Silicon Labs is the vendor of choice for OEMs developing Zigbee networking into their products. The Silicon Labs Zigbee platform is the most integrated, complete, and feature-rich Zigbee solution available.

Silicon Labs EmberZNet SDK contains Silicon Labs’ implementation of the Zigbee stack specification.

These release notes cover SDK version(s):

7.0.0.0 released December 15, 2021

Compatibility and Use Notices

For information about security updates and notices, see the Security chapter of the Gecko Platform Release notes installed with this SDK or on the Silicon Labs Release Notes page. Silicon Labs also strongly recommends that you subscribe to Security Advisories for up-to-date information. For instructions, or if you are new to the Zigbee EmberZNet SDK, see Using This Release.

Compatible Compilers:

IAR Embedded Workbench for ARM (IAR-EWARM) version 8.50.9.

- Using wine to build with the iarBuild.exe command line utility or IAR Embedded Workbench GUI on macOS or Linux could result in incorrect files being used due to collisions in wine’s hashing algorithm for generating short file names.
- Customers on macOS or Linux are advised not to build with IAR outside of Simplicity Studio. Customers who do should carefully verify that the correct files are being used.

GCC (The GNU Compiler Collection) version 10.2.1, provided with Simplicity Studio.

KEY FEATURES

- Integrated with Gecko Platform component-based architecture.
- 802.15.4 Radio Co-Processor (RCP)
- RCP Host for Raspberry Pi (Docker image)
Contents

1 New Items ... 2
 1.1 New APIs... 2
 1.2 New Platform Support ... 3
 1.3 New Documentation .. 3
2 Improvements... 4
 2.1 Supported Applications .. 4
 2.2 Changed APIs ... 5
 2.3 Other Improvements .. 5
3 Fixed Issues .. 8
4 Known Issues in the Current Release .. 9
5 Deprecated Items ... 14
6 Removed Items ... 15
7 Using This Release .. 16
 7.1 Installation and Use ... 16
 7.2 Security Information .. 16
 7.3 Support .. 17
1 New Items

Along with the release of Simplicity Studio 5, Silicon Labs introduced a complete update to its Simplicity Studio tool suite, as well as a new, component-based Gecko Platform architecture. Version 7.0 of the Zigbee EmberZNet SDK has been updated to take advantage of this new structure. With SSv5 and GSDK v4.0, Zigbee developers will benefit from the following component-based project configuration features:

- Search and filter to find and discover software components that work with the target device
- Automatically pull in all component dependencies and initialization code
- Configurable software components including peripheral inits, drivers, middleware, and stacks
- All configuration settings in C header files for usage outside of Simplicity Studio
- Configuration validation to alert developers to errors or issues
- Easily manage all project source via git or other SCM tools
- Managed migration to future component and SDK versions
- Simplified transitions from Silicon Labs development kits to custom hardware

For Zigbee, instead of configuring project functionality through Application Builder (AppBuilder) plugins, equivalent functionality is now available through Zigbee stack or platform components and configuration tools such as Project Configurator and Zigbee Cluster Configurator.

1.1 New APIs

New in release 7.0.0.0

For an extensive list of new APIs in this release, refer to Zigbee Stack API documentation and Zigbee Application Framework API documentation on https://docs.silabs.com/.

Command Line Interface (CLI)

Zigbee migrated to the new/unified CLI system. All emberXXXArgument() APIs are changed to sl_cli_XXX_argument_XXX() APIs (e.g., emberCommandArgumentCount() → sl_cli_get_argument_count()). Refer to the sl_cli.h header file and its documentation for available CLI command APIs.

In the newly integrated CLI, hexadecimal string and ASCII string arguments have dedicated types. These arguments can be retrieved using the related APIs sl_cli_get_command_string() and sl_cli_get_argument_hex(). See sl_cli.h for more information.

Event System

A new event queue system has been introduced.

Application event initialization should be initiated using the sl_zigbee_event_init() API.

All emberEventControlXXX() APIs are now removed and sl_zigbee_event_XXX() APIs should be used in their place (e.g., emberEventControlSetActive() → sl_zigbee_event_set_active()). Refer to the zigbee_app_framework_event.h header file and its documentation for available event APIs.

All emberEventXXX() APIs are now removed and sl_zigbee_event_XXX() APIs should be used in their place (e.g., emberEventSetDelayMs() → sl_zigbee_event_set_delay_ms()). Refer to the zigbee_app_framework_event.h header file and its documentation for available event APIs.

Application Framework

All EMBER_AF_PLUGIN_<PluginName> (e.g. EMBER_AF_PLUGIN_ADDRESS_TABLE) macros are now removed and replaced by SL_CATALOG_ZIGBEE_<PluginName>_PRESENT (e.g., SL_CATALOG_ZIGBEE_ADDRESS_TABLE_PRESENT).
1.2 New Platform Support

New in release 7.0.0.0

Added support for BRD4186B, BRD4187B, and BRD4188A boards.

1.3 New Documentation

New in release 7.0.0.0

All components have documentation available. If you have an issue seeing the documentation when you select the component in Project Configurator, you can find it here: http://docs.silabs.com/zigbee/7.0

New software documentation available through Simplicity Studio's Documentation page includes:

- AN1301: Transitioning from Zigbee EmberZNet SDK 6.x to SDK 7.x
- AN1322: Dynamic Multiprotocol Development with Bluetooth and and Zigbee EmberZNet SDK 7.0 and Higher
- AN1325: Zigbee Cluster Configurator User's Guide
- AN1333: Running Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol RCP
- QSG180: Zigbee EmberZNet Quick-Start Guide for SDK 7.0 and Higher
- UG491: Zigbee Application Framework Developer's Guide for SDK 7.0 and Higher
2 Improvements

2.1 Supported Applications

Changed in release 7.0.0.0

The following applications are supported for in the current release:

SoC Applications

DynamicMultiprotocolLight – A light application using dynamic multiprotocol (Zigbee + Bluetooth LE).

DynamicMultiprotocolLightSed – A sleepy end device application using dynamic multiprotocol (Zigbee + Bluetooth LE).

GPD Switch – A Green Power switch application.

GPD Sensor – A Green Power sensor device application.

StandardizedRfTesting – Sample application demonstrating RF testing through TIS (Total Isotropic Sensivity) / TRP (Total Radiated Power) interfaces.

Z3Light – A Zigbee 3.0 Light application.

Z3Switch – A Zigbee 3.0 Switch application

Z3SwitchWithVoice – A Zigbee 3.0 Switch application with extended voice recognition functionality.

Z3LightGPCombo – A Z3light application that demonstrates functionality of a Green Power combo device with proxy and sink instances together in one application.

ZigbeeMinimal – A Zigbee minimal network-layer application suitable as a starting point for new application development.

NCP Applications

NCP UART with HW flow control – Network coprocessor (NCP) application that supports communication with a host application over a UART interface with hardware flow control.

NCP UART with HW flow control for GP Multi-RAIL – NCP UART application with multi-RAIL library enabled for application-specific Green Power gpdf transmission scheduling.

NCP SPI – Network coprocessor (NCP) application that supports communication with a host application over an SPI interface.

Multi-PAN NCP UART with HW flow control – Provides support for forming two personal area networks on the same channel on a single radio. This multi-PAN network coprocessor (NCP) application supports communication with a host application over a UART interface with hardware flow control.

Multi-PAN NCP SPI – Provides support for forming two personal area networks on the same channel on a single radio. This multi-PAN network coprocessor (NCP) application supports communication with a host application over a SPI interface.

xNCP LED NCP – An NCP application for communicating with a UNIX HOST using custom EZSP commands. This application is meant to be used with the HOST sample application XncpLedHost.

Host Applications

XncpHost – Serves as a template for XNCP HOST functionality.

XncpLedHost – A HOST application for communicating with an NCP application using custom EZSP commands. Meant to be used with the **xNCP LED NCP** application.

Z3Gateway – A Zigbee 3.0 Gateway application.

Z3GatewayGPCombo – A Zigbee 3.0 Gateway application with Green Power Combo gateway functionalities.

ZigbeeMinimalHost – The host version of the Zigbee minimal application.
2.2 Changed APIs

Changed in release 7.0.0.0

For an extensive list of changed APIs in this release, refer to Zigbee Stack API documentation and the Zigbee Application Framework API documentation.

The following public stack APIs have changed:

- `emberMarkApplicationBuffers` to `emberMarkBuffersHandler`
- `emberPacketHandoffIncoming` to `emberPacketHandoffIncomingHandler`
- `emberPacketHandoffOutgoing` to `emberPacketHandoffOutgoingHandler`

Additionally, the following public stack handlers have changed:

- `emberMarkApplicationBuffers` to `emberMarkBuffersHandler`
- `emberPacketHandoffIncoming` to `emberPacketHandoffIncomingHandler`
- `emberPacketHandoffOutgoing` to `emberPacketHandoffOutgoingHandler`

Furthermore, all stack handlers are now consumed by the Zigbee Application Framework Common component. For every stack handler a corresponding application-level callback is provided. For example, the application can implement `emberAfScanCompleteCallback` instead of `emberScanCompleteHandler`.

An exception to the rule above is `emberOverrideAppendSourceRouteHandler`: the application can implement `emAfOverrideAppendSourceRouteCallback` instead.

See `zigbee_app_framework_callback.h` for more information on stack callbacks.

Event APIs: A GUI-supported way of adding events at compile time is no longer needed. In this release, the events can be added to the embedded code at runtime through API calls. See `zigbee_app_framework_event.h` for more details.

Command Line Interface (CLI): In the newly-integrated CLI, hexadecimal string and ASCII string arguments have dedicated types. These arguments can be retrieved using the related APIs `sl_cli_get_command_string()` and `sl_cli_get_argument_hex()`.

See `sl_cli.h` for more information.

2.3 Other Improvements

Changed in release 7.0.0.0

Dynamic Multi-protocol Related Improvements

- The Bluetooth RTOS task is created independently of the Zigbee RTOS task and therefore, all the former Bluetooth LE plugin options are now under the Bluetooth Core RTOS and stack components.
- The ability to enable Application RTOS tasks using the project IDE is no longer provided. For an example of implementing an Application task, see how the Zigbee RTOS task is created in the `zigbee_app_framework_commonRTOS.c` file. Caution: Application tasks must have a lower priority than Zigbee and Bluetooth LE tasks to ensure proper functioning.
- These sample applications now support both general radio boards leveraging the LCD support as well as module boards without LCD support.

Stack Callback Subscription

A number of callbacks and handlers have been removed in favor of using the new stack callback subscription mechanism (for an extensive list refer to the Removed Items section or the Form and Join Library, Network Find and ZLL Commissioning Network component descriptor files).
Trust Center Network Key

The Trust center network key update period is now configurable in minutes and its maximum value is limited to 35791, which is a little more than 24 days.

Host Support

Host device support is now available. An appropriate host device must be selected in Simplicity Studio in order to enable host support for your corresponding host device. In the My Products view, type ‘host’ or click + to open the Add Products dialog. The host device is now searchable and selectable.

NCP Memory Allocation

The ability to increase NCP memory allocation sizes at run-time with EZSP commands from the host was incompatible with the SLC architecture and has been removed. The sizes may still be decreased at run-time by host in order to adjust the configuration. When configuring the NCP application all settings must be set to the max that the host will require.

The affected configuration items are:

<table>
<thead>
<tr>
<th>EZSP Configuratio ID</th>
<th>NCP Config #define</th>
<th>#define location</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZSP_CONFIG_BINDING_TABLE_SIZE</td>
<td>EMBER_BINDING_TABLE_SIZE</td>
<td>sl_zigbee_binding_table_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_KEY_TABLE_SIZE</td>
<td>EMBER_KEY_TABLE_SIZE</td>
<td>sl_zigbee_security_link_keys_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_SOURCE_ROUTE_TABLE_SIZE</td>
<td>EMBER_SOURCE_ROUTE_TABLE_SIZE</td>
<td>sl_zigbee_source_route_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_MAX_END_DEVICE_CHILDREN</td>
<td>EMBER_MAX_END_DEVICE_CHILDREN</td>
<td>sl_zigbee_pro_stack_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_NEIGHBOR_TABLE_SIZE</td>
<td>EMBER_NEIGHBOR_TABLE_SIZE</td>
<td>sl_zigbee_pro_stack_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_APS_UNICAST_MESSAGE_COUNT</td>
<td>EMBER_APS_UNICAST_MESSAGE_COUNT</td>
<td>sl_zigbee_pro_stack_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_MULTICAST_TABLE_SIZE</td>
<td>EMBER_MULTICAST_TABLE_SIZE</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_ROUTE_TABLE_SIZE</td>
<td>EMBER_ROUTE_TABLE_SIZE</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_DISCOVERY_TABLE_SIZE</td>
<td>EMBER_DISCOVERY_TABLE_SIZE</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_BROADCAST_TABLE_SIZE</td>
<td>EMBER_BROADCAST_TABLE_SIZE</td>
<td>sl_zigbee_pro_stack_config.h</td>
</tr>
<tr>
<td>EZSP_CONFIG_MAC_FILTER_TABLE_SIZE</td>
<td>EMBER_CUSTOM_MAC_FILTER_TABLE_SIZE</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_ADDRESS_TABLE_SIZE</td>
<td>EMBER_ADDRESS_TABLE_SIZE</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_TRUST_CENTER_ADDRESS_CACHE_SIZE</td>
<td>included in address table size</td>
<td>see note below</td>
</tr>
<tr>
<td>EZSP_CONFIG_SUPPORTED_NETWORKS</td>
<td>EMBER_SUPPORTED_NETWORKS</td>
<td>Project Configuration</td>
</tr>
<tr>
<td>EZSP_CONFIG_PACKET_BUFFER_COUNT</td>
<td>EMBER_PACKET_BUFFER_COUNT</td>
<td>sl_zigbee_pro_stack_config.h</td>
</tr>
</tbody>
</table>
Items marked "Project Configuration" are set to defaults in ember-configuration-defaults.h. These can be overridden by adding a #define to the project configuration.

The total space allocated for the sum of EZSP_CONFIG_ADDRESS_TABLE_SIZE and EZSP_CONFIG_TRUST_CENTER_ADDRESS_CACHE_SIZE is EMBER_ADDRESS_TABLE_SIZE + 4.

Smart Energy (2.4GHz Only)

Smart Energy support for 2.4 GHz devices is now available. Smart Energy support for multi-MAC switch coordinator and for multi-MAC selection end devices will be available in the future.

Command Line Password Protection

Password protection for CLI is now available. The feature is not backward-compatible.

Application Framework Improvements

`af-main-host.c`, `af-main-soc.c` and `af-main-common.c` files are now replaced by `af-host.c`, `af-soc.c` and `af-common.c` files.

Callback selection in a project is no longer done through Simplicity Studio’s AppBuilder, but rather relies on direct implementation of the callback functions in the project source files.

Command Line Interface

Idle-Sleep CLI commands now enable overriding sleep mode.

Price Server Tariff Matrix

Price server tariff matrix support is moved to a separate component called **Price Server Tariff Matrix**. Include this component for Price server tariff matrix support and its CLI access.

Simple Metering Server

Test meter and meter error functionalities from the **Simple Metering Server** component are moved to **Simple Metering Server Test Meter** component. Install this component along with the **Simple Metering Server** component to enable those additional functionalities.
3 Fixed Issues

None
4 Known Issues in the Current Release

Issues in bold were added since the previous release. If you have missed a release, recent release notes are available on https://www.silabs.com/products/software.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
</table>
| N/A | The following apps/components are not supported in this release
- Smart Energy multi-MAC switch coordinator
- Smart Energy multi-MAC selection
- NCP UART with SW flow control
- NCP Sleepy
- EM4 support | Features will be enabled in subsequent releases. |
<p>| 82569 | RAM corruption (in Packet Buffers) could occur if MAC Filter Match List Size is non-zero and a list of the maximum size is provided to ezspSetValue for EZSP_VALUE_MAC_FILTER_LIST. | No known workaround |
| 119939 | ZDO IEEE Request's APS ACK proxied by parent incorrectly includes long source address. | No known workaround |
| 135649 | Multi-networking can cause APS frame counter confusion between networks. | Use emberAfSecurityInitCallback to add EMBER_NO_FRAME_COUNTER_RESET to EmberInitialSecurityBitmask. |
| 266341 | Z3 Light sample app has two endpoints that support similar cluster commands, so duplicate responses may be generated for certain commands. | No known workaround |
| 271644 | A device that performs a classic join to a legacy ZLL gateway may eventually leave the network on its own initiative. | No known workaround |
| 278063 | Smart Energy Tunneling plugins have conflicting treatment/usage of address table index | No known workaround |
| 281832 | Green Power Common plugin incorrectly formats groupList and groupListCount parameters of GP Pairing Configuration frame. | No known workaround |
| 289569 | Network-creator plugin power level picklist doesn't offer full range of supported values for EFR32 | No known workaround |
| 295498 | UART reception sometimes drops bytes under heavy load in Zigbee+BLE DMP use case | Use hardware flow control or lower the baud rate. |
| 312291 | EMHAL: The halCommonGetIntxxMillisTick functions on linux hosts currently use the gettimeofday function, which is not guaranteed to be monotonic. If the system time changes, it can cause issues with stack timing. | Modify these functions to use clock_gettime with the CLOCK_MONOTONIC source instead. |
| 331438 | Service discovery may time out too quickly in busy networks. | Define EMBER_AF_DISCOVERY_TIMEOUT_QS to customize the timeout period. |
| 356937 | Read/write attribute CLI commands do not support manufacturer-specific ZCL attributes. Some implementations may allow local CLI debug access to display or modify these attributes. | Access the attributes from a remote device in the network via ZCL global Read/WriteAttributes commands. |
| 363162 | There is a bug in emberAfAddAddressTableEntry which could allow for duplicate entries in the address table | Under Investigation |
| 387750 | Issue with Route Table Request formats on end device. | Under Investigation |
| 398694 | Disabling endpoint 2 (Touchlink) in the Z3Light sample app causes high emberRunTask execution time. | Under Investigation |</p>
<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>400418</td>
<td>A touchlink initiator cannot link to a non-factory-new end-device target.</td>
<td>Under Investigation</td>
</tr>
<tr>
<td>424355</td>
<td>A non-factory-new sleepy end device touchlink target-capable initiator is not able to receive a device information response in certain circumstances.</td>
<td>Under Investigation</td>
</tr>
<tr>
<td>437704</td>
<td>The OccupiedCoolingSetpoint attribute should be optional by default in Appbuilder.</td>
<td>Modify the "optional" flag from false to true in the OCCUPIED_COOLING_SETPOINT attribute in app/zcl/ha.xml</td>
</tr>
<tr>
<td>437817</td>
<td>EMBER_SHORT_CHILD_TIMEOUT defaults to 2 minutes and cannot be overridden as it should.</td>
<td>No known workaround</td>
</tr>
<tr>
<td>439062</td>
<td>When receiving a Network Status command as a broadcast, the command frame is neither retransmitted nor added to the broadcast transaction table.</td>
<td>No known workaround</td>
</tr>
<tr>
<td>442664</td>
<td>In a dense network with many devices joining simultaneously, a packet buffer assert is sometimes seen when collecting beacons during network steering.</td>
<td>No known workaround</td>
</tr>
<tr>
<td>446827</td>
<td>There is a potential for the code to get stuck in an infinite loop if it is unable to write to the edge detect setting of the GPIO in function edgeGpioDevice in file spi-protocol-linux.c.</td>
<td>If using SPI Host, increment the loopCount variable in the while loop.</td>
</tr>
<tr>
<td>456350</td>
<td>"emberAFPluginIasZoneClientReadAttributesResponseCallback" in "ias-zone-client.c" incorrectly sets the type of "zoneStatus" and "zoneType" attributes to uint8_t. The correct type should be uint16_t.</td>
<td>Modify the type of these two attributes to "uint16_t" in emberAFPluginIasZoneClientReadAttributesResponseCallback".</td>
</tr>
<tr>
<td>465180</td>
<td>The Coexistence Radio Blocker Optimization item "Enable Runtime Control" may block proper Zigbee operation.</td>
<td>Optional 'Wi-Fi Select' Control of Blocker Optimization should be left "Disabled".</td>
</tr>
<tr>
<td>468581</td>
<td>ZCL attribute tokens creator codes are likely to change if you add or remove one or more attributes. For instance, if you add an attribute whose cluster ID or attribute ID is not the largest numerically, then this attribute gets inserted into a list of creator codes and makes all creator codes after it to be different (shifted).</td>
<td>Use the script at https://github.com/SiliconLabs/IoT_Utility_Scripts/tree/master/token_preserver to fix this issue.</td>
</tr>
<tr>
<td>469704</td>
<td>On EFR32XG2x there is a known issue with the debug interface where a pin reset, connection to a debugger or flashing an image on device could cause a pull up on DBG_TDI and DBG_TDO pins which cannot be reliably disabled in software.</td>
<td>Avoid a pin reset of EFR32XG2X when a debugger is attached. If a pin reset is necessary, avoid using PA3 and PA4, or use JTAG instead of SWD.</td>
</tr>
<tr>
<td>480550</td>
<td>The OTA cluster has its own built-in fragmentation method, hence it should not use APS fragmentation. Although, in case APS encryption is enabled it grows the payload of the ImageBlockResponses to a size where the APS fragmentation is activated. This could lead to the OTA process failing.</td>
<td>No known workaround</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
<td>Workaround</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>481128</td>
<td>Detailed Reset Cause and crash details should be available by default via the Virtual UART (Serial 0) on NCP platforms when Diagnostics plugin and Virtual UART peripheral are enabled.</td>
<td>Since Serial 0 is already initialized in the NCP, customers can enable the emberAfNcpInitCallback in the Zigbee NCP Framework and call the appropriate diagnostic functions (halGetExtendedResetInfo, halGetExtendedResetString, halPrintCrashSummary, halPrintCrashDetails, and halPrintCrashData) in this callback to print this data to Serial 0 for viewing in the Network Analyzer capture log. For an example of how to use these functions, refer to the code included in af-main-so.c's emberAfMainInit() when EXTENDED_RESET_INFO is defined.</td>
</tr>
<tr>
<td>481618</td>
<td>The "Network Open Time" option of the Network Creator Security plugin may not work as expected when you open network if the time does not match the transient key timeout.</td>
<td>Set the Network Open time to the same value as the Transient Key Timeout.</td>
</tr>
<tr>
<td>486369</td>
<td>If a DynamicMultiProtocolLightSoc forming a new network has child nodes remaining from a network it has left, emberAfGetChildTableSize returns a non-zero value in startIdentifyOnAllChildNodes, causing Tx 66 error messages when addressing the "ghost" children.</td>
<td>Mass-erase the part if possible before creating a new network or programmatically check the child table after leaving the network and delete all children using emberRemoveChild prior to forming a new network.</td>
</tr>
<tr>
<td>488977</td>
<td>OTA of EFR32xG2x devices will fail if using Slot Manager with Gecko bootloader 1.10 or newer.</td>
<td>Set the macro "SLOT_MANAGER_VERIFICATION_CONTEXT_SIZE" to "BOOTLOADER_STORAGE_VERIFICATION_CONTEXT_SIZE" in \util\plugin\slot-manager\slot-manager.h. This must be modified in the SDK directly.</td>
</tr>
<tr>
<td>494873</td>
<td>The sleepy end device can't rejoin to its previous parent with the rejoining API when the parent's child table is full.</td>
<td>Reset the sleepy end device.</td>
</tr>
<tr>
<td>495563</td>
<td>Joining SPI NCP Sleepy End Device Sample App doesn't short poll, therefore the joining attempt fails at the state of Update TC Link Key.</td>
<td>The device that wishes to join should be in Short Poll mode before attempt to join. This mode can be forced by End Device Support plugin.</td>
</tr>
<tr>
<td>497832</td>
<td>In Network Analyzer the Zigbee Application Support Command Breakdown for the Verify Key Request Frame mistakenly references the part of the payload that indicates the frame Source Address as the Destination Address.</td>
<td>No known workaround</td>
</tr>
<tr>
<td>498094</td>
<td>In function checkForReportingConfig() in metering-server.c, the second input parameter of the invoked function emberAfContainsServer() incorrectly references the attribute ID instead of the cluster ID.</td>
<td>Change the 2nd input parameter from the attribute ID (ZCL_CURRENT_SUMMATION_DELIVERED_ATTRIBUTE_ID) to the cluster ID (ZCL_SIMPLE_METERING_CLUSTER_ID).</td>
</tr>
<tr>
<td>519905</td>
<td>Spi-NCP may very rarely fail to start up bootloader communication using the 'bootstrap' CLI command of the ota-client plugin.</td>
<td>Restart the bootloader process</td>
</tr>
<tr>
<td>521706</td>
<td>A duplicated attribute ID is assigned in the altConsumptionMonthAttrIds[] array of the gas-proxy-function plugins in gpf-structured-data.c.</td>
<td>Change the second ZCL_PREVIOUS_MONTH6_ALTERNATIVE_CONSUMPTION_DELIVERED_ATTRIBUTE_ID to ZCL_PREVIOUS_MONTH7_ALTERNATIVE_CONSUMPTION_DELIVERED_ATTRIBUTE_ID.</td>
</tr>
<tr>
<td>620596</td>
<td>NCP SPI Example for BRD4181A (EFR32xGMG21) nWake default pin defined cannot be used as a wake-up pin.</td>
<td>Change the default pin for nWake from PD03 to a EM2/3 wake-up-enabled pin in the NCP-SPI Plugin.</td>
</tr>
<tr>
<td>621144</td>
<td>GP on/off switch example cannot be compiled for the BRD4183A board.</td>
<td>The sample has to be manually modified to use only one button.</td>
</tr>
<tr>
<td>631713</td>
<td>A Zigbee End Device will report address conflicts repeatedly if the plugin "Zigbee PRO Stack Library" is used instead of "Zigbee PRO Leaf Library".</td>
<td>Use the "Zigbee PRO Leaf Library" instead of the "Zigbee PRO Stack Library" plugin.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
<td>Workaround</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>634828</td>
<td>Certain messages with invalid Source Address (0xFFFFE) trigger assert(0) in the application. In Host-NCP model the issue terminates the Host application execution.</td>
<td>Modify the securityAddToAddressCache() in SoC model. The function source is not available in the NCP model, hence the emberPacketHandoffIncoming() function should be used to filter out invalid packets.</td>
</tr>
<tr>
<td>648861</td>
<td>Routers using optimized scans during network steering will "miss" beacons that are broadcast by nodes that are open but advertise no end-device capacity that is, their child table is full).</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>648906</td>
<td>emberChildId API was accidentally removed in EmberZNet 6.8.0.2.</td>
<td>Call sl_mac_child_short_id instead.</td>
</tr>
<tr>
<td>652833</td>
<td>Host-NCP based nodes using optimized scans during network steering will "miss" beacons that are broadcast by nodes that are open.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>659010</td>
<td>emberChildIndex API was accidentally removed in EmberZNet 6.8.0.2.</td>
<td>Call sl_mac_child_index instead.</td>
</tr>
<tr>
<td>661214</td>
<td>Upgrading NCP from the host side will fail if the communication port between host and NCP is not USART0.</td>
<td>Use USART0 as the communication port.</td>
</tr>
<tr>
<td>670459</td>
<td>Zigbee project may not compile if the API mfglibSetSynOffset is used.</td>
<td>Remove references to mfglibSetSynOffset.</td>
</tr>
<tr>
<td>687144</td>
<td>The Stack Diagnostics component fails to record LQI and RSSI values.</td>
<td>When selecting the "Record LQI and RSSI for each neighbor" option in the Stack Diagnostics component, the Packet Handoff component must be enabled before LQI and RSSI values are recorded. This will be enforced in a future release.</td>
</tr>
<tr>
<td>702802</td>
<td>Slot Manager plugin fails to boot Series 2 devices with Zigbee app and Internal Storage Bootloader with multiple images configured.</td>
<td>Change #define SLOT_MANAGER_VERIFICATION_CONTEXT_SIZE in slot-manager.h from 384 to 556.</td>
</tr>
<tr>
<td>722636</td>
<td>The mfgLibRxHandler handler is not called upon receiving 802.15.4 ACK.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>742744</td>
<td>Zigbee host applications do not show up by default in Simplicity Studio.</td>
<td>In Preferences > Simplicity Studio > Device Filtering, uncheck “Use Device Filtering”.</td>
</tr>
<tr>
<td>746353</td>
<td>In the Multiprotocol Docker container, under some circumstances systemd does not correctly start services such as zigbeed that depend on other services.</td>
<td>Start each service separately. For example, before doing 'service zigbeed start', issue 'service zigbeed-socat start'.</td>
</tr>
<tr>
<td>748977</td>
<td>4158a SPI-EZSP bootloader is not able to launch rcp-spi-802154.slc. This only occurs when using the spi-ezsp bootloader.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>754282</td>
<td>When enabling a new ZCL cluster component, command discovery might not automatically be enabled for the corresponding handled commands.</td>
<td>Manually enable discovery for the desired ZCL commands in the ZCL Advanced Configurator.</td>
</tr>
<tr>
<td>752378</td>
<td>Sending random or custom test messages with the manufacturing library in Host-NCP environment is unstable and can freeze the NCP, causing a watchdog reset.</td>
<td>Use predefined test packets instead.</td>
</tr>
<tr>
<td>754668</td>
<td>OTA updates issues from a device using the latest NCP UART HW application may be slower than usual.</td>
<td>Use the NCP UART HW application from earlier releases.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
<td>Workaround</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>757775</td>
<td>All EFR32 parts have a unique RSSI offset. In addition, board design, antennas and enclosure can impact RSSI.</td>
<td>When creating a new project, install the RAIL Utility, RSSI component. This feature includes the default RSSI Offset Silabs has measured for each part. This offset can be modified if necessary after RF testing of your complete product.</td>
</tr>
<tr>
<td>759263</td>
<td>Dynamic Multiprotocol Light sample application may not build and bootloader properly on BRD4308D radio boards.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>759512</td>
<td>Building Zigbee Host Applications with Cygwin under Windows systems is not currently supported.</td>
<td>Use Linux based systems for building Host applications.</td>
</tr>
<tr>
<td>759772</td>
<td>An issue is being investigated that could cause zigbee to reset at startup on some systems.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>760176</td>
<td>The Z3Gateway host application may experience high CPU load due to an underlying issue.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>760323</td>
<td>There is a known issue in which zigbee returns an EZSP error for EZSP_GET_MFG_TOKEN and EZSP_SET_MFG_TOKEN frames. This causes app framework host applications to send a reset command. In particular, the Z3Gateway ‘info’ command causes zigbee to reset.</td>
<td>No known workaround. Will be fixed in the follow-up patch release.</td>
</tr>
<tr>
<td>760808</td>
<td>Setting EZSP_CONFIG_RETRY_QUEUE_SIZE to a value larger than the NCP’s EMBER_RETRY_QUEUE_SIZE setting can lead to memory corruption.</td>
<td>No known workaround.</td>
</tr>
<tr>
<td>760811</td>
<td>In the CPCd configuration, if STDOUT_TRACE and TRACE_TO_FILE are both disabled, a timing issue with CPC causes the Zigbee endpoint to close on some setups.</td>
<td>For a short-term workaround, enable traces using either STDOUT_TRACE or TRACE_TO_FILE.</td>
</tr>
</tbody>
</table>
5 Deprecated Items

None
6 Removed Items

Removed in release 7.0.0.0

For an extensive list of all removed items in this release refer to Zigbee Stack API documentation and Zigbee Application Framework API documentation on https://docs.silabs.com/zigbee/latest/zigbee-af-api/.

- **DMPSwitch** sample app has been removed. **Z3Switch** should be used in its place.
- **emberAfPluginIdleSleepRtosCallback** has been removed.
- **emberAfPluginIdleSleepActiveCallback** has been removed.
- **emberAfPluginBleGetConfigCallback** has been removed.
- **emberAfPluginBleEventCallback** has been removed and **sl_bt_on_event** should be used in its place.
- All **emberEventXXX()** APIs are now removed and **sl_zigbee_event XXX()** APIs should be used in their place. See the New Items section for more information.
- All **emberEventControlXXX()** APIs are now removed and **sl_zigbee_event XXX()** APIs should be used in their place. See section 1 New Items for more information.
- All **emberAf<ClusterName>ClusterServer<ActionName>Callback** where **ActionName** is **Init**, **AttributeChanged**, **DefaultResponse**, **MessageSent**, **MfgSpecificAttributeChanged**, **PreAttributeChanged**. For example: **emberAfIdentifyClusterServerInitCallback**, **emberAfBasicClusterServerAttributeChangedCallback**. Equivalent global callbacks can be used instead, for example **emberAfPostAttributeChangeCallback** can be used in place of all **emberAf<ClusterName>ClusterServerAttributeChangedCallback**.
- All **EMBER_AF_PLUGIN_<PluginName>** (e.g., **EMBER_AF_PLUGIN_ADDRESS_TABLE**) macros are now removed and replaced by **SL_CATALOG_ZIGBEE_<PluginName>_PRESENT**. For example: **SL_CATALOG_ZIGBEE_ADDRESS_TABLE_PRESENT**.
- The **Standalone Bootloader Client** plugin has been removed. The feature was limited to EM3xx devices only. The Standalone Bootloader Server and Standalone Bootloader Common components are still supported.
- The following callbacks and handlers have been removed and changed to use the new architecture stack callback subscription mechanism (refer to Form and Join Library, Network Find and ZLL Commissioning Network components): **emberFormAndJoinScanCompleteHandler**, **emberFormAndJoinNetworkFoundHandler**, **emberFormAndJoinEnergyScanResultHandler**, **emberFormAndJoinUnusedPanIdFoundHandler**, **emberAfScanErrorCallback**, **emberAfUnusedPanIdFoundCallback**.
- All endian APIs have been removed from the unix-library component.
- The heartbeat component is no longer included in the supported sample applications. The component can still be enabled.
- The newly-integrated CLI does not provide support to accept flexible arguments and multiple optional arguments.
7 Using This Release

This release contains the following:

- Zigbee stack
- Zigbee Application Framework
- Zigbee Sample Applications

For more information about Zigbee and the EmberZNet SDK see UG103.02: Zigbee Fundamentals.

If you are a first-time user, see QSG180: Zigbee EmberZNet Quick-Start Guide for SDK 7.0 and Higher, for instructions on configuring your development environment, building and flashing a sample application, and documentation references pointing to next steps.

7.1 Installation and Use

The Zigbee EmberZNet SDK is provided as part of the Gecko SDK (GSDK), the suite of Silicon Labs SDKs. To quickly get started with the GSDK, install Simplicity Studio 5, which will set up your development environment and walk you through GSDK installation. Simplicity Studio 5 includes everything needed for IoT product development with Silicon Labs devices, including a resource and project launcher, software configuration tools, full IDE with GNU toolchain, and analysis tools. Installation instructions are provided in the online Simplicity Studio 5 User's Guide.

Alternatively, Gecko SDK may be installed manually by downloading or cloning the latest from GitHub. See https://github.com/SiliconLabs/gecko_sdk for more information.

Simplicity Studio installs the GSDK by default in:

- (Windows): C:\Users\<NAME>\SimplicityStudio\SDKs\gecko_sdk
- (MacOS): /Users/<NAME>/SimplicityStudio/SDKs/gecko_sdk

Documentation specific to the SDK version is installed with the SDK. Additional information can often be found in the knowledge base articles (KBAs). API references and other information about this and earlier releases is available on https://docs.silabs.com/.

7.2 Security Information

Secure Vault Integration

This version of the stack does not integrate Secure Vault Key Management.

Security Advisories

To subscribe to Security Advisories, log in to the Silicon Labs customer portal, then select Account Home. Click HOME to go to the portal home page and then click the Manage Notifications tile. Make sure that ‘Software/Security Advisory Notices & Product Change Notices (PCNs)’ is checked, and that you are subscribed at minimum for your platform and protocol. Click Save to save any changes.
7.3 Support

Development Kit customers are eligible for training and technical support. Use the Silicon Laboratories Zigbee web page to obtain information about all Silicon Labs Zigbee products and services, and to sign up for product support.

You can contact Silicon Laboratories support at http://www.silabs.com/support.
Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com