into the device before it is sent to the CM

 The Fill character can be specified to aid in detecting memory corruption

Flash Programming



Custom Marking



 If there are any other customizations that you would like added to the device, you can use the “Other 

Customizations” option

Other Customizations



Hands-On Portion



Lab Overview

 Part 1 – A simple part with a pre-flashed user application

• Debug Lock – Unlocked

• No OTP configuration

• Flash application

 Part 1.2 – Improving security using Standard Lock

• Debug Lock – Standard

• Add bootloader

 Part 2 – A part secured against untrusted CMs

• Debug Lock – Standard

• Secure Boot enabled

• Flash “direct signed” application and bootloader

 Part 2.2 – Improving security using Secure Lock

• Debug Lock – Secure

 Part 3 – A secure part using certificate chains

• Debug Lock – Secure

• All (non-tamper) OTP configurations set

• Flash “certificate signed” application and bootloader



Direct Signing

 With direct signing, every bootloader and every 

application is signed with the Private Sign Key

 The Public Sign Key is provisioned in OTP 

memory on the device

 For 1000 applications, this would require using 

the Private Sign Key 1000 times



Standard Certificate Signing

 With certificates, the Private Sign Key is used to 

sign the bootloader certificate

 The bootloader and app are signed using a 

second key, the Private BL Key

 The bootloader certificate contains the Public BL 

Key, which is used to verify the bootloader and 

app



Advanced Certificate Signing

 With advanced certificates, the application also 

receives a certificate

 The Private BL Key is used to sign the App 

certificate, which contains the Public App Key

 The Private App Key is used to sign the App 

image

 For 1000 applications, this would require each 

private key be used ~10 times



On to the lab…


