The Gecko Platform provides infrastructure support for applications developed with higher-level protocols, and it provides an interface with the underlying hardware. It is composed of the following modules:

CMSIS and EMLIB are low-level core and peripheral support libraries. EMLIB provides a complete peripheral API for all Silicon Labs EFM32, EZR32 and EFR32 MCUs and SoCs.

EMDRV is the Gecko Platform driver library for EFM32, EZR32 and EFR32 on-chip peripherals. Drivers are typically DMA-based and use all available low-energy features.

RAIL (Radio Abstraction Interface Layer) provides a customizable radio interface layer that supports proprietary or standards-based wireless protocols. RAIL use by application protocols such as Silicon Labs Zigbee or Silicon Labs Connect is managed through the stack library. Direct RAIL use is exposed through the Flex SDK.

NVM3 (Non-Volatile Memory Version 3) is a data storage driver that provides a means to read and write data objects (key/value pairs) stored in flash memory. NVM3 can be used with the Bluetooth, Zigbee, Thread, and Connect protocol stacks.

mbed TLS provides an SSL library that makes it easy to use cryptography and SSL/TLS in your applications. mbed TLS is open source software licensed by ARM Limited.

The **Gecko Bootloader** is a code library configurable through Simplicity Studio’s IDE to generate bootloaders that can be used with a variety of Silicon Labs protocol stacks. The Gecko Bootloader can be used with EFM32 and EFR32 Series 1 and later devices.

This document aggregates information that in previous releases was spread across multiple documents. In earlier versions of the Gecko SDK, this content would have been found in: 32-bit MCU SDK Release Notes, RAIL Library Release Notes, and the Gecko Bootloader change log.

These release notes cover SDK version(s):

Gecko SDK 2.7.0.0 GA released December 13, 2019.
1 CMSIS

1.1 New Items
None

1.2 Improvements
None

1.3 Fixed Issues

Fixed in release 2.7.0.0

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>334234</td>
<td>SystemHFClockGet() in CMSIS system file now accounts for HFRCODIV2 (Series-1 only).</td>
</tr>
<tr>
<td>426081</td>
<td>Fixed handling of USHFRCO frequency in SystemHFClockGet(). CMSIS system now keeps track of the frequency and EMLIB CMU works in concert with CMSIS system. This applies to EFM32HG, EFM32GG11 and EFM32GG12 families.</td>
</tr>
</tbody>
</table>

1.4 Known Issues in the Current Release
None

1.5 Deprecated Items
None

1.6 Removed Items
None
2 EMLIB

2.1 New Items

Added in release 2.7.0.0
- MSC_MassErase() function is added for Series-2 devices.
- Add remote frame support in EMLIB CAN.

2.2 Improvements

None

2.3 Fixed Issues

Fixed in release 2.7.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>415819</td>
<td>CHIP_Init() sets HFRCOEM23 clock as TRACECLK.</td>
</tr>
<tr>
<td>447797</td>
<td>EMLIB IADC: The definition of <code>iadcNegInputGnd</code> has been modified to set PINNEG to 1. This prevents a polarity error when performing IADC conversions between supply pins and ground.</td>
</tr>
<tr>
<td>370421</td>
<td>Fixed conversion of raw data in IADC_ConvertRawDataToResult().</td>
</tr>
<tr>
<td>428960</td>
<td>Fixed issue that could cause dcdcEm01LoadCurrent_mA, a parameter of EMU_DCDCOptimizeSlice(), to be used before value assignment.</td>
</tr>
</tbody>
</table>

2.4 Known Issues in the Current Release

None

2.5 Deprecated Items

Functions in em_msc are placed in flash for Series-0 and Series-1 devices, except for the EFM32G. MSC_WriteWordFast() function is deprecated. Calling the MSC_WriteWordFast() function will have the same effect as calling MSC_WriteWord().

2.6 Removed Items

None
3 EMDRV

3.1 New Items

Added in release 2.7.0.0

SPIDRV is now using Sleeptimer instead of RTCDRV for time keeping in slave mode.

3.2 Improvements

None

3.3 Fixed Issues

None

3.4 Known Issues in the Current Release

None

3.5 Deprecated Items

RTCDRV driver is marked as deprecated and will be removed in a later release.

3.6 Removed Items

None
4 RAIL Library

4.1 New Items

Added in release 2.7.0.0

- Added a new PA mode which will attempt to automatically choose the PA which consumes the least amount of current to reliably produce the requested output power. See RAIL_EnablePaAutoMode() for details.

- On EFR32xG12 thru EFR32xG14, added support for 802.15.4G-2012 SUN PHY dynamic frame payload whitening on reception and transmit based on the PHY's Data Whitening flag setting. This feature is automatically enabled when RAIL_IEEE802154_ConfigGOptions()' RAIL_IEEE802154_G_OPTION_GB868 is enabled, and assumes the radio configuration specifies the appropriate whitening algorithm and settings.

- On EFR32xG12 thru EFR32xG14, added support for 802.15.4G -2012 SUN PHY dynamic frame payload 2/4-byte FCS (CRC) on reception and transmit based on the PHY header's FCS Type flag setting. This feature is automatically enabled when RAIL_IEEE802154_ConfigGOptions()' RAIL_IEEE802154_GgetOption_GB868 is enabled. The radio configuration's (single) CRC algorithm settings are ignored, overridden by RAIL.

- On EFR32xG12 thru EFR32xG14, 802.15.4 AutoACK behavior has also been updated so transmitted immediate ACKs reflect the Whitening and 2/4-byte FCS of the received frame being acknowledged.

- Added two new APIs, RAIL_GetSyncWords and RAIL_ConfigSyncWords(), to allow getting and setting the sync word configuration of your PHY at runtime.

- Added RAIL_TX_OPTION_CCA_ONLY to just perform CCA (CSMA/LBT), stopping short of automatically transmitting when the channel is clear.

- Added support for a new RAIL_EVENT_TX_STARTED, triggered when the first preamble bit is about to go on-air. Also included the ability to retrieve the equivalent RAIL_PACKET_TIME_AT_PREAMBLE_START timestamp of that event from the event's handler via RAIL_GetTxTimePreambleStart(). Note: This new event shifted the bit positions of some events in RAIL_Events_t.

- Added an API, RAIL_StopInfinitePreambleTx, that can stop an infinite preamble on PHYs configured to use infinite preambles.

- Added additional information to the packet trace stream for the Z-Wave protocol to indicate what region is currently active to help with decoding.

- Added support for RFSENSE Selective (OOK) mode for supported chips, which currently includes only EFR32xG22 devices. Please refer to RAIL internal chip specific documentation for more details.

4.2 Improvements

Changed in release 2.7.0.0

- Changed RAIL_GetRxTimePreambleStartAlt(), RAIL_GetRxTimeSyncWordEndAlt(), and RAIL_GetRxTimeFrameEndAlt() to properly update its pPacketDetails’ RAIL_PacketTimeStamp_t::timePosition to reflect the adjusted RAIL_PacketTimeStamp_t::packetTime rather than leaving it as RAIL_PACKET_TIME_DEFAULT.

- Enforced and clarified that RAIL_Init() should not be called more than once per protocol.

- Clarified documentation of the RAIL_EVENT_RX_ACK_TIMEOUT event and RAIL_AutoAckConfig_t::ackTimeout period which extends only to packet sync word detection of an expected ACK, not packet completion of that ACK.

- Documented RAIL's internal 16-packet metadata FIFO which exists on EFR32 platforms supplementing the receive FIFO of packet data. Refer to Data_Management and efr32_main for details. Included is support for a new RAIL_EVENT_RX_FIFO_FULL, triggered with any packet completion event in which the receive FIFO or packet metadata FIFO are full. This tells the application it must free up the oldest packets/data ASAP to reduce the chance of RAIL_EVENT_RX_FIFO_OVERFLOW (however, overflow may already have occurred). Note: This new event shifted the bit positions of some events in RAIL_Events_t.

4.3 Fixed Issues

Fixed in release 2.7.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>197573</td>
<td>Suppressed extraneous RAIL_EVENT_TX_START_CCA events that might occur during long CCA durations. Now only one such event should occur per CCA try.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>411498</td>
<td>RAIL_StartAverageRssi() now returns RAIL_STATUS_INVALID_STATE if called when the radio is not idle, enforcing its documented behavior.</td>
</tr>
<tr>
<td>417340</td>
<td>Fixed an issue where RAIL_RxPacketDetails_t::isAck would incorrectly be set true for non-ACK or unexpected ACK packets received successfully (e.g. when RAIL_IEEE802154_ACCEPT_ACK_FRAMES is enabled) or aborted while waiting for the expected ACK. Note that when RAIL_RX_OPTION_IGNORE_CRC_ERRORS is in effect, an expected ACK includes one that fails CRC, and will have isAck set true.</td>
</tr>
<tr>
<td>418493</td>
<td>RAIL_ConfigRadio will now return RAIL_STATUS_INVALID_STATE if called from the inactive config in dynamic multiprotocol instead of returning success but not applying the change.</td>
</tr>
<tr>
<td>427934</td>
<td>Fixed a race condition that could cause a device to not re-enable frame detection after an Rx overflow event if the overflow was processed and cleared very quickly.</td>
</tr>
<tr>
<td>430081</td>
<td>Fixed an issue where the first Clear Channel Assessment (CCA) of a CSMA/LBT transmit from radio idle state would consistently fail when the RAIL_CsmaConfig_t::ccaBackoff or RAIL_LbtConfig_t::lbtBackoff time is smaller than the RAIL_StateTiming_t::idleToRx time.</td>
</tr>
<tr>
<td>436163</td>
<td>Fixed a post-receive transition timing issue for received packets that were on the air longer than 32 milliseconds. AutoACK turnaround timing should now behave properly at low data rates.</td>
</tr>
<tr>
<td>437054</td>
<td>Fixed an issue with the pa_customer_curve_fits.py that caused values below -12 to not be considered when computing the fit. Re-generated default, Silicon Labs-provided curves to consume this fix, resulting in minor changes to the lowest-power segment in curve-fit based PA's. If using a custom power curve created using the documentation in AN1127 customers should re-run the script on the already collected output data to get slightly more accurate curves.</td>
</tr>
<tr>
<td>441635</td>
<td>Return the correct RAIL_TxPowerMode_t value of RAIL_TX_POWER_MODE_NONE from RAIL_GetTxPowerConfig if called before RAIL_ConfigTxPower.</td>
</tr>
<tr>
<td>446289</td>
<td>Fixed RAIL_IDLE_ABORT to idle the radio sooner when in RAIL_RF_STATE_RX, especially now that RAIL_RxChannelHoppingConfigEntry_t::delay can extend the time in that state.</td>
</tr>
<tr>
<td>447578</td>
<td>Fixed an issue where setting a transmit power over the maximum allowed for a given channel would result in no change in the output power instead of using the maximum allowed value.</td>
</tr>
<tr>
<td>450187</td>
<td>Fixed an issue where calling RAIL_Idle() with RAIL_IDLE_FORCE_SHUTDOWN while in receive with channel hopping enabled could corrupt some internal channel hopping state and trigger a bus fault or other radio problems.</td>
</tr>
</tbody>
</table>

4.4 Known Issues in the Current Release

None

4.5 Deprecated Items

None

4.6 Removed Items

None
5 NVM3 (Non-Volatile Memory Version 3)

5.1 New Items
None

5.2 Improvements
None

5.3 Fixed Issues
None

5.4 Known Issues in the Current Release
None

5.5 Deprecated Items
None

5.6 Removed Items
None
6 mbed TLS

6.1 New Items

Added in release 2.7.0.0

Added hardware-acceleration plugin for AES-GCM on EFR32xG21 products.

6.2 Improvements

None

6.3 Fixed Issues

Fixed in release 2.7.0.0

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>445608</td>
<td>Hardware-accelerated AES-GCM on EFR32xG22 parts was not adhering to mbedTLS API contract.</td>
</tr>
</tbody>
</table>

6.4 Known Issues in the Current Release

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>429985</td>
<td>ECDSA curve P224 is not supported for xG21 and xGM21 products.</td>
<td>None</td>
</tr>
<tr>
<td>406123</td>
<td>The latest mbed TLS 2.7 patch is not included in this release.</td>
<td>The latest patch will be included in Gecko Platform 2.7.1.</td>
</tr>
</tbody>
</table>

6.5 Deprecated Items

None

6.6 Removed Items

None
7 Gecko Bootloader

7.1 New Items

Added in release 2.7.0.0

- Added an AppBuilder plugin option APPLICATION_VERIFICATION_SKIP_EM4_RST to skip verification of the application only if the device has been to EM4.
- Added certificate support for secure boot and GBL image parser for EFR32xG21.
- Added first stage binaries for xG13 and xG14 devices that works with the second stage bootloader placed in the main flash.
- Added EZSP GPIO plugin.
- Added EUART driver.

7.2 Improvements

Changed in release 2.7.0.0

- The size of ParserContext_t for EFR32xG21 has been increased to 524 bytes to support certificate boot chain.

7.3 Fixed Issues

None

7.4 Known Issues in the Current Release

None

7.5 Deprecated Items

None

7.6 Removed Items

None
8 Other Gecko Platform Software Components

8.1 New Items

Added in release 2.7.0.0

• Added driver for the new EFP Power Management Integrated Circuit (PMIC) product. The EFP is also supported on BRD4179B (EFR32MG21 and EFP) radio board. The EFP Driver is Beta tested only.

8.2 Improvements

Changed in release 2.7.0.0

• Updated LwIP package to version 2.1.2.

8.3 Fixed Issues

Fixed in release 2.7.0.0

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>340730</td>
<td>GLIB now offers a GLIB_invertBitmap() function, which inverts every bit in the bitmap.</td>
</tr>
<tr>
<td>340726</td>
<td>GLIB: Bugfix in optimized drawing of bitmaps for inverse monochrome displays.</td>
</tr>
<tr>
<td>340053</td>
<td>GLIB now supports characters wider than 16 pixels.</td>
</tr>
<tr>
<td>451076</td>
<td>DMD_writeData now consistently treats a bit value of 1 as white and 0 as black for monochrome displays.</td>
</tr>
</tbody>
</table>

8.4 Known Issues in the Current Release

None

8.5 Deprecated Items

None

8.6 Removed Items

None
9 Legal

9.1 Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications.

Application examples described herein are for illustrative purposes only.

Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

9.2 Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOMo-dem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs.

ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.

Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.