The EFR32FG family of Wireless SoCs deliver a high performance, low energy wireless solution integrated into a small form factor package.

By combining high performance sub-GHz RF and 2.4 GHz RF transceivers with an energy efficient 32-bit MCU, the family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale from 128/256 kB of flash and 16/32 kB of RAM. The ultra-low power operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the sub-GHz and 2.4 GHz radios result in a solution optimized for battery powered applications.

To develop and/or evaluate the EFR32 Flex Gecko the BRD4250B Radio Board can be connected to the Wireless Starter Kit Mainboard to get access to display, buttons and additional features from Expansion Boards.
1. Introduction

The EFR32 Flex Gecko Radio Boards provide a development platform (together with the Wireless Starter Kit Mainboard) for the Silicon Labs EFR32 Flex Gecko Wireless System on Chips and serve as reference designs for the matching networks of the RF interfaces.

The BRD4250B Radio Board supports dual-band operation with its integrated sub-GHz ISM band and 2.4 GHz band transceivers. The sub-GHz section is designed to operate in the European ETSI 863-870 MHz band with an external whip antenna, the 2.4 GHz section is designed to operate at the 2400-2483.5 MHz band with the on-board printed antenna. The matching networks are optimized to 13 dBm output power.

To develop and/or evaluate the EFR32 Flex Gecko the BRD4250B Radio Board can be connected to the Wireless Starter Kit Mainboard to get access to display, buttons and additional features from Expansion Boards and also to evaluate the performance of the RF interfaces.
2. Radio Board Connector

2.1 Introduction
The board-to-board connector scheme allows access to all EFR32FG1 GPIO pins as well as the RESETn signal. For more information on the functions of the available pin functions, we refer you to the EFR32FG1 Datasheet.

2.2 Radio Board Connector Pin Associations
The figure below shows the pin mapping on the connector to the radio pins and their function on the Wireless Starter Kit Mainboard.

Figure 2.1. BRD4250B Radio Board Connector Pin Mapping
3. Radio Board Block Summary

3.1 Introduction
This section gives a short introduction to the blocks of the BRD4250B Radio Board.

3.2 Radio Board Block Diagram
The block diagram of the BRD4250B Radio Board is shown in the figure below.

3.3 Radio Board Block Description

3.3.1 Wireless MCU
The BRD4250B EFR32 Flex Gecko Radio Board incorporates an EFR32FG1P133F256GM48 Wireless System on Chip featuring 32-bit Cortex-M4 with FPU core, 256 kB of flash memory 32 kB of RAM, an integrated 2.4 GHz band and an integrated sub-GHz ISM band transceiver with output power up to 19.5 dBm. For additional information on the EFR32FG1, refer to the EFR32FG1 Data Sheet.

3.3.2 LF Crystal Oscillator (LFXO)
The BRD4250B Radio Board has a 32.768 kHz crystal mounted.

3.3.3 HF Crystal Oscillator (HFXO)
The BRD4250B Radio Board has a 38.4 MHz crystal mounted.

3.3.4 Matching Network for Sub-GHz
The BRD4250B Radio Board incorporates a sub-GHz matching network which connects both the sub-GHz TX and RX pins of the EFR32FG1 to the one SMA connector to be able to transmit and receive with one antenna. The component values were optimized for the 868 MHz band RF performance and current consumption with 13 dBm output power.

For detailed description of the matching network see Chapter 4.2.1 Description of the Sub-GHz RF Matching.
3.3.5 Matching Network for 2.4 GHz

The BRD4250B Radio Board incorporates a 2.4 GHz matching network which connects the 2.4 GHz TRX pin of the EFR32FG1 to the one on-board printed Inverted-F antenna. The component values were optimized for the 2.4 GHz band RF performance and current consumption with 13 dBm output power.

For detailed description of the matching network see Chapter 4.2.2 Description of the 2.4 GHz RF Matching.

3.3.6 Inverted-F Antenna

The BRD4250B Radio Board includes a printed Inverted-F antenna (IFA) tuned to have close to 50 Ohm impedance at the 2.4 GHz band.

For detailed description of the antenna see Chapter 4.6 Inverted-F Antenna.

3.3.7 SMA connector

To be able to perform conducted measurements or mount external antenna for radiated measurements, range tests etc., Silicon Labs added an SMA connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during design verification or testing.

3.3.8 UFL Connector

To be able to perform conducted measurements Silicon Labs added an UFL connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during design verification or testing.

Note: By default the output of the matching network is connected to the printed Inverted-F antenna by a series component. It can be connected to the UFL connector as well through a series 0 Ohm resistor which is not mounted by default. For conducted measurements through the UFL connector the series component to the antenna should be removed and the 0 Ohm resistor should be mounted (see Chapter 4.2 Schematic of the RF Matching Network for further details).

3.3.9 Radio Board Connectors

Two dual-row, 0.05” pitch polarized connectors make up the BRD4250B Radio Board interface to the Wireless Starter Kit Mainboard.

For more information on the pin mapping between the EFR32FG1P133F256GM48 and the Radio Board Connector refer to Chapter 2.2 Radio Board Connector Pin Associations.
4. RF Section

4.1 Introduction

This section gives a short introduction to the RF section of the BRD4250B.

4.2 Schematic of the RF Matching Network

The schematic of the RF section of the BRD4250B Radio Board is shown in the following figure.

![Figure 4.1. Schematic of the RF Section of the BRD4250B](image)

The RF matching comprises two separate TX/RX matching networks: one for the sub-GHz RF path, the other for the 2.4 GHz RF path.

4.2.1 Description of the Sub-GHz RF Matching

The sub-GHz matching network connects the differential TX outputs and RX inputs of the sub-GHz RF port to the SMA connector while transforming the impedances to 50 Ohm. Careful design procedure was followed to ensure that the RX input circuitry does not load down the TX output path while in TX mode and that the TX output circuitry does not degrade receive performance while in RX mode.

The matching includes a differential impedance matching circuitry, a discrete balanced-unbalanced transformer and a filter section. The targeted output power is 13 dBm at 868 MHz.

4.2.2 Description of the 2.4 GHz RF Matching

The 2.4 GHz matching connects the 2G4RF_IOP pin to the on-board printed Inverted-F Antenna. The 2G4RF_ION pin is connected to ground. For higher output powers (13 dBm and above) beside the impedance matching circuitry it is recommended to use additional harmonic filtering as well at the RF output. The targeted output power of the BRD4250B board is 13 dBm thus the RF output of the IC is connected to the antenna through a four-element impedance matching and harmonic filter circuitry.

For conducted measurements the output of the matching network can also be connected to the UFL connector by relocating the series R1 0 Ohm resistor to the R2 position between the output of the matching and the UFL connector.

4.3 RF Section Power Supply

On the BRD4250B Radio Board the supply pin of the radio (RFVDD) is connected directly ot the output of the on-chip DC-DC converter while the supply for the sub-GHz and 2.4 GHz power amplifiers (VBIAS) is provided directly by the Motherboard. This way, by default, the DC-DC converter provides 1.8 V for the RF analog section, the Motherboard provides 3.3 V for the PAs (for details, see the schematic of the BRD4250B).

4.4 Bill of Materials for the sub-GHz Matching

The Bill of Materials of the sub-GHz matching network of the BRD4250B Radio Board is shown in the following table.
Table 4.1. Bill of Materials for the BRD4250B 868 MHz 13 dBm RF Matching Network

<table>
<thead>
<tr>
<th>Component name</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL1</td>
<td>Balun</td>
<td>Johanson Technology</td>
<td>0900BL15C050</td>
</tr>
<tr>
<td>C3</td>
<td>1.9 pF</td>
<td>Murata</td>
<td>GRM1555C1H1R9WA01</td>
</tr>
<tr>
<td>C4</td>
<td>1.9 pF</td>
<td>Murata</td>
<td>GRM1555C1H1R9WA01</td>
</tr>
<tr>
<td>C5</td>
<td>3.9 pF</td>
<td>Murata</td>
<td>GRM1555C1H3R9WA01</td>
</tr>
<tr>
<td>C6</td>
<td>3.0 pF</td>
<td>Murata</td>
<td>GRM1555C1H3R0CA01</td>
</tr>
<tr>
<td>C7</td>
<td>5.6 pF</td>
<td>Murata</td>
<td>GRM1555C1H5R6BA01</td>
</tr>
<tr>
<td>C8</td>
<td>3.0 pF</td>
<td>Murata</td>
<td>GRM1555C1H3R0CA01</td>
</tr>
<tr>
<td>C10</td>
<td>56 pF</td>
<td>Murata</td>
<td>GRM1555C1H560GA01</td>
</tr>
<tr>
<td>L3</td>
<td>3.3 nH</td>
<td>Murata</td>
<td>LQW15AN3N3B80</td>
</tr>
<tr>
<td>L4</td>
<td>3.3 nH</td>
<td>Murata</td>
<td>LQW15AN3N3B80</td>
</tr>
<tr>
<td>L5</td>
<td>18 nH</td>
<td>Murata</td>
<td>LQW15AN18NJ00</td>
</tr>
<tr>
<td>L6</td>
<td>11 nH</td>
<td>Murata</td>
<td>LQW15AN11NG00</td>
</tr>
<tr>
<td>L7</td>
<td>11 nH</td>
<td>Murata</td>
<td>LQW15AN11NG00</td>
</tr>
</tbody>
</table>

4.5 Bill of Materials for the 2.4 GHz Matching

The Bill of Materials of the 2.4 GHz matching network of the BRD4250B Radio Board is shown in the following table.

Table 4.2. Bill of Materials for the BRD4250B 2.4 GHz 13 dBm RF Matching Network

<table>
<thead>
<tr>
<th>Component name</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2.0 pF</td>
<td>Murata</td>
<td>GRM1555C1H2R0WA01</td>
</tr>
<tr>
<td>C2</td>
<td>1.0 pF</td>
<td>Murata</td>
<td>GRM1555C1H1R0WA01</td>
</tr>
<tr>
<td>L1</td>
<td>1.8 nH</td>
<td>Murata</td>
<td>LQP15MN1N8W02</td>
</tr>
<tr>
<td>L2</td>
<td>3.0 nH</td>
<td>Murata</td>
<td>LQP15MN3N0W02</td>
</tr>
</tbody>
</table>

4.6 Inverted-F Antenna

The BRD4250B Radio Board includes an on-board printed Inverted-F Antenna tuned for the 2.4 GHz band. Due to the design restrictions of the Radio Board the input of the antenna and the output of the matching network can't be placed directly next to each other thus a 50 Ohm transmission line was necessary to connect them. The resulting impedance and reflection measured at the output of the matching network are shown in the following figure. As it can be observed the impedance is close to 50 Ohm (the reflection is better than -10 dB) for the entire 2.4 GHz band.
Figure 4.2. Impedance and Reflection of the Inverted-F Antenna of the BRD4250B
5. Mechanical Details

The BRD4250B EFR32 Flex Gecko Radio Board is illustrated in the figures below.

Figure 5.1. BRD4250B Top View

Figure 5.2. BRD4250B Bottom View
6. EMC Compliance

6.1 Introduction

Compliance of the fundamental and harmonic levels is tested against the following standards:

- 868 MHz:
 - ETSI EN 300-220-1
- 2.4 GHz:
 - ETSI EN 300-328
 - FCC 15.247

6.2 EMC Regulations for 868 MHz

6.2.1 ETSI EN 300-200-1 Emission Limits for the 868-868.6 MHz Band

Based on ETSI EN 300-220-1 the allowed maximum fundamental power for the 868-868.6 MHz band is 25 mW e.r.p. both for conducted and radiated measurements.

Note: Further in this document EIRP (Effective Isotropic Radiated Power) will be used instead of e.r.p. (Effective Radiated Power) for the comparison of the radiated limits and measurement results. The 25 mW e.r.p radiated limit is equivalent to 16.1 dBm EIRP.

For the unwanted emission limits see the table below.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>47 MHz to 74 MHz</th>
<th>Other frequencies below 1000 MHz</th>
<th>Frequencies above 1000 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>4 nW (-54 dBm e.r.p. = -51.8 dBm EIRP)</td>
<td>250 nW (-36 dBm e.r.p. = -33.9 dBm EIRP)</td>
<td>1 uW (-30 dBm e.r.p. = -27.9 dBm EIRP)</td>
</tr>
<tr>
<td>Standby</td>
<td>2 nW (-57 dBm e.r.p. = -54.8 dBm EIRP)</td>
<td>2 nW (-57 dBm e.r.p. = -54.8 dBm EIRP)</td>
<td>20 nW (-47 dBm e.r.p. = -44.8 dBm EIRP)</td>
</tr>
</tbody>
</table>

The above ETSI limits are also applied both for conducted and radiated measurements.

6.3 EMC Regulations for 2.4 GHz

6.3.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band

Based on ETSI EN 300-328 the allowed maximum fundamental power for the 2400-2483.5 MHz band is 20 dBm EIRP. For the unwanted emissions in the 1 GHz to 12.75 GHz domain the specified limit is -30 dBm EIRP.

6.3.2 FCC 15.247 Emission Limits for the 2400-2483.5 MHz Band

FCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 2400-2483.5 MHz band. For spurious emissions the limit is -20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are specified in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range from 960 MHz to the frequency of the 5th harmonic it is defined as 0.5 mV/m at 3 m distance (equals to -41.2 dBm in EIRP).

Additionally, for spurious frequencies above 1 GHz FCC 15.35 allows duty-cycle relaxation to the regulatory limits. For the EmberZNet PRO the relaxation is 3.6 dB. So practically the -41.2 dBm limit can be modified to -37.6 dBm.

In case of operating in the 2400-2483.5 MHz band the 2nd, 3rd and 5th harmonics can fall into restricted bands so for those the -37.6 dBm limit should be applied. For the 4th harmonic the -20 dBc limit should be applied.
6.3.3 Applied Emission Limits for the 2.4 GHz Band

The above ETSI limits are applied both for conducted and radiated measurements.

The FCC restricted band limits are radiated limits only. Besides that, Silicon Labs applies those to the conducted spectrum i.e. it is assumed that in case of a custom board an antenna is used which has 0 dB gain at the fundamental and the harmonic frequencies. In that theoretical case, based on the conducted measurement, the compliance with the radiated limits can be estimated.

The overall applied limits are shown in the table below.

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Frequency</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>4800~4967 MHz</td>
<td>-37.6 dBm</td>
</tr>
<tr>
<td>3rd</td>
<td>7200~7450.5 MHz</td>
<td>-37.6 dBm</td>
</tr>
<tr>
<td>4th</td>
<td>9600~9934 MHz</td>
<td>-30 dBm</td>
</tr>
<tr>
<td>5th</td>
<td>12000~12417.5 MHz</td>
<td>-37.6 dBm</td>
</tr>
</tbody>
</table>
7. RF Performance

7.1 Conducted Power Measurements

During measurements the BRD4250B Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V.

7.1.1 Conducted Measurements in the 868 MHz band

The BRD4250B Radio Board was connected directly to a Spectrum Analyzer through its SMA connector. The supply for the radio (RFVDD) and the power amplifier (VBIAS) was 1.8 V provided by the on-chip DC-DC converter (for details, see the schematic of the BRD4250B). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 13 dBm.

As it can be observed the fundamental is slightly above 13 dBm but still under the 16.1 dBm fundamental limit and the strongest unwanted emission is the double-frequency harmonic but with only around -40 dBm level. So the conducted spectrum is compliant with the regulation limits.

Figure 7.1. Typical Output Spectrum of the BRD4250B
7.1.2 Conducted Measurements in the 2.4 GHz band

The BRD4250B Radio Board was connected directly to a Spectrum Analyzer through its UFL connector (the 0 Ohm resistor was removed from the R1 position and was soldered to the R2 position). The supply for the radio (RFVDD) and the power amplifier (PAVDD) was 1.8 V provided by the on-chip DC-DC converter (for details, see the schematic of the BRD4250B). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 13 dBm.

The typical output spectrum is shown in the following figure.

As it can be observed the fundamental is slightly higher than 13 dBm limit and the strongest unwanted emission is the double-frequency harmonic but it is only around -57 dBm so it is under the -37.6 dBm applied limit with almost 20 dB margin. So the conducted spectrum is compliant with the applied limits.

Note: The conducted measurement is performed by connecting the on-board UFL connector to a Spectrum Analyzer through an SMA Conversion Adapter (P/N: HRMJ-U.FLP(40)). This connection itself introduces approx. 0.3 dB insertion loss.
7.2 Radiated Power Measurements

During measurements the BRD4250B Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V. The radiated power was measured in an antenna chamber by rotating the DUT in 360 degree with horizontal and vertical reference antenna polarizations in the XY, XZ and YZ cuts. The measurement axes are as shown in the figure below.

![Illustration of DUT: Radio Board with the Wireless Starter Kit Mainboard](image.png)

Figure 7.3. DUT: Radio Board with the Wireless Starter Kit Mainboard (Illustration)

Note: The radiated measurement results presented in this document were recorded in an unlicensed antenna chamber. Also the radiated power levels may change depending on the actual application (PCB size, used antenna etc.) therefore the absolute levels and margins of the final application is recommended to be verified in a licensed EMC testhouse!
7.2.1 Radiated Measurements in the 868 MHz band

For the 868 MHz radiated power measurements an external whip antenna (P/N: ANT-868-CW-HWR-SMA) was used as a transmitter antenna. It was connected to the SMA connector of the BRD4250B Radio Board. The supply for the radio (RFVDD) and the power amplifier (VBIAS) was 1.8 V provided by the on-chip DC-DC converter (for details, see the schematic of the BRD4250B). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 13 dBm.

The measured radiated powers are shown in the table below.

<table>
<thead>
<tr>
<th>868 MHz</th>
<th>EIRP [dBm]</th>
<th>Orientation</th>
<th>Margin [dB]</th>
<th>Limit in EIRP [dBm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental</td>
<td>13.6</td>
<td>YZ/H</td>
<td>2.5</td>
<td>+16.1</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>-37.6</td>
<td>YZ/V</td>
<td>9.7</td>
<td>-27.9</td>
</tr>
<tr>
<td>3rd harmonic</td>
<td>-58.3</td>
<td>XZ/H</td>
<td>30.4</td>
<td>-27.9</td>
</tr>
<tr>
<td>4th harmonic</td>
<td>-51.7</td>
<td>XY/V</td>
<td>23.8</td>
<td>-27.9</td>
</tr>
<tr>
<td>5th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-27.9</td>
</tr>
<tr>
<td>6th harmonic</td>
<td>-44.9</td>
<td>XY/V</td>
<td>17.0</td>
<td>-27.9</td>
</tr>
<tr>
<td>7th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-27.9</td>
</tr>
<tr>
<td>8th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-27.9</td>
</tr>
<tr>
<td>9th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-27.9</td>
</tr>
<tr>
<td>10th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-27.9</td>
</tr>
</tbody>
</table>

* Signal level is below the Spectrum Analyzer noise floor.

As it can be observed the fundamental is below the regulation limit by 2.5 dB, the harmonic levels are also compliant with large margins.

7.2.2 Radiated Measurements in the 2.4 GHz band

For the transmitter antenna the on-board printed Inverted-F antenna of the BRD4250B board was used (the R1 resistor was mounted). The supply for the radio (RFVDD) and the power amplifier (PAVDD) was 1.8 V provided by the on-chip DC-DC converter (for details, see the schematic of the BRD4250B). During the measurement the sub-GHz antenna (P/N: ANT-868-CW-HWR-SMA) was attached to the SMA connector. The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 13 dBm.

The results are shown in the table below.

<table>
<thead>
<tr>
<th>2.4 GHz</th>
<th>EIRP [dBm]</th>
<th>Orientation</th>
<th>Margin [dB]</th>
<th>Limit in EIRP [dBm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental</td>
<td>15.2</td>
<td>XY/H</td>
<td>14.8</td>
<td>30</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>-48.0</td>
<td>YZ/V</td>
<td>10.4</td>
<td>-37.6</td>
</tr>
<tr>
<td>3rd harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>10</td>
<td>-37.6</td>
</tr>
<tr>
<td>4th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>20</td>
<td>-30</td>
</tr>
<tr>
<td>5th harmonic</td>
<td><50°</td>
<td>-/-</td>
<td>>10</td>
<td>-37.6</td>
</tr>
</tbody>
</table>

* Signal level is below the Spectrum Analyzer noise floor.

As it can be observed, thanks to the ~2-3 dB gain of the on-board Inverted-F antenna, the level of the fundamental is higher than 13 dBm. The harmonics are compliant with the applied limits with large margins.
8. EMC Compliance Recommendations

8.1 Recommendations for 868 MHz ETSI EN 300-220-1 compliance

As it was shown in the previous chapter the BRD4250B EFR32 Flex Gecko Radio Board is compliant with the emission limits of the ETSI EN 300-220-1 regulation with 13 dBm output power. Although the BRD4250B Radio Board has an option for mounting shielding can, that is not required for the compliance.

8.2 Recommendations for 2.4 GHz ETSI EN 300-328 compliance

As it was shown in the previous chapter the radiated power of the fundamental of the BRD4250B EFR32 Flex Gecko Radio Board complies with the 20 dBm limit of the ETSI EN 300-328 with 13 dBm output power. The harmonic emissions are under the -30 dBm limit with large margin. Although the BRD4250B Radio Board has an option for mounting a shielding can, that is not required for the compliance.

8.3 Recommendations for 2.4 GHz FCC 15.247 compliance

As it was shown in the previous chapter the radiated power of the fundamental of the BRD4250B EFR32 Flex Gecko Radio Board complies with the 30 dBm limit of the FCC 15.247 with 13 dBm output power. The harmonic emissions are under the -37.6 dBm applied limit with margin. Although the BRD4250B Radio Board has an option for mounting a shielding can, that is not required for the compliance.
9. Document Revision History

Table 9.1. Document Revision History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Effective Date</th>
<th>Change Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>20.05.2016</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
10. Board Revisions

Table 10.1. BRD4250B Radio Board Revisions

<table>
<thead>
<tr>
<th>Radio Board Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A00</td>
<td>Initial release.</td>
</tr>
<tr>
<td>B00</td>
<td>Changing board design to support dual-band operation (868 MHz/2.4 GHz). Updating sub-GHz matching network.</td>
</tr>
<tr>
<td>B01</td>
<td>Sub-GHz PA supplied from VBIAS (filtered PAVDD).</td>
</tr>
<tr>
<td>B02</td>
<td>Updated sub-GHz matching network component values to improve RX sensitivity.</td>
</tr>
</tbody>
</table>
11. Errata

Table 11.1. BRD4250B Radio Board Errata

<table>
<thead>
<tr>
<th>Radio Board Revision</th>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B00, B01</td>
<td>Incorrect sub-GHz matching values.</td>
<td>The sub-GHz matching network is detuned causing 5-7 dB receiver sensitivity degradation. Effect on the transmitter performance is negligible.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction 1

2. Radio Board Connector 2
 2.1 Introduction. 2
 2.2 Radio Board Connector Pin Associations. 2

3. Radio Board Block Summary 3
 3.1 Introduction. 3
 3.2 Radio Board Block Diagram 3
 3.3 Radio Board Block Description 3
 3.3.1 Wireless MCU 3
 3.3.2 LF Crystal Oscillator (LFXO) 3
 3.3.3 HF Crystal Oscillator (HFXO) 3
 3.3.4 Matching Network for Sub-GHz 3
 3.3.5 Matching Network for 2.4 GHz 4
 3.3.6 Inverted-F Antenna 4
 3.3.7 SMA connector 4
 3.3.8 UFL Connector 4
 3.3.9 Radio Board Connectors 4

4. RF Section 5
 4.1 Introduction. 5
 4.2 Schematic of the RF Matching Network 5
 4.2.1 Description of the Sub-GHz RF Matching 5
 4.2.2 Description of the 2.4 GHz RF Matching 5
 4.3 RF Section Power Supply 5
 4.4 Bill of Materials for the sub-GHz Matching 5
 4.5 Bill of Materials for the 2.4 GHz Matching 6
 4.6 Inverted-F Antenna 6

5. Mechanical Details 8

6. EMC Compliance 9
 6.1 Introduction. 9
 6.2 EMC Regulations for 868 MHz 9
 6.2.1 ETSI EN 300-200-1 Emission Limits for the 868-868.6 MHz Band 9
 6.3 EMC Regulations for 2.4 GHz 9
 6.3.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band 9
 6.3.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band 9
 6.3.3 Applied Emission Limits for the 2.4 GHz Band 10

7. RF Performance 11
 7.1 Conducted Power Measurements 11
 7.1.1 Conducted Measurements in the 868 MHz band ... 11
 7.1.2 Conducted Measurements in the 2.4 GHz band ... 12
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories®, Silicon Labs®, SiLabs®, and the Silicon Labs logo®, Bluegiga®, Bluegiga Logos®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSILIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.