The Gecko Platform provides infrastructure support for applications developed with higher-level protocols, and it provides an interface with the underlying hardware. It is composed of the following modules:

CMSIS Device is a vendor-independent hardware abstraction layer for the Cortex®-M processor series.

Peripherals provides a complete peripheral API for all Silicon Labs EFM32, EZR32 and EFR32 MCUs and SoCs.

Drivers is the Gecko Platform driver library for EFM32, EZR32 and EFR32 on-chip peripherals. Drivers are typically DMA-based and use all available low-energy features.

Services includes common services such as NVM3 and Power Manager.

CPC (Co-Processor Communication) provides a library to communicate between two processors using a serial link. CPC is used by the ACP & RCP solutions

Common components are used throughout the SDKs.

Middleware includes the Capacitive Sensing Firmware Library and the GLIB graphics library, along with Micrium OS stacks like CAN/CANopen, File System, Networking and USB Device and Host.

Security includes mbed TLS and other security services.

Operating System includes Micrium OS Kernel as well as other things related to Operating Systems such as a CMSIS-RTOS2 layer.

The **Gecko Bootloader** is a code library configurable through Simplicity Studio’s IDE to generate bootloaders that can be used with a variety of Silicon Labs protocol stacks. The Gecko Bootloader can be used with EFM32 and EFR32 Series 1 and later devices.

Machine Learning includes TensorFlow Lite Micro components, used to run neural network inference, and related preprocessing components.

Examples are example applications illustrating platform functionality.

Boards and External Devices cover supported hardware.

Other Gecko Platform Components regroups changes to documentation, project building and configuration, as well as any other aspects related to Gecko Platform.

RAIL (Radio Abstraction Interface Layer) provides a customizable radio interface layer that supports proprietary or standards-based wireless protocols. RAIL use by application protocols such as Silicon Labs Zigbee or Silicon Labs Connect is managed through the stack library. Direct RAIL use is exposed through the Flex SDK.

These release notes cover SDK version(s):
Gecko Platform 4.3.0.0 released June 7, 2023
Contents

1. CMSIS Device ... 2
2. Peripherals .. 3
3. Drivers ... 4
4. Services ... 5
5. CPC .. 6
6. Common .. 8
7. Middleware ... 9
8. Security .. 10
9. Operating System ... 12
10. Gecko Bootloader ... 13
11. MVP Math Library ... 14
12. Examples ... 16
13. Boards and External Devices ... 17
14. Other Gecko Platform Software Components ... 18
15. RAIL Library ... 19
1 CMSIS Device

1.1 New Items
Added in release 4.3.0.0
- Added support for EFR32xG27 family.
- Added support for EFR32xG28 family.
- Added support for the following OPNs:
 - EFR32FG25A221F1152IM56, EFR32FG25A211F1152IM56
 - EFM32PG28B310F1024IM68, EFM32PG28B210F1024IM68, EFM32PG28B300F512IM68, EFM32PG28B200F512IM68

1.2 Improvements
Changed in release 4.3.0.0
- Added support for float16_t for DSP.
- Moved CMSIS DSP from platform/CMSIS/DSP to util/third_party/cmsis_dsp.

1.3 Fixed Issues
Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1105018</td>
<td>Made changes in pin_config.h defines to avoid MISRA warnings caused due to multiple definitions of macros.</td>
</tr>
</tbody>
</table>

1.4 Known Issues in the Current Release
None

1.5 Deprecated Items
None

1.6 Removed Items
None
2 Peripherals

2.1 New Items

Added in release 4.3.0.0

- em_cmu: Added a new API CMU_HF_ClockPrecisionGet to retrieve the clock precision of HF clocks.
- em_cmu: Added a new API to launch an optimization of the Core Bias Current of HFXO (CMU_HFXOCoreBiasCurrentCalibrate).
- em_system: Added a new API to get the base address of SRAM (SYSTEM_GetSRAMBaseAddress).

2.2 Improvements

Changed in release 4.3.0.0

- em_cmu: Wait on HFXO_STATUS_SYNCBUSY bit after clearing HFXO_CTRL_FORCEEN
- em_cmu: Added support for LFXO in CMU_OscillatorTuningSet/ CMU_OscillatorTuningGet
- em_lcd: Added support for Sextaplex and Octaplex mode (4x28 and 8x24).

2.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1127003</td>
<td>Fixed Buck DCDC IPKVAL and DRVSPEED default settings for Series 2 devices.</td>
</tr>
<tr>
<td>1106525</td>
<td>For Series 2 devices, added a timeout to EMU_DCDCModeSet function to avoid deadlock when called from an interrupt context during EM4 shutdown process.</td>
</tr>
<tr>
<td>1083378</td>
<td>For Series 2 devices, disabled Interrupts while entering EM4 to prevent modification to DCDC Mode. If DCDC is in regulation mode while trying to reach the EM4 state, the power state transition will be aborted, and the DCDC_IF_EM4ERR condition will be set.</td>
</tr>
<tr>
<td>1119860</td>
<td>Updated IADC_init function to removed an implicit conversion from double to float compiler warning.</td>
</tr>
<tr>
<td>412632</td>
<td>Fix ADC_Init so it does not overwrite SINGLEDMAWU in CTRL register when ADC in configured in ASYNC mode.</td>
</tr>
<tr>
<td>1079268</td>
<td>Fixed CMU_ClockSelectGet() to return the right value when the EM01GRPACLK clock is disabled instead of cmuSelect_Error.</td>
</tr>
</tbody>
</table>

2.4 Known Issues in the Current Release

None

2.5 Deprecated Items

None

2.6 Removed Items

None
3 Drivers

3.1 New Items
None

3.2 Improvements
None

3.3 Fixed Issues
Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1105632</td>
<td>Fixed an implicit unsigned to signed casts warning in the DMADRV_AllocateChannel() function.</td>
</tr>
<tr>
<td>1099270</td>
<td>Fixed a bug in the SPIDRV_DesInit function, where the allocated/routed GPIOs were not reset.</td>
</tr>
<tr>
<td>1095676</td>
<td>Fixed I2CSPM to send 9 clocks during the I2C bus recovery sequence.</td>
</tr>
<tr>
<td>1095611</td>
<td>Fixed the sl_spidrv_initInstances function of the SPIDRV component to correct the EUSART Chip Select control mode (control mode set to spidrvCsControlApplication).</td>
</tr>
<tr>
<td>854128</td>
<td>Change default flow control settings in the UARTDRV component to uartdrvFlowControlHwUart.</td>
</tr>
</tbody>
</table>

3.4 Known Issues in the Current Release
None

3.5 Deprecated Items
None

3.6 Removed Items
The SLEEP and RTCDRV drivers from platform/emdrv were removed.
4 Services

4.1 New Items

Added in release 4.3.0.0

- Power Manager: Added a new power manager component `power_manager_deepsleep_blocking_hfxo_restore`. This component improves power consumption while waiting for HFXO to be ready coming from EM2 sleep. This is only compatible with series 2 devices that do not have the SYSRTC peripheral (EFR32xG21, EFR32xG22 and EFR32xG27) and thus do not have the capacity to startup HFXO while being in EM2.

4.2 Improvements

Changed in release 4.3.0.0

- Power Manager: When the sleeptimer component is configured to use the SYSRTC, the Power Manager uses PRS signaling rather than timers to initialize the HFXO. This ultimately reduces the HFXO startup time from ~600 µs to ~250 µs.
- Power Manager: The power manager `SL_POWER_MANAGER_LOWEST_EM_ALLOWED` macro used to define the lowest energy mode has been deprecated. Two mutually exclusive components have been created, `power_manager_deeplseep` (present by default) and `power_manager_no_deeplseep` to replace this configuration in order to reduce code size. Migration from the configuration to the component is automatic when upgrading the GSDK.
- Clarified the semantics of optional command-line (CLI) arguments in header comments.
- IOStream now automatically configures the VCOM peripheral on the WSTK/WPK devices for seamless communication.

4.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1109520</td>
<td>Fix issue in Sleeptimer related to integration with Power Manager Early wake-up feature. This issue appeared on FreeRTOS-based applications. An abnormally high HFXO startup time was observed because of the issue leading to the application entering EM1 sleep instead of EM2.</td>
</tr>
<tr>
<td>1139472</td>
<td>Fixed a bug in Series 0 where the <code>get_write_ptr</code> function computed an incorrect value.</td>
</tr>
<tr>
<td>1130712</td>
<td>Fixed an issue in the deinitialization process of IOStream-UART where the power requirement was not properly removed, resulting in an incorrect power state.</td>
</tr>
</tbody>
</table>

4.4 Known Issues in the Current Release

None

4.5 Deprecated Items

None

4.6 Removed Items

None
5 CPC

5.1 New Items

Added in release 4.3.0.0

- Implemented a significant modification that enables the sharing of the SPI bus among multiple CPC secondary devices, sensors, and external peripherals.

 This enhancement empowers CPCd to utilize the native chip select (CS) functionality, eliminating the reliance on a GPIO pin for bus access control. Consequently, an update is required for the Linux Host system to accurately map the CS GPIO to a SPI CS. This modification significantly improves the flexibility and efficiency of SPI bus utilization, enabling seamless communication and coordination among CPC devices and connected peripherals.

 It is important to note that this update may necessitate adjustments in the Linux Host system to ensure proper mapping. Additionally, please consider the compatibility implications with previous CPC versions and carefully plan an appropriate upgrade strategy to ensure a smooth transition. As a result of these changes, the protocol version has been incremented to accommodate the modifications.

- Added the CPC GPIO Expander component, a valuable addition that empowers users to discover and harness the GPIO pins available on the device. With this feature, the Host system gains effortless access to the GPIO capabilities provided by the CPC device. The CPC GPIO Expander component streamlines the process of exposing and utilizing GPIO pins. On a Linux Host, a dedicated kernel driver can be installed, enabling seamless access to the GPIOs present on the device, treating them as standard GPIOs. This integration allows users to interact with the CPC GPIOs using familiar Linux GPIO APIs, simplifying the development and integration of GPIO-based functionalities.

5.2 Improvements

Changed in release 4.3.0.0

- Implemented a significant security enhancement that excludes 'ack' and the header's CRC from the authenticated data when the security feature is enabled. Consequently, to accommodate these changes, the protocol version has been upgraded. Please note that this protocol version upgrade may result in a break in compatibility with previous CPC versions.

- Implemented major improvements in the UART driver, specifically for cases where Hardware Flow control is not available, to recover from an invalid CRC. This enhancement introduces robust error handling mechanisms that allow the driver to detect and recover from CRC errors, ensuring the integrity of data transmission. These improvements significantly enhance the reliability and error resilience of the UART communication, improving the overall performance and correctness of the system.

- Enhanced libcpc library by adding pkg-config support, enabling build systems to seamlessly locate the library during compilation.

- Added a default initialization value for the re-transmission (re-tx) timeout.

- Incorporated a behavior in CPCd where it drops any U/I frames while awaiting the secondary device's reset reason. This modification enhances the daemon's capability to ignore frames from previous sessions, mitigating the risk of undefined behaviors that may occur when handling such frames.

- Enhanced buffer management to prevent deadlock scenarios.

- Implemented API protection in the libcpc library to prevent unsafe calls and ensure proper usage. As a result, it is now required to close all libcpc handles before invoking the 'cpc_restart' function.

- Removed the CMake target group 'target_test' from the project. This target was specifically designed for internal testing.

5.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1125380</td>
<td>Resolved a warning related to sl_cpc_iostream cast compatibility with the IAR compiler.</td>
</tr>
<tr>
<td>1117787</td>
<td>Addressed a stack smashing issue that occurred when the compiler option was activated.</td>
</tr>
<tr>
<td>1105518</td>
<td>Resolved an issue where packets were being unnecessarily retransmitted twice, resulting in redundant transmissions.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>1093597</td>
<td>Addressed a critical bug in the UART/SPI driver that could lead to frame corruption during transmission. Previously, the bug caused invalid pointers within the frame when the TX complete callback was invoked, resulting in corruption.</td>
</tr>
<tr>
<td>1105185</td>
<td>Resolved an issue where a reject frame was incorrectly interpreted as a valid acknowledgement (ack).</td>
</tr>
<tr>
<td>1107259</td>
<td>Fixed the CPC IOStream bridge to enable external connections for enhanced connectivity and communication capabilities.</td>
</tr>
</tbody>
</table>

5.4 Known Issues in the Current Release

None

5.5 Deprecated Items

None

5.6 Removed Items

None
6 Common

6.1 New Items
Many platform components license have changed to use the ZLib license.

6.2 Improvements
None

6.3 Fixed Issues
None

6.4 Known Issues in the Current Release
None

6.5 Deprecated Items
None

6.6 Removed Items
None
Middleware

7.1 New Items

None

7.2 Improvements

None

7.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>748986</td>
<td>Fixed bug #61333 (https://savannah.nongnu.org/bugs/?61333) in lwIP module.</td>
</tr>
</tbody>
</table>

7.4 Known Issues in the Current Release

None

7.5 Deprecated Items

None

7.6 Removed Items

None
8 Security

8.1 New Items

Added in release 4.3.0.0

- Added functionality for setting/getting the most secure lifetime of a key in PSA Crypto based on device capabilities. See `sl_psa_crypto.h` for more details.
- Added a key derivation function (PBKDF2-CMAC) support for PUF-based built-in key for xG27.
- In the SE Manager function `sl_se_init_otp`, added an option to configure the tamper block to remain active in EM2 for xG23 and later devices.
- Added evaluation quality support for using Secure Engine as an endpoint over CPC.
- Added threading support for the PSA Crypto library and drivers:
 - PSA Crypto Key Slot Management
 - supports importing keys to be used by reference (keyid) in crypto functions.
 - PSA ITS driver
 - for permanent secure key storage.
 - PSA TRNG driver for Series-1
 - called by PSA APIs like `psa_generate_key` and `psa_generate_random`.

8.2 Improvements

Changed in release 4.3.0.0

- Removed disabling of code execution in the NVM3 region for TrustZone NonSecure apps. In other words, code execution is now possible in the NVM3 region in the NonSecure app, but not in the Secure library. This is a work-around for a potential situation of multiple overlapping MPU regions, which is not supported by the Cortex-M33 and may cause faults. A fix that disables code execution in the NVM3 region in NonSecure apps is planned in a GSDK 4.3.x patch release.

8.3 Fixed Issues

None

8.4 Known Issues in the Current Release

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>1151895</td>
<td>There is a problem with the project upgrade functionality in Simplicity Studio. Upgrading existing projects to GSDK v4.3.0 will potentially lead to subsequent build errors, since configuration files are not upgraded as expected. The problem will likely manifest itself through a faulty preprocessor include of <code>mbedtls_config_autogen.h</code>. Even if this error does not appear, caution is still advised since other configuration files may contain outdated content. Until these issues have been fixed, it’s recommended to avoid using the project upgrade functionality.</td>
<td>As an alternative, projects can successfully be upgraded on the command line using the SLC-CLI. See ‘UG520: Software Project Generation and Configuration with SLC-CLI’ for instructions on usage. Note: when performing the upgrade using SLC-CLI on the command line, you may experience that the upgrade is aborted due to an error in ‘upgrade_component_power_manager.lua’. This error is only triggered if your project does not make use of the ‘Power Manager’ component. The error should not have a real impact on your upgrade, so using the ‘--force-upgrade’ option of SLC-CLI can be used to bypass it. Still, it advised to proceed with caution and pay close attention the the resulting state of the project configuration files. Until these issues have been fixed, it’s recommended to avoid using the project upgrade functionality.</td>
</tr>
</tbody>
</table>

8.5 Deprecated Items

None
8.6 Removed Items

None
9 Operating System

9.1 New Items
None

9.2 Improvements
None

9.3 Fixed Issues
None

9.4 Known Issues in the Current Release

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>1108940</td>
<td>When osThreadTerminate() is called from the task that needs to be terminated a memory leakage occurs.</td>
<td>Call the OsThreadTerminate from another task specifying correct thread_id to terminate the designated task.</td>
</tr>
</tbody>
</table>

9.5 Deprecated Items
None

9.6 Removed Items
None
10 Gecko Bootloader

10.1 New Items
None

10.2 Improvements
None

10.3 Fixed Issues
Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1105352</td>
<td>Fixed OTA DFU App component issues with default optimization.</td>
</tr>
<tr>
<td>1107186</td>
<td>Fixed Project Creation fails for BG24 Bootloader SoC Internal Storage (single image on 1 MB device).</td>
</tr>
<tr>
<td>1111035</td>
<td>Fixed bootloader SPI error.</td>
</tr>
<tr>
<td>1138508</td>
<td>Fixed format of Bootloader Upgrade Location Base configuration option in the Bootloader Core component.</td>
</tr>
<tr>
<td>1130159</td>
<td>Fixed issue to enable clock for bootloader SPI Controller EUSART Driver.</td>
</tr>
<tr>
<td>1124579</td>
<td>Fixed Bootloader - SoC Bluetooth AppLoader OTA DFU Secure part fails to build.</td>
</tr>
<tr>
<td>1122767</td>
<td>Fix added to support to build Trust Zone apps using workspaces.</td>
</tr>
</tbody>
</table>

10.4 Known Issues in the Current Release
None

10.5 Deprecated Items
None

10.6 Removed Items
None
11 MVP Math Library

11.1 New Items

Added in release 4.3.0.0

The new Math Library accelerates Real and Complex Matrix and Vector operations using the Matrix Vector Processor available on EFR32xG24 (see parts with MVP available) operating on IEEE-754 half-precision floating point data, while offloading CPU. For heavy workloads it will improve overall performance and efficiency significantly. The library is an alternative to CMSIS-DSP for Matrix and Vector math operations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Math</td>
<td>sl_math_mvp_complex_vector_conjugate_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_complex_vector_dot_product_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_complex_vector_magnitude_squared_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_complex_vector_mult_real_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_complex_vector_mult_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_abs_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_add_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_add_i8</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_clamp_i8</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_clip_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_copy_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_dot_product_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_fill_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_mult_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_negate_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_offset_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_scale_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_vector_sub_f16</td>
</tr>
<tr>
<td>Matrix Math</td>
<td>sl_math_mvp_complex_matrix_mult_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_add_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_mult_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_scale_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_sub_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_transpose_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_complex_matrix_transpose_f16</td>
</tr>
<tr>
<td></td>
<td>sl_math_mvp_matrix_vector_mult_f16</td>
</tr>
</tbody>
</table>

Types
Note that this library only supports float16 input/output.

11.2 Improvements

None

11.3 Fixed Issues

None
11.4 Known Issues in the Current Release
None

11.5 Deprecated Items
None

11.6 Removed Items
None
12 Examples

12.1 New Items
None

12.2 Improvements
None

12.3 Fixed Issues
None

12.4 Known Issues in the Current Release
Issues in bold were added since the previous release. If you have missed a release, recent release notes are available on https://www.silabs.com/products/software.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>664803</td>
<td>Se_manager and psa_crypto sample apps do not work correctly in Simplicity Studio 5's launch console.</td>
<td>In the launch console, change the line terminator selection to None.</td>
</tr>
</tbody>
</table>

12.5 Deprecated Items
None

12.6 Removed Items
None
13 Boards and External Devices

13.1 New Items

Added in release 4.3.0.0

- Added support for the following new OPNs

13.2 Improvements

None

13.3 Fixed Issues

None

13.4 Known Issues in the Current Release

None

13.5 Deprecated Items

None

13.6 Removed Items

None
14 Other Gecko Platform Software Components

14.1 New Items
None

14.2 Improvements
None

14.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1077816</td>
<td>Added APIs to fetch FLASH base address in both internal and external flash scenarios. Made external flash address configurable.</td>
</tr>
<tr>
<td>1083908</td>
<td>Added preprocessor macros to separate the use of internal flash(MSC) and SPI in iot_flash. The file is now an auto generated file.</td>
</tr>
</tbody>
</table>

14.4 Known Issues in the Current Release
None

14.5 Deprecated Items
None

14.6 Removed Items
None
15 RAIL Library

15.1 New Items

Added in release 4.3.0.0

- Added support for a new RX_DIRECT_SYNCHRONOUS_MODE_DATA RAIL RX data source to capture direct mode data in sync with the configured bit rate for the PHY. This requires a PHY that supports this mode of capture from the Radio Calculator and is only currently supported on the EFR32xG23.
- Added new RAIL_EnableCacheSynthCal function to enable the radio sequencer to cache calibration values instead of recalculating them on every RX and TX event. This allows you to lower the minimum transition time for most RAIL_StateTiming_t transitions in typical cases.
- Added a new RAIL_RX_OPTION_FAST_RX2RX which will force the radio sequencer to immediately transition to RXSEARCH to get ready to receive the next packet while still processing the previous one. This will minimize the RX to RX state transition time. This is only supported on chips that have RAIL_SUPPORTS_FAST_RX2RX set to true.
- Added RAIL_PacketTimeStamp_t::packetDurationUs field which is currently set only on EFR32xG25 for received OFDM packets.
- Added RAIL support for the MGM240L lighting modules.
- Added the new RAIL_WMBUS_Config API to allow configuring WMBUS and simultaneous M2O RX of T and C mode packets.
- Added a new API RAIL_SetTxFifoAlt() which provides a new start offset parameter to specify where the data begins in the TX FIFO.
- Added support for RAIL_IEEE802154_SupportsRxChannelSwitching on the EFR32xG21. This is also still supported at an alpha quality level on the EFR32xG24.
- Added RAIL_IEEE802154_SetRxToEnhAckTx() to allow IEEE 802.15.4 stacks to specify a different rxToTx state transition turnaround time for Enhanced ACKs, which generally need more time to construct and secure. Immediate ACKs will continue to use the rxToTx time specified in RAIL_IEEE802154_Config_t::timings.
- Added Tx packet duration information for EFR32xG22 and newer chips.

15.2 Improvements

Changed in release 4.3.0.0

- Added support for PHY-specific RSSI offsets on the EFR32xG27 and EFR32xG28 platforms.
- Updated Packet Trace on the EFR32xG25 and EFR32xG28 when using the Wi-SUN protocol to have a more informative PHY identifier and to support the whole channel number range.
- Fixed the RAIL_PA_CURVES_2P4_LP power curves on the EFR32xG24 to better match characterization data.
- Corrected the sign of the frequency error reported by RAIL_GetRxFreqOffset() when using OFDM on the EFR32xG25 to match how this was handled for other modulations (e.g., Freq_error = current_freq - expected_freq).
- Added new RAIL_ZWAVE_OPTION_PROMISCUOUS_BEAM_MODE to trigger RAIL_EVENT_ZWAVE_BEAM on all beam frames.
- Added RAIL_ZWAVE_GetBeamHomeldHash() to retrieve the beam frame's HomeldHash when handling that event and made sure that the HomeldHash byte is now present on PTI for Z-Wave beam frames even when NodeId does not match.
- Fixed an issue on EFR32ZG23 where multiple beam frames were lumped together on PTI as one large beam chain.
- Adjusted channel power restrictions for the 802.15.4 PHYs on new xGM210 modules.
- Added separate curves when the 20 dBm PA is used at 3.3 V and 1.8 V for EFR32xG24.
- Increased EFR32ZG13 and EFR32ZG14 Z-Wave long-range beam detect time to improve FLiRS performance.
15.3 Fixed Issues

Fixed in release 4.3.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>824355</td>
<td>Fixed an issue in IEEE802.15.4 MAC address filtering when receiving small OFDM packets.</td>
</tr>
<tr>
<td>832743</td>
<td>Clarified use of RAIL_SetNextTxRepeat() must be prior to initiating a transmit operation via API call and fixed an issue where it did not properly return an error when called while a transmit operation was in progress.</td>
</tr>
<tr>
<td>1055824</td>
<td>Fixed an issue with low-side synth injection (negative IF) on proprietary 2.4GHz PHYs when using EFR32xG22 and newer chips. This fix requires regenerating the PHY with the latest version of the Radio Configurator to work.</td>
</tr>
<tr>
<td>1058480</td>
<td>Fixed an RX FIFO corruption on EFR32xG25 that occurred when receiving/sending certain OFDM packets using FIFO mode.</td>
</tr>
<tr>
<td>1082274</td>
<td>Fixed an issue on the EFR32xG22, EFR32xG23, EFR32xG24, and EFR32xG25 chips that could cause the chip to lock up if the application attempts to re-enter EM2 within ~10 µs after wake-up and hits a <0.5 µs timing window. If hit, this lockup requires a power-on reset to restore normal operation to the chip.</td>
</tr>
<tr>
<td>1083615</td>
<td>Fixed an issue for certain ramp time and power level combinations on the EFR32xG21 where the PA ramp would stop one power level short of the desired output level.</td>
</tr>
<tr>
<td>1090336</td>
<td>Fixed an issue in the "RAIL Utility, Protocol" component where BLE would be required to select a Zigbee PHY.</td>
</tr>
<tr>
<td>1090512</td>
<td>Fixed an issue in the "RAIL Utility, PA" component where certain functions would attempt to use the RAIL_TX_POWER_MODE_2P4GIG_HIGHEST macro even though they didn't support it. This would result in undefined behavior previously, but will now correctly error.</td>
</tr>
<tr>
<td>1090728</td>
<td>Fixed a possible RAIL_ASSERT_FAILED_UNEXPECTED_STATE_RX_FIFO issue on EFR32xG12 with RAIL_IEEE802154_G_OPTION_GB868 enabled for a FEC-capable PHY which can happen when aborting a packet at frame detection, for instance by idling the radio.</td>
</tr>
<tr>
<td>1092769</td>
<td>Fixed an issue when using Dynamic Multiprotocol and BLE Coded PHYs where a transmit could underflow depending on what protocol was active when the PHY and syncword were loaded.</td>
</tr>
<tr>
<td>1096663</td>
<td>Fixed a compilation error in "RAIL Utility, Coexistence" component when the Coexistence WiFi TX GPIO is enabled.</td>
</tr>
<tr>
<td>1096665</td>
<td>Fixed a compilation issue in "RAIL Utility, Coexistence" component when the SL_RAIL_UTIL_COEX_WIFI_TX_PORT is defined.</td>
</tr>
<tr>
<td>1103966</td>
<td>Fixed an unexpected Rx packet abort on the EFR32xG25 when using the Wi-SUN OFDM option4 MCS0 PHY.</td>
</tr>
<tr>
<td>1104033</td>
<td>Fixed an issue in the RAIL_ZWAVE_ReceiveBeam function so that it idles the radio regardless of whether a beam is detected on the EFR32ZG23.</td>
</tr>
<tr>
<td>1104441</td>
<td>Fixed an issue with the "RAIL Utility, Coexistence" component counters for Zigbee that could prevent them from ticking as expected depending on how things are linked.</td>
</tr>
<tr>
<td>1105134</td>
<td>Fixed an issue when switching between certain PHYs that could cause the first received packet to be reported as RAIL_RX_PACKET_READY_CRC_ERROR instead of RAIL_RX_PACKET_READY_SUCCESS. This issue could potentially impact EFR32xG22 and newer chips.</td>
</tr>
<tr>
<td>1105529</td>
<td>Fixed an issue on EFR32xG22 and later platforms when using a FrameType decoding PHY where a bad frame type packet was mis-reported as RAIL_RX_PACKET_ABORT_ABORTED instead of the proper RAIL_RX_PACKET_ABORT_FORMAT.</td>
</tr>
<tr>
<td>1109574</td>
<td>Fixed an issue on RAIL_IEEE802154_G_OPTION_PROMISCUOUS_BEAM_MODE with recent RAIL_ZWAVE_PROMISCUOUS_BEAM_MODE on EFR32xG13 and EFR32xG14 where the NodeId of the promiscuous beam was not properly recorded for RAIL_ZWAVE_GetBeamNodeId(), causing it to report 0xFF.</td>
</tr>
<tr>
<td>1126343</td>
<td>Fixed an issue on EFR32xG24 when using the IEEE 802.15.4 PHY where the radio could become stuck when doing an LBT transmit if a frame is received during the CCA check window.</td>
</tr>
<tr>
<td>1134223</td>
<td>Fixed an issue when using "RAIL Utility, Coexistence" component where the request line is left asserted after TX is aborted following a sync detect.</td>
</tr>
<tr>
<td>1135418</td>
<td>Fixed incorrect RAIL_RxPacketInfo_t::filterMask on received 802.15.4 Beacon frames, which now reflects which PanId and address the Beacon's Source PanId and Source Address match, if any. Note that RAIL generally accepts all Beacons so the filterMask can be 0x00.</td>
</tr>
</tbody>
</table>
15.4 Known Issues in the Current Release

Issues in bold were added since the previous release.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>1138522</td>
<td>Fixed an issue on the EFR32xG25 for SUN FSK PHYs where receiving a packet after calling RAIL_IEEE802154_Init() but before configuring RAIL_IEEE802154_ConfigGOptions could break reception.</td>
<td></td>
</tr>
<tr>
<td>1140569</td>
<td>Fixed a rare timing issue on EFR32xG24 where an ACK timeout might cause the next packet to be received as RAIL_RX_PACKET_READY_CRC_ERROR instead of RAIL_RX_PACKET_READY_SUCCESS.</td>
<td></td>
</tr>
<tr>
<td>1150779</td>
<td>Fixed the 15.4 channel configurations on the MGM240PA32 and MGM240PB32 modules to use the correct frequency for channel 26.</td>
<td></td>
</tr>
</tbody>
</table>

- **ID # 641705**: Infinite receive operations where the frame's fixed length is set to 0 are not working correctly on the EFR32xG23 series chips.
- **ID # 732659**: On EFR32xG23:
 - Wi-SUN FSK mode 1a exhibits a PER floor with frequency offsets around ± 8 to 10 KHz
 - Wi-SUN FSK mode 1b exhibits a PER floor with frequency offsets around ± 18 to 20 KHz

15.5 Deprecated Items

None

15.6 Removed Items

None
Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!