
Exploring RTOS 

Options for Wireless IoT

Projects

Matt Gordon, Sr. Product Manager IoT OS

PiP Placeholder

Window
(Remove Before 

Distribution)



▸ Provide a high-level overview of RTOS functionality

 This session is not intended to be a deep-dive on RTOS theory

▸ Discuss the rationale for using an RTOS in a wireless IOT project

 The focus here is on the benefits of kernel vs bare-metal code

▸ Introduce the different RTOSes available to developers on EFR32 

wireless devices

 Multiple RTOSes, each with strong technical specifications, are supported

▸ Lab: Walk through the process for getting started with a couple of different

RTOSes on EFR32

 An opportunity for hands-on RTOS development using the Simplicity Studio 

IDE and the Thunderboard Sense 2

Objectives

#workswith2



A High-Level RTOS Introduction

3 #workswith

Real-Time Operating System (RTOS)

 A framework for writing multi-task application code

 Alternative to bare-metal, or super-loop, applications

 Embedded RTOSes tend to be relatively lightweight

 Goal is efficient operation on resource-constrained devices

 Based on a kernel that provides task scheduling services

 Kernel is often 15 kBytes of code or less

 “RTOS” label may be applied to a broad collection of SW

 File system, GUI, protocol stacks, drivers, etc.  

 The lab portion of this session will focus on the kernel

 Discussion beforehand will touch on other components

Application Code

File

System

Kernel

Communication

Stacks
GUI

Task 1 Task 2 Task n



 The fundamental decision is kernel vs. bare-metal

 Two different approaches to structuring application code

 Any application could be written without a kernel

 Silicon Labs requires a kernel for DMP, Wi-SUN, and Z-Wave

 Kernel is optional for BLE, proprietary wireless, and Zigbee

 Decision on using a kernel should involve multiple criteria

 Complexity of code (including stacks)

 Future plans for expanding the application w/new features

 Development team size and background

 Available Flash and RAM on the HW platform

 Lab highlights two applications in which kernel can be helpful

 BLE and proprietary wireless

4

Do I Need an RTOS?

#workswith

Functions called from tasks managed and scheduled by the kernel

int main (void)

{

while (1) {

ADC_read();

UART_handler();

…

}

}

void ADC_Task (void)

{

while (1) {

ADC_read();

//1 ms sleep

OSTimeDly(1);

}

}

void UART_Task (void)

{

while (1) {

UART_Handler();

//Wait for data

OSSemPend(&MySem);

}

}

Bare-Metal

Kernel

Functions called 
from main() loop



 Simplicity Studio is Silicon Labs’ IDE for EFR32 devices

 Eclipse-based, with a number of helpful plugins and extensions

 The IDE makes it easy to get started with an RTOS

 RTOS-based examples are provided as references

 Configuration tools automate addition of RTOS code to new projects

 Currently, there are two RTOS options in Studio

 FreeRTOS: Popular kernel used across the embedded space

 Micrium OS: Full software suite from longtime commercial OS vendor

 FreeRTOS and Micrium OS are part of GSDK Suite

 Full-featured, integrated software platform

 Includes wireless stacks, most of which are compatible with either OS

 Also includes Amazon FreeRTOS libraries that supplement the kernel

5

RTOS Support in Simplicity Studio

#workswith



 As the IoT has evolved, so has the RTOS world

 Connectvity, security, etc. are increasingly important

 Role of cloud providers and open-source communities is growing

 Some of these organizations serve as RTOS developers and integrators

 They offer tools, docs, etc. for building RTOS-based projects

 In some cases, their solutions target connectivity to a particular cloud

 Silicon Labs works closely with a number of RTOS providers

 EFR32 examples are being developed for Azure RTOS and Zephyr

 Projects will be delivered via GitHub

 Tools and build environment mosty established by the RTOS provider

 Community-contributed projects are avaialble now for Zephyr

6

3rd-Party RTOS Repositories

#workswith



 All of the RTOSes that Silicon Labs supports have strong technical specifications

 The recommended RTOS for you depends on your background

Choosing the Right RTOS for Your Project

#workswith7

Simplicity Studio and GSDK Suite

Recommended for…

• Developers who are already familiar with FreeRTOS or Micrium

• Developers who are completely new to RTOSes

• Developers with multi-protocol wireless projects

Recommended for…

• Developers who are already familiar with Azure or Zephyr

• Developers who are connecting to the Azure cloud

3rd-Party OS Repositories




