Silicon Labs Thread SDK 2.10.0.0 GA
19Q2 Gecko SDK
June 7, 2019

Reliable, Scalable and Upgradeable. Thread is a secure, wireless IPv6 based mesh networking protocol providing low-cost bridging to other IP networks while optimized for low-power / battery-backed operation. The Thread stack is designed specifically for Connected Home applications where IP-based networking is desired and a variety of application layers may be required. The Silicon Labs Thread SDK contains Silicon Labs’ implementation of the Thread stack specification.

These release notes cover SDK version:
2.10.0.0 released June 7, 2019

KEY FEATURES
• DotDot v1.0 Support
• Thread 1.2 DUA + Multicast Support
• Dynamic Multi-Protocol (DMP) Thread + BLE
• Various Bug Fixes

Compatibility and Use Notices
If you are new to the Silicon Labs Thread SDK, see Using This Release.

Compatible Compilers:
IAR Embedded Workbench for ARM (IAR-EWARM) version 8.30.1
• Using wine to build with the iarBuild.exe command line utility or IAR Embedded Workbench GUI on macOS or Linux could result in incorrect files being used due to collisions in wine’s hashing algorithm for generating short file names.
• Customers on macOS or Linux are advised not to build with IAR outside of Simplicity Studio. Customers who do should carefully verify that the correct files are being used.

GCC (The GNU Compiler Collection) version 7.2.1, provided with Simplicity Studio.
• GCC is not supported with the EM3S8x and EM3S9x device families.
Contents

1. **New Items**
 1.1 New Plugins
 1.2 New APIs
 1.3 New Sample Applications
2. **Improvements**
 2.1 Changed Plugins
 2.2 Changed APIs
3. **Fixed Issues**
4. **Known Issues in the Current Release**
5. **Deprecated Items**
6. **Removed Items**
 6.1 Removed Plugins
 6.2 Removed APIs
 6.3 Removed Sample Applications
7. **Using This Release**
 7.1 Installation and Use
 7.2 Support
8. **Legal**
 8.1 Disclaimer
 8.2 Trademark Information
1 New Items

Gecko Platform release notes are now available through Simplicity Studio’s Launcher Perspective, under **SDK Documentation > Thread SDK 2.10.n.n > Release Notes**. The Gecko Platform code provides functionality that supports protocol plugins and APIs in the form of drivers and other lower layer features that interact directly with Silicon Labs chips and modules. Gecko Platform components include EMLIB, EMDRV, RAIL Library, NVM3, and mbedTLS.

1.1 New Plugins

The following is a list of new plugins included with this release. A brief description is given for each. For additional information refer to the plugin description within Simplicity Studio.

Added in release 2.10.0.0

Antenna CLI - This plugin provides a command line interface (CLI) for controlling antenna configuration, setting the TX and RX antenna modes.

Backbone border router support - This plugin adds backbone border router support to a host application in a border router role.

BLE - This plugin enables the Bluetooth Low Energy stack to be run in parallel with the Thread stack. Both stacks run as Micrium OS tasks.

Dotdot Manufacturing Certificates - This plugin provides the ability to use x509 certificates to create DTLS sessions.

mbed TLS Micrium Library - This plugin includes the cryptographic algorithms to support J-PAKE, SSL/DTLS capabilities, and X.509 certificate support running on Micrium OS.

Radio Coexistence CLI - This plugin provides a command line interface (CLI) for the radio coexistence configuration.

1.2 New APIs

For additional documentation please refer to the **Thread API Reference Guide**.

Added in release 2.10.0.0

emberConfigureDefaultDomainPrefix - This function sets the domain prefix on a network.

emberConfigureDefaultDomainPrefixReturn - This function provides the result of a call to emberConfigureDefaultDomainPrefix.

emberBecomeBackboneRouter - This function requests the device to act in a backbone router role.

emberBecomeBackboneRouterReturn - This function provides the result of a call to emberConfigureDefaultDomainPrefix.

emberSetBbrDataset - This function sets the properties of the active BBR dataset.

emberSetBbrDatasetReturn - This function provides the result of a call to emberSetBbrDataset.

emberRequestMulticastListener - Request a listener for a multicast group address of any scope.

emberRequestMulticastListenerReturn - This function provides the result of a call to emberRequestMulticastListener.

emberMulticastListenerHandler - This function is called when a multicast group listener registration was successful, indicating that multicast packets coming from non-Thread IPv6 hosts can be sent to this device by the (primary) BBR.

emberBackbonePrefixHandler - This function is called when the stack knows about a new backbone prefix or if a backbone server has become unavailable.

emberRequestDomainUniqueAddress - The application can choose to request a new DUA when it is informed via emberBackbonePrefixHandler of an available backbone router prefix.

emberRequestDomainUniqueAddressReturn - This function provides the result of a call to emberRequestDomainUniqueAddress.

emberAddMeshDuaEntry - Create a copy of DUA table entries for mesh address resolution on the stack.

emberAddMeshDuaEntryReturn - This function provides the result of a call to emberAddMeshDuaEntry.
emberRemoveMeshDuaEntry - Remove a copy of the DUA table entry to aid mesh address resolution on the stack.

emberRemoveMeshDuaEntryReturn - This function provides the result of a call to emberRemoveMeshDuaEntry.

emberForceTxAfterFailedCca - For each packet to be transmitted by the MAC, disables CCA after a number of consecutive CSMA failures due to CCA. The packet is then transmitted using the standard number of mac retries, but with CCA off.

emberForceTxAfterFailedCcaReturn - This function provides the result of a call to emberForceTxAfterFailedCca.

emberSendLinkMetricsQuery - This function sends an MLE Data Request message to the specified node(address), to request link metrics based on the specified configuration

emberSendLinkMetricsQueryReturn - This function provides the result of a call to emberSendLinkMetricsQuery.

emberInitiateLinkMetricsProbing - This function initiates forward link metrics probing by sending an MLE Link Management Request message to the specified node(address), based on the specified configuration.

emberInitiateLinkMetricsProbingReturn - This function provides the result of a call to emberSendLinkMetricsProbing.

emberSendLinkProbeMessages - This function sends the MLE Probe messages to the specified node(address), based on the specified configuration.

emberSendLinkProbeMessagesReturn - This function provides the result of a call to emberSendLinkProbeMessages.

emberLinkMetricsMgmtHandler - This function is called when the link metrics initiator gets a link management response message.

emberLinkMetricsResponseHandler - This function is called when the link metrics initiator gets an MLE Data Response message in response to a link metrics query.

emberGetCommProxyAppJoinKey - A callback to provide the commission-proxy-app on the host with an [EUI, join passphrase] pair.

emberZclDiscCoreRd - This function appends a core.rd query to the discovery request string.

emberZclIsAddressGroupMulticast - This function returns TRUE if the supplied address is associated with one of the groups on the device.

emberGetAntennaRxMode - This function fetches the current RX antenna mode.

emberGetAntennaRxModeReturn - This function provides the result of a call to emberGetAntennaRxMode.

emberSetAntennaRxMode - This function configures the Rx antenna mode.

emberSetAntennaRxModeReturn - This function provides the result of a call to emberSetAntennaRxMode.

emberGetPtaPhySelectTimeout - This function fetches the packet traffic arbitration PHY select timeout in milliseconds. (Only valid on EFR32)

emberGetPtaPhySelectTimeoutReturn - This function provides the result of a call to emberGetPtaPhySelectTimeout. (Only valid on EFR32)

emberSetPtaPhySelectTimeout - This function configures packet traffic arbitration PHY select timeout. (Only valid on EFR32)

emberSetPtaPhySelectTimeoutReturn - This function provides the result of a call to emberSetPtaPhySelectTimeout. (Only valid on EFR32)

EmberStatus - New error codes added to diversify PHY failure error classification. In addition to EMBER_PHY_TX_CCA_FAIL, there are now also EMBER_PHY_TX_BLOCKED and EMBER_PHY_TX_SCHED_FAIL.

1.3 New Sample Applications

Added in release 2.10.0.0

Thread/BLE DMP Test Application - This application includes the basic Thread and Bluetooth LE(BLE) network management CLI commands, as well as some custom commands for exercising Thread and BLE traffic.

Dynamic Multiprotocol Light with BLE - This is a sample application demonstrating a light application using dynamic multiprotocol (Thread + BLE).
Dynamic Multiprotocol Switch with BLE - This is a sample application demonstrating a switch application using dynamic multiprotocol (Thread + BLE).
2 Improvements

2.1 Changed Plugins

Changed in release 6.6.0.0

Default cache size for NVM3 Library plugin in AFV6 increased from 100 entries to 200

2.2 Changed APIs

For additional documentation please refer to the Thread API Reference Guide.

Changed in release 2.10.0.0

emberGetLocal IpAddress – Index now represents the following:

- Index 0 contains the mesh-local 64 address of the node.
- Index 1 contains the link-local 64 address of the node.
- Index 2 contains the domain-unique address of the node, if it exists.
- Index 3 and greater will return any global unicast addresses (GUAs) of this node.

emberGetAntennaModeReturn - Antenna mode can now be any of the following: 0-don't alter antenna selection, 1-antenna 1, 2-antenna 2, 3-TX antenna diversity

emberSetAntennaMode - Antenna mode can now be any of the following: 0-don't alter antenna selection, 1-antenna 1, 2-antenna 2, 3-TX antenna diversity

emberGetPtaOptionsReturn – The list of PTA options that can be returned has changed.

emberSetPtaOptions – The list of PTA options that can be set has changed.
3 Fixed Issues

Fixed in release 2.10.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>251786</td>
<td>Added new 802.15.4 RAIL APIs RAIL_IEEE802154_EnableEarlyFramePending() and RAIL_IEEE802154_EnableDataFramePending() to support Thread Basil-Hayden Enhanced Frame Pending feature.</td>
</tr>
<tr>
<td>256939</td>
<td>Added LFXO tune manufacturing token and added support for reading and writing LFXO tune.</td>
</tr>
<tr>
<td>315661</td>
<td>On the EM35x platform the random number seeding is now done in parts instead of waiting for complete seed. This does not require any changes from the application. If needed complete seeding can be done with a single call to emPmgReseed(). Weak random numbers can be obtained by calling emRadioGetWeakRandomNumbers(). emRadioGetRandomNumbers() will continue providing strong random numbers.</td>
</tr>
<tr>
<td>345589</td>
<td>Reduced vector table alignments of dies such that they are now as minimum as required.</td>
</tr>
<tr>
<td>355239</td>
<td>This release fixes an issue where CREATOR code defines were always required for all tokens. With this fix only applications that include either the Simulated EEPROM version 1 or 2 plugins or the Simulated EEPROM version 2 to NVM3 upgrade plugin need to define CREATOR codes for all tokens.</td>
</tr>
<tr>
<td>356632</td>
<td>Fixed issue where a sleepy device would wake up every 10 seconds when not in a network.</td>
</tr>
<tr>
<td>366276</td>
<td>Fixed compilation error encountered when enabling the micrium plugin in SoC applications.</td>
</tr>
<tr>
<td>368359</td>
<td>If the token initialization encounters an error during NVM3 open, it will erase the NVM3 flash pages and create a new blank NVM3 instance.</td>
</tr>
<tr>
<td>371376</td>
<td>Addressed an issue where OTA bootloading was failing to start. The multicast IP address used for OTA bootloading changed from <code>ff33::fd</code> (All Thread Nodes) to <code>ff05::fd</code> (All CoAP Nodes) and we simply needed to have our host implementations listen on the <code>ff05::fd</code> address.</td>
</tr>
<tr>
<td>376134</td>
<td>SimEE1 to SimEE2 upgrade code use to search entire MFB for SimEE1, with the changes it will start scanning from DATA_INIT_SEGMENT_END.</td>
</tr>
<tr>
<td>378035</td>
<td>Use of the unsafe enum GPIO_Port_TypeDef within RAIL aggregate types RAIL_PtiConfig_t and RAIL_AntennaConfig_t has been replaced by safe uint8_t.</td>
</tr>
<tr>
<td>380487</td>
<td>A maximum UDP payload length of EMBER_MAX_UDP_PAYLOAD_LENGTH (1232) is now enforced on transmit and receive. In particular, for coap messages, the length of the coap header plus the coap payload must not exceed EMBER_MAX_UDP_PAYLOAD_LENGTH. If it does, an EmberStatus of EMBER_MESSAGE_TOO_LONG is returned from the sending function.</td>
</tr>
<tr>
<td>382850</td>
<td>The led driver now checks the led polarity and then sets or clears the pins. This fixes the issue on boards with shared pins for buttons and leds where the kit enters the bootloader instead of booting up normally.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>389572</td>
<td>Fixed two issues associated micrium-rtos builds.</td>
</tr>
<tr>
<td></td>
<td>"micrium-rtos-startup.c", 27 Fatal error[Pe1696]: cannot open source file</td>
</tr>
<tr>
<td></td>
<td>"bsp_tick_rtcc.h"</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>Error[Li005]: no definition for "emberStackPollForData" [referenced from polling.o]</td>
</tr>
<tr>
<td></td>
<td>The first issue would occur when using the IAR compiler and enabling the micrium-rtos plugin. The second issue would occur when enabling both the polling and micrium-rtos plugins.</td>
</tr>
<tr>
<td>396956</td>
<td>Default cache size for NVM3 Library plugin in AFV6 increased from 100 entries to 200.</td>
</tr>
<tr>
<td>397233</td>
<td>Support for xGM210P Panther PCB Module OPNs.</td>
</tr>
<tr>
<td></td>
<td>Support for BRD4308A / BRD4308B.</td>
</tr>
<tr>
<td>403249</td>
<td>Address issue where Thread/Micrium vNCP applications could assert in micrium_ipc-link.c.</td>
</tr>
</tbody>
</table>
4 Known Issues in the Current Release

Issues in bold were added since the previous release.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>251287</td>
<td>To achieve the lowest current during sleep on EFR32xG12, EFR32xG13, and EFR32xG14 parts, you must turn on voltage scaling. However, the radio will not operate with voltage scaling turned on, so to turn it on you must also make sure to disable it after each wake-up. Furthermore, some resets will not turn off voltage scaling, so please ensure that it is disabled before attempting to turn on the radio. Note that there is a ramp when turning voltage scaling on or off, so enabling this feature may increase the time it takes to go to sleep or wake up.</td>
<td>Ensure that voltage scaling is enabled prior to sleeping and disabled after wake up and before attempting to turn on the radio.</td>
</tr>
<tr>
<td>260589</td>
<td>ip-driver-app logs messages regardless of “-l” options</td>
<td>Under investigation</td>
</tr>
<tr>
<td>281231</td>
<td>Enabling Serial 3 or USB functionality on EM358x and EM359x may cause memory management faults and other errors. As EM358x and EM359x USB support has been deprecated, please ensure that Serial 3 and USB functionality are disabled.</td>
<td>Ensure that Serial 3 and USB functionality are disabled when using EM358x and EM359x.</td>
</tr>
<tr>
<td>283490</td>
<td>Issues with vUART over SWO</td>
<td>Reset the WSTK.</td>
</tr>
<tr>
<td>312291</td>
<td>The halCommonGetIntxxMillisecondTick functions on linux hosts currently use the gettimeofday function, which is not guaranteed to be monotonic. If the system time changes, it can cause issues with stack timing.</td>
<td>Modify these functions to use clock_gettime with the CLOCK_MONOTONIC source instead.</td>
</tr>
<tr>
<td>390334</td>
<td>Thread/Micrium SoC sleepy applications not working with CoAP</td>
<td>No known workaround</td>
</tr>
<tr>
<td>391057</td>
<td>Thread/Micrium vNCP application fails to compile if sleep plugin is enabled</td>
<td>No known workaround</td>
</tr>
<tr>
<td>403734</td>
<td>In a large enough network that forms two partitions after a leader goes down a secondary BBR can sometimes fail to promote itself to primary.</td>
<td>No known workaround</td>
</tr>
</tbody>
</table>
5 Deprecated Items

Deprecated in release 2.10.0.0

As of June 2019 Simplicity Studio 3.0 is being deprecated. All support for Simplicity Studio 3 is scheduled to end December 1st 2019.

The following plugins are scheduled to be removed in the next major release:

- accelerometer LED
- battery-monitor
- battery-monitor-stub
- bulb-pwm-driver
- bulb-pwm-driver-stub
- button-interface
- button-interface-stub
- generic-interrupt-control
- generic-interrupt-control-stub
- gpio-sensor
- gpio-sensor-stub
- humidity-si7021-stub
- Humidity-temperature-si7021
- i2c-driver
- i2c-driver-stub
- illuminance-si1141
- illuminance-si1141-stub
- key-matrix
- led-blink
- led-blink-stub
- linked-list
- microphone-codec-msadpcm
- microphone-imaadpcm
- occupancy-pyd1698
- occupancy-pyd1698-stub
- power-meter-cs5463
- power-meter-cs5463-stub
- sb1-gesture-sensor
- sb1-gesture-sensor-stub
- tamper-switch
- tamper-switch-stub
- temperature
- temperature-si7021-stub
- temperature-si7053
- temperature-si7053-stub

If you wish to continue using one or more of these plugins in your application, you are advised to keep a local copy in your source code repository and maintain and test the code yourself going forward.

Alternatively, you may wish to explore some of the peripheral usage examples found in the Silicon Labs GitHub repository here: https://github.com/SiliconLabs/peripheral_examples.
6 Removed Items

6.1 Removed Plugins

Removed in release 2.10.0.0

resource-directory-client – the functionality previously provided by this plugin in now part of the zcl-core plugin.

6.2 Removed APIs

Removed in release 2.10.0.0

Documentation for these unsupported functions has been removed.

- emberSetMessageFlag
- emberClearMessageFlag
- emberPollHandler

6.3 Removed Sample Applications

Removed in release 2.10.0.0

Capacitive Touch Sensing Switch
Contact Sensor
Dimmable Light
Light (Host)
Occupancy Sensor
Server (vNCP)
Smart Outlet
7 Using This Release

This release contains the following:

- Silicon Labs Thread stack
- Constrained Application Protocol (CoAP) API for Thread
- Application Framework for Thread
- Application Framework for ZCL/IP
- Thread Sample Applications

The Silicon Labs Thread stack is a complete implementation of all features defined in the Thread 1.1 specification.

For more information about the Thread SDK see UG103.11: Silicon Labs Thread Fundamentals.

If you are a first-time user, see QSG113: Getting Started with Silicon Labs Thread, for instructions on installing and configuring your development environment, building and flashing a sample application, and documentation references pointing to next steps.

For information on how to build border router examples as well as your own border router applications, see UG116: Developing Custom Border Router Applications.

7.1 Installation and Use

Stack installation instruction are covered in QSG113: Getting Started with Silicon Labs Thread.

Use the Thread SDK with the Silicon Labs Simplicity Studio V4 development platform. Simplicity Studio ensures that most software and tool compatibilities are managed correctly. Install software and board firmware updates promptly when you are notified.

Documentation specific to the SDK version is installed with the SDK. Additional information can often be found in the knowledge base articles (KBAs). API references and other information about this and earlier releases is available on https://docs.silabs.com/.

7.2 Support

Development Kit customers are eligible for training and technical support. You can use the Silicon Laboratories Thread web page to obtain information about all Silicon Labs Thread products and services, and to sign up for product support.

You can contact Silicon Laboratories support at http://www.silabs.com/support.
8 Legal

8.1 Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications.

Application examples described herein are for illustrative purposes only.

Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

8.2 Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOModem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs.

ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.

Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.