

W F - 1 0 2

Wireless Coexistence (Wi-Fi, Bluetooth, 802.15.4)

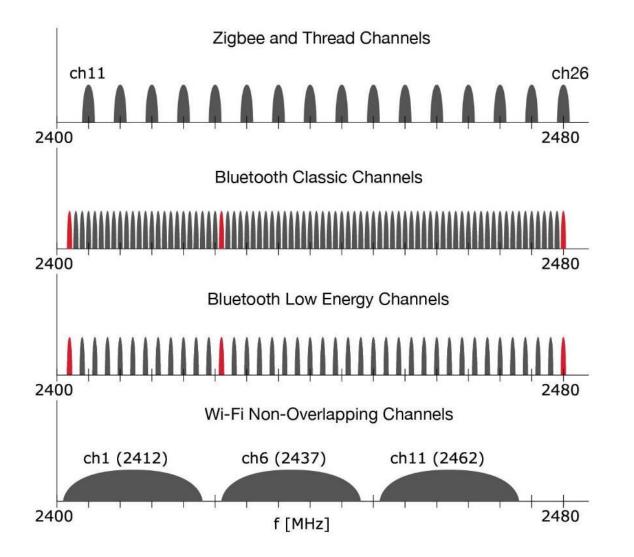
Vishal Lunia | Software and Applications Team

Wireless Coexistence

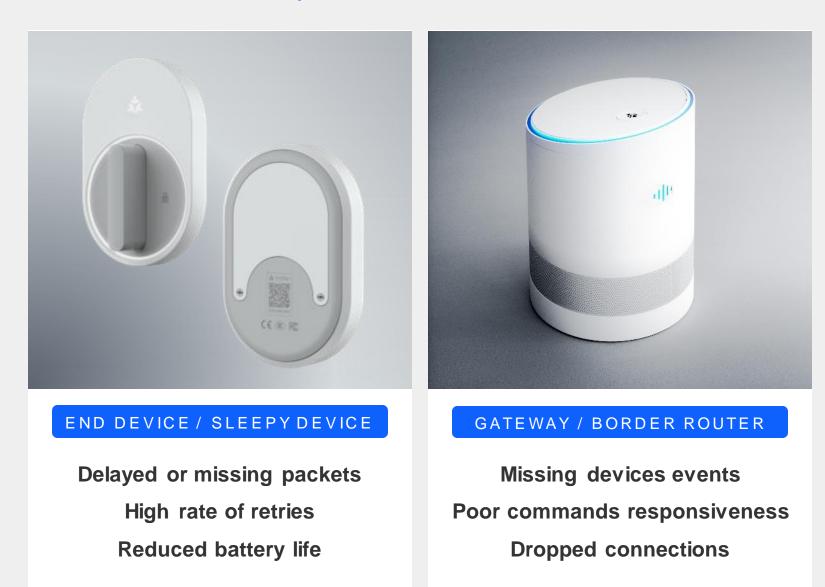
(Wi-Fi, Bluetooth, 802.15.4)

- Challenges of Connecting Everything
- **O2** Coexistence and Multiprotocol Concepts
- **03** Unmanaged Coexistence
- **Managed Coexistence**
- **05** Multiprotocol Use Cases
- 06

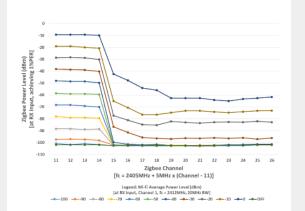
01


Silicon Labs Multiprotocol Offering

IoT – Challenges of Wirelessly Connecting Everything


- Historically wired "devices just worked"
- Today everything is connected wirelessly
- Wireless space is evolving:
 - Many devices co-located within radio range
 - High resolution video streaming is the norm
 - Devices are integrating multiple protocols
 - Transmit powers are increasing
 - Many devices using 2.4GHz ISM band
- People still expect things to work!!!

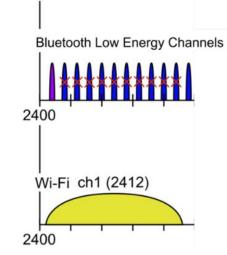
Why is there a challenge in the 2.4GHz ISM Band?



- Multiple wireless protocols share the same 2.4GHz ISM Band: Wi-Fi, Bluetooth, and IEEE 802.15.4 (ZigBee, Thread)
- These wireless protocols have different modulation schemes, channel frequencies and bandwidth but overlap when co-located
- Signals from one wireless protocol look like unwanted noise for the other protocols
- If the desired receive signal is weaker than the noise, the radio will be unable to properly receive messages

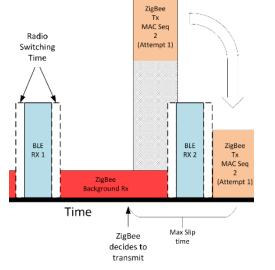
Wireless Coexistence Issues Impact to IoT Devices

Coexistence and Multiprotocol Concepts



Customized run-time radio performance:

Blocking & Selectivity


Adjacent channel rejection

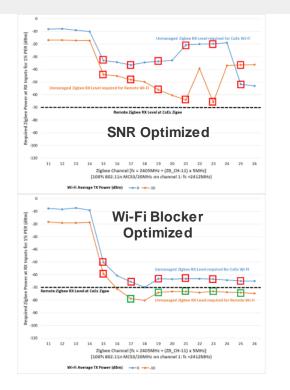
Enhanced MAC features

FREQUENCY PLANNING

Bands Planning Channels Planning Channel Agility Frequency Hopping

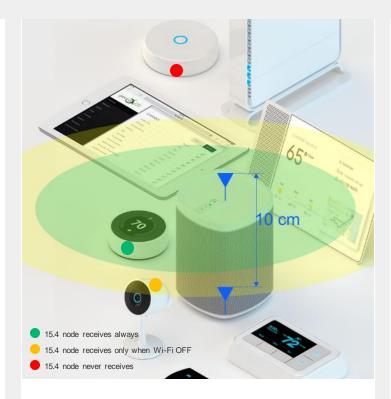
TIME SLICING

Dynamic Multiprotocol Concurrent Scanning Selective RX Diversity Packet Traffic Arbitration

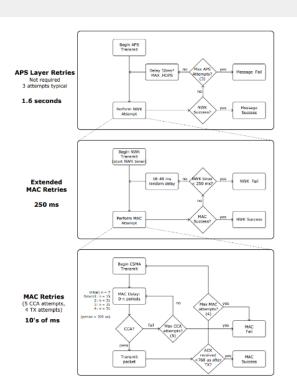


CONCURRENCY

Concurrent Multiprotocol Multi-chip solutions * Multi-RF & Multi-Radio * MIMO RX Diversity


W

Unmanaged Coexistence


BLOCKING & SELECTIVITY

Identify Wi-Fi interferences w/ RSSI Detect 15.4 traffic with Signal Identifier Select SNR PHY vs BLK at run-time HW Peak Detectors and AGC loops to manage baseband signal distortion

ADJACENT CHANNEL REJECTION

Receive 15.4 traffic up to -45dBm Wi-Fi RSSI on non-overlapping channels Operate FEM LNAs in bypass mode Increase antenna isolation for GWs

ENHANCED MAC FEATURES

Extended MAC retries algorithm Configurable CCA thresholds Configurable CCA timeouts

Frequency Planning

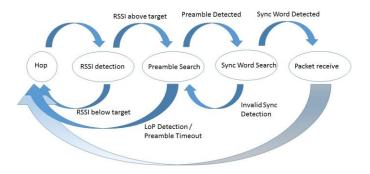
METHODOLOGY

Bands Planning

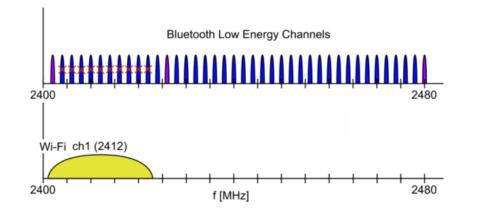
- Connect high Wi-Fi traffic devices on 5GHz bands
- Have life critical systems and long-range devices on <1GHz bands

Channel Planning

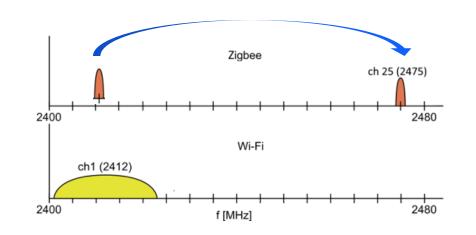
- · Configure 15.4 on further away non-overlapping Wi-Fi Channels
- Operate Wi-Fi with 20MHz Bandwidth

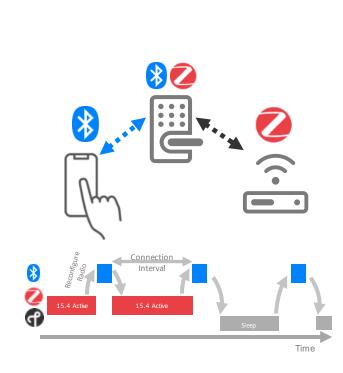

Channel Agility

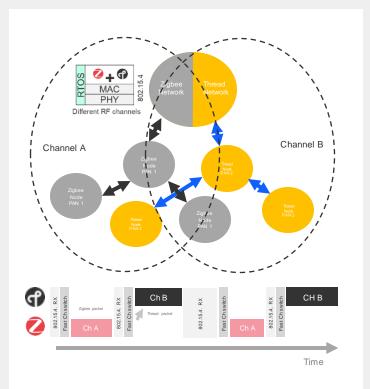
Protocols detect interferences and change channel for entire network


Frequency Hopping

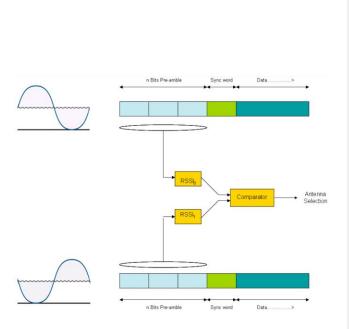
• Protocols constantly change channels based on predefined patterns


CHANNEL AGILITY


FREQUENCY HOPPING



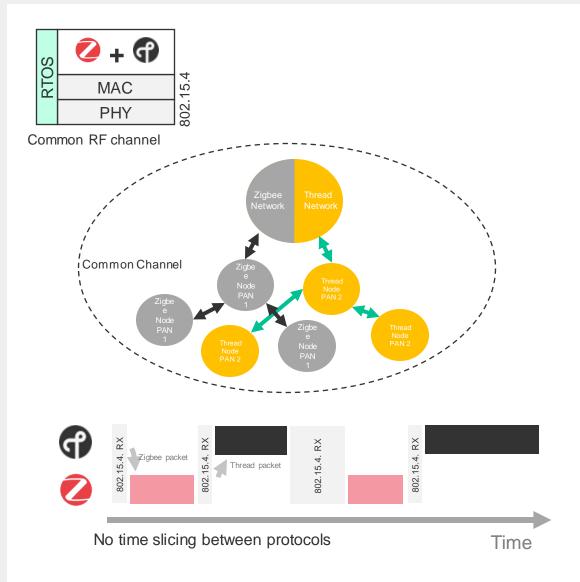
Time Slicing


DYNAMIC MULTIPROTOCOL

Time-sliced operation of two protocols using an RTOS Advanced RAIL Priority Scheduler Enables direct phone connectivity

CONCURRENT SCANNING

Concurrent operation of Zigbee and Thread on different 15.4 channels HW based fast channel switching Scan 2 channels within 128us without packet losses



SELECTIVE RX DIVERSITY

Use two antennas 1/4 wave apart

Fast switching during preamble detection to select the best antenna Improve SNR and RSSI to reduce PER for multi-path and/or blocking

Concurrency

Concurrent Multiprotocol

- Simultaneous RX/TX operation of Zigbee and Thread on the same channel using common 802.15.4 PHY-MAC
- RX frames differentiated by PAN IDs
- Channel access managed by normal 802.15.4 CSMA-CA
- Functional in SoC, NCP and RCP modes

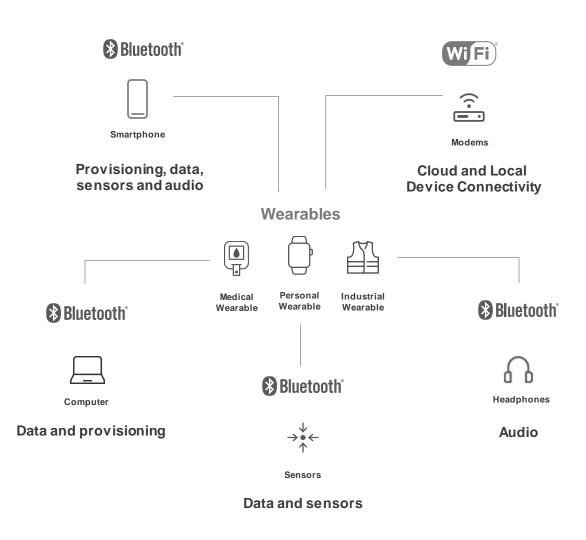
Multi-chip Solutions

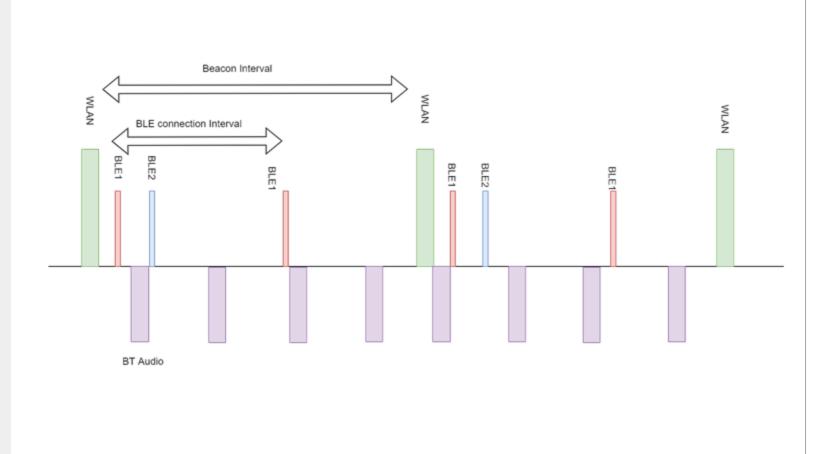
 Simultaneous RX / TX operation on different channels using one IC per protocol connected via UART / SPI

* Multi-RF & Multi-Radio ICs

- Simultaneous RX in a single IC using two RF AFEs and one or two modems
- TX is usually still time sliced due to interferences

* MIMO RX Diversity (MRC)


- Allows multiplexing wireless medium in space to reduce multi-path fading and increase RX sensitivity
- Requires two RF AFEs and one or two modems


Multiprotocol in Wi-Fi Devices

Multiprotocol Wearable Use Case

- Wearable market includes consumer, medical and industrial wearables
- Ultra-low power for longer battery life
- Heavy communication in 2.4 GHz ISM: Multi-protocol Coexistence is critical
- Wi-Fi connected to the cloud through AP for downloads, streaming, notifications etc.
- BLE peripheral connections to Smartphones/Tablets
- BLE central connections to sensors
- BT EDR A2DP Source Music Streaming (smart watch use case)
- HFP/A2DP Sink for VR, Voice Calling
- BLE Unicast Audio*

Multiprotocol Wi-Fi and Bluetooth / BLE

Simultaneous support:

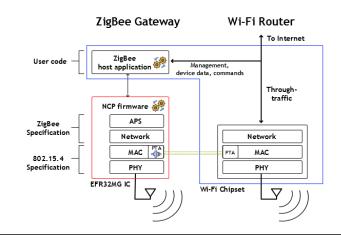
- Wi-Fi sync/music download and ultra-low power during standby associated state(longest battery life)
- 2-BT Classic ACL connections (A2DP headset for streaming, HFP phone connection for voice call/VR)
- BLE: Connection with Sensors(3 Central) + Mobile(2 Peripherals) + Advertising/Scanning

Wi-Fi + Bluetooth / BLE Coexistence

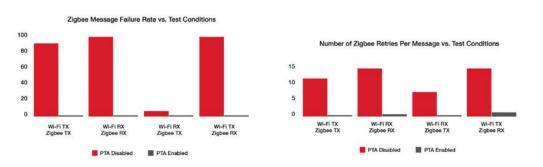
Coex Manager & Radio Scheduler

- Multiprotocol logic is managed by Coex Manager Radio scheduler
- Core function is the time slicing among the protocols (Wi-Fi, BT, BLE) on single radio based on the protocol state priorities.
- Allocates radio based on state severity(Critical > Major > Normal) if there are more than one protocols to serve
- If there is a conflict between severities, allocates radio based on default priorities (BLE > BT > WLAN).
- Radio scheduler informs the protocol manager about the next state protocol priority, asking to pause or continue its current operation

Packet Traffic Arbitration for Gateways and Border Routers

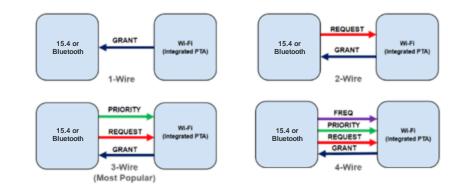

MODE OF OPERATION

- Separate radio activity in time by coordinating protocols with PTA
- Multiple Wiring Options: 1-wire, 2-wire, 3-wire, 4-wire
- Multiple advanced PTA Strategies available at Silicon Labs:
 - REQUEST PWM, PRIORITY, Shared PTA, Radio Hold-off


• PTA Basics:

- IoT device asserts REQUEST and optionally PRIORITY
- 2. Wi-Fi accepts request and asserts GRANT
- 3. Wi-Fi device stops transmitting and IoT device can RX/TX
- 4. When done IoT device de-asserts REQUEST and Wi-Fi releases GRANT

WI-FI ENABLED IOT GATEWAYS / BR ARCHITECTURE



Network Performance w/o vs w/ PTA Enabled

Increased performance with PTA enabled due to reduced retries and packet losses

PACKET TRAFFIC ARBITRATION WIRING OPTIONS

Silicon Labs Multiprotocol and Wireless Coexistence Offering*

	Feature	Protocol Combination		xG1	xG12	xG13	xG21	xG24	MG26	xG28	MG301	RS9116	SiWx917/915
Concurrency	Sw itched MP	Z-Wave/SideWalk	SoC										
		Z-Wave/SideWalk/BLE	SoC										
	CMP (1 ch.)	(ZB+OT)	SoC										
			RCP										
		ZB NCP + OT RCP											
	CMP + Conc. Listening	ZB + OT	SoC										
			RCP										
		ZB + OT + BLE	SoC										
Time Slicing	Dynamic MP	ZB + BLE	SoC										
			NCP										
			RCP										
		OT + BLE	SoC										
			RCP										
		(ZB+OT) + BLE	SoC										
			RCP										
		(ZB + Matter/OT) + BLE	SoC										
		Matter/Wi-Fi + BLE	SoC										
			NCP/RCP										
		Connect + BLE	SoC										
		SideWalk + BLE											

□ - GA □ - Alpha/Beta □ - Roadmap ■ - Concept

 $\begin{array}{l} xG \rightarrow MG \ / \ BG \ / \\ MG \rightarrow 15.4, \ BLE, \ Connect \\ BG \rightarrow BLE, \ Connect \end{array}$

 $\begin{array}{l} xG \rightarrow ZG \ / \ FG \ / \ SG \\ ZG \rightarrow ZW, \ Wi\text{-}SUN, \ Connect, \ SW, \ BLE \\ FG \rightarrow Wi\text{-}SUN, \ Connect, \ SW, \ BLE \\ SG \rightarrow SW \end{array}$

Thank you!

17 ©2022 Silicon Labs Inc. All rights reserved.