Wireless Smart Ubiquitous Network (Wi-SUN) is the leading IPv6 sub-GHz mesh technology for smart city and smart utility applications. Wi-SUN brings Smart Ubiquitous Networks to service providers, utilities, municipalities/local government, and other enterprises, by enabling interoperable, multi-service, and secure wireless mesh networks. Wi-SUN can be used for large-scale outdoor IoT wireless communication networks in a wide range of applications covering both line-powered and battery-powered nodes.

Silicon Labs' Wi-SUN hardware is certified by the Wi-SUN Alliance, a global industry association devoted to seamless LPWAN connectivity. Wi-SUN builds upon open standard internet protocols (IP) and APIs, enabling developers to extend existing infrastructure platforms to add new capabilities. Built to scale with long-range capabilities, high-data throughput and IPv6 support, Wi-SUN simplifies wireless infrastructure for industrial applications and the evolution of smart cities.

These release notes cover SDK versions:

2.1.0.0 released July 24, 2024.
2.0.0.0 released June 5, 2024.

Compatibility and Use Notices

For information about security updates and notices, see the Security chapter of the Platform Release Notes installed with this SDK or on the TECH DOCS tab on https://www.silabs.com/developers/wi-sun-protocol-stack. Silicon Labs also strongly recommends that you subscribe to Security Advisories for up-to-date information. For instructions, or if you are new to the Silicon Labs Wi-SUN SDK, Using This Release.

Compatible Compilers:

IAR Embedded Workbench for ARM (IAR-EWARM) version 9.40.1
- Using wine to build with the iarBuild.exe command line utility or IAR Embedded Workbench GUI on macOS or Linux could result in incorrect files being used due to collisions in wine’s hashing algorithm for generating short file names.
- Customers on macOS or Linux are advised not to build with IAR outside of Simplicity Studio. Customers who do should carefully verify that the correct files are being used.

GCC (The GNU Compiler Collection) version 12.2.1, provided with Simplicity Studio.
Contents

1 Wi-SUN Stack ...3
 1.1 New Items...3
 1.2 Improvements ...3
 1.3 Fixed Issues ...3
 1.4 Known Issues in the Current Release ..4
 1.5 Deprecated Items ...4
 1.6 Removed Items ..4

2 Wi-SUN Applications ..5
 2.1 New Items...5
 2.2 Fixed Issues ...5
 2.3 Known Issues in the Current Release ..5
 2.4 Deprecated Items ...5
 2.5 Removed Items ..6

3 Using This Release ..7
 3.1 Installation and Use ..7
 3.2 Security Information ..7
 3.3 Support ...8
1 Wi-SUN Stack

Simplicity SDK is an embedded software development platform for building IoT products based on our Series 2 and Series 3 wireless and MCU devices. It integrates wireless protocol stacks, middleware, peripheral drivers, a bootloader, and application examples – a solid framework for building power-optimized and secure IoT devices.

The Simplicity SDK offers powerful features such as ultra-low power consumption, strong network reliability, support for a large number of nodes, and abstraction of complex requirements like multiprotocol and pre-certification. Additionally, Silicon Labs provides over-the-air (OTA) software and security updates to remotely update devices, minimize maintenance costs, and enhance the end-user product experience.

Simplicity SDK is a follow-on from our popular Gecko SDK, which will continue to be available providing long-term support for our Series 0 and Series 1 devices. For additional information on the Series 0 and Series 1 devices please reference: Series 0 and Series 1 EFM32/EZR32/EFR32 device (silabs.com).

1.1 New Items

Added in release 2.1.0.0

- Added `sl_wisun_set_tx_power_dbm()` API to set the Tx power with a 0.1 dB resolution.
- Deprecated `sl_wisun_set_tx_power()` that is replaced by `sl_wisun_set_tx_power_dbm()`. It is still possible to call that API, but it will be removed in a future release.

Added in release 2.0.0.0

- Dropped the support of our previous socket API. Only the Posix-like socket API remains.
- Split the stack into smaller software modules, offering more granularity to the selection of the feature set selected and reducing the flash and RAM footprints. A device can now either act as an FFN when only the FFN-support component is installed, an LFN when only the LFN-support component is installed, or can decide which profile will be used thanks to an API call during the initialization phase if both are installed. As a direct consequence, new libraries with new filenames are released.
- Added an example of select() implementation. It only works with socket file descriptors but is distributed in source and could be enriched to support new file descriptor types.
- Added support for sendmsg(), recvmsg(), getpeername() and getsockname(). Extended the list of supported socket options.

1.2 Improvements

Changed in release 2.1.0.0

- Improved network stability by reducing the number of inappropriate disconnections.

Changed in release 2.0.0.0

- Added a random delay before starting an LFN join sequence. A significant number of over-the-air collisions occurred when starting multiple LFN at the exact same time.

1.3 Fixed Issues

Fixed in release 2.1.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1301513</td>
<td>Fixed state transition that could skip the joins state 1 during a reconnection.</td>
</tr>
<tr>
<td>1324900</td>
<td>Fixed SO_NONBLOCK socket option not being handled correctly.</td>
</tr>
<tr>
<td>1310166</td>
<td>Fixed an issue causing the radio to stay in IDLE state until the next TX after an RX timeout. This was impacting a workaround that was set up to avoid staying blocked indefinitely in RX.</td>
</tr>
<tr>
<td>1307422</td>
<td>Fixed an issue where MPL parameter modifications are not taken into account on second and further connections.</td>
</tr>
<tr>
<td>ID #</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1322100</td>
<td>Ignored previous RPL parents' information when resetting a router with join state 1 acceleration disabled (discovery.allow_skip=0).</td>
</tr>
<tr>
<td>1309738</td>
<td>Join metric IE (JM-IE) were not read from ULAD multicast frame.</td>
</tr>
<tr>
<td>1322546</td>
<td>Increased timeout for async frames and ensured async fragmentation is reset after a timeout on an abort.</td>
</tr>
<tr>
<td>1305036</td>
<td>Accepted downward frame containing an empty source routing header (SRH). Empty SRH can be sent when trying to reach a direct child. Silicon Labs stack is not sending empty SRH. It fixes an interoperability issue with competitors' border routers.</td>
</tr>
<tr>
<td>1290741</td>
<td>Fixed RPL global repair. It was mainly visible in certification tests.</td>
</tr>
</tbody>
</table>

Fixed in release 2.0.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290487</td>
<td>Fixed an issue causing the radio to be stuck in RX. The cause has been identified as a race in the lower layers of the radio driver.</td>
</tr>
<tr>
<td>1287317</td>
<td>Fixed an invalid memory access in the timer and event lists.</td>
</tr>
<tr>
<td>1285497</td>
<td>Fixed multiple invalid counter and timer updates during state transitions and RPL parent updates. They were causing abusive router disconnections.</td>
</tr>
<tr>
<td>1275243</td>
<td>Fixed an invalid use of a link-local as a source address in the DAO. On rare occasions, routers were using a link-local source address in the outer IPv6 header.</td>
</tr>
<tr>
<td>1272406</td>
<td>Fixed the condition upon which the MAC reset the CCA failures counter. The CCA failures counter is increased after each CCA busy event. Once the counter reaches a value of 8, it increases the retry counter by one. The CCA failures counter was only reset after a successful transmission. It is now reset after every transmission.</td>
</tr>
<tr>
<td>1258384</td>
<td>Fixed an invalid PAN ID filter configuration that was preventing routers from connecting to a new border router after a PAN timeout.</td>
</tr>
</tbody>
</table>

1.4 Known Issues in the Current Release

Issues in bold were added since the previous release.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1119464</td>
<td>Packets sent when FSK FEC is enabled can infringe ARIB regulation.</td>
</tr>
<tr>
<td>1067978</td>
<td>Packets sent using a PHY with a bandwidth larger than the base PHY’s bandwidth can infringe ARIB regulation.</td>
</tr>
<tr>
<td>1176014</td>
<td>FG25 asserts with a RAIL_ASSERT_FAILED_RTCC_SYNC_STALE_DATA error code when entering EM2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1119464</td>
<td>Packets sent when FSK FEC is enabled can infringe ARIB regulation. Until this problem has been addressed correctly, the stack will refuse to start if both ARIB enforcement and FEC are enabled.</td>
</tr>
<tr>
<td>1067978</td>
<td>Packets sent using a PHY with a bandwidth larger than the base PHY’s bandwidth can infringe ARIB regulation. Limit the communications when using mode switch with ARIB enforcement enabled.</td>
</tr>
<tr>
<td>1176014</td>
<td>FG25 asserts with a RAIL_ASSERT_FAILED_RTCC_SYNC_STALE_DATA error code when entering EM2. Do not allow the power manager to go to EM2 by adding a requirement on EM1 in the application.</td>
</tr>
</tbody>
</table>

1.5 Deprecated Items

None

1.6 Removed Items

None
2 Wi-SUN Applications

2.1 New Items

Added in release 2.1.0.0

- Wi-SUN SoC CLI
 - Added new ping settings, including the packet length, the packet sequence number, and the interval between two ping requests.
- OTA DFU remote control over CoAP for all settings of sl_wisun_ota_dfu_config.h (file name, URI path, ...)
- libcoap-3 support

2.2 Fixed Issues

Fixed in release 2.1.0.0

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1289218</td>
<td>Fixed Wi-SUN - SoC (CoAP) Meter packet fragmentation issues.</td>
</tr>
<tr>
<td>1283362</td>
<td>Fixed iPerf FINACK packet parser issue.</td>
</tr>
<tr>
<td>1296544</td>
<td>Fixed inet_pton return value handling.</td>
</tr>
<tr>
<td>1296797</td>
<td>Fixed broken json in CoAP packet printer.</td>
</tr>
<tr>
<td>1294628</td>
<td>Fixed remote CoAP CLI buffer handling for Wi-SUN - SoC Network Measurement.</td>
</tr>
<tr>
<td>1276803</td>
<td>Wi-SUN - SoC Network Measurement : “iperf get json” returns with “Invalid resolved buffer” until the first test.</td>
</tr>
<tr>
<td>1304230</td>
<td>In certain cases, proper packing of data structures is only ensured when using IAR compiler. However, this discrepancy can lead to issues when combining binaries built with both GCC and IAR in the network. The issue relates to all applications except:</td>
</tr>
<tr>
<td></td>
<td>• Wi-SUN - CLI example</td>
</tr>
<tr>
<td></td>
<td>• Wi-SUN - LFN CLI example</td>
</tr>
<tr>
<td></td>
<td>• Wi-SUN - RCP</td>
</tr>
</tbody>
</table>

2.3 Known Issues in the Current Release

Issues in bold were added since the previous release.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Description</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>1327376</td>
<td>The RCP UART driver is unstable under certain conditions that we have not able to identify for the moment. Those instabilities are causing CRC errors that the RCP or wsbrd is not able to recover from.</td>
<td>Use CPC instead of using the RCP light weight interface.</td>
</tr>
<tr>
<td>1067236</td>
<td>The border router RCP SPI interface is unstable when used with a throughput higher than 1 Mbytes/s</td>
<td>The use of border router RCP SPI interface is not recommended for the time being.</td>
</tr>
</tbody>
</table>

Simplicity Studio – Network Analyzer: Wi-SUN Encrypted Packets are not supported Undecoded frames (only after Ack) according to PTI issues on Series 2

2.4 Deprecated Items

Four applications will be phased out, and instead Wi-SUN – SoC Socket Application will be introduced combining together the four functionalities. This transition will bring in simplicity and also enhance overall flexibility.
- Wi-SUN - SoC UDP Client
- Wi-SUN - SoC UDP Server
- Wi-SUN - SoC TCP Client
- Wi-SUN - SoC TCP Server

2.5 Removed Items

None.
3 Using This Release

This release contains the following:
Wi-SUN stack library
Wi-SUN sample applications
Wi-SUN border router pre-compiled demos
Documentation

If you are a first time user, see https://docs.silabs.com/wisun/latest/wisun-getting-started-overview/

3.1 Installation and Use

The Wi-SUN SDK is provided as part of the Simplicity SDK, the suite of Silicon Labs SDKs. To quickly get started with the Simplicity SDK, install Simplicity Studio 5, which will set up your development environment and walk you through Simplicity SDK installation. Simplicity Studio 5 includes everything needed for IoT product development with Silicon Labs devices, including a resource and project launcher, software configuration tools, full IDE with GNU toolchain, and analysis tools. Installation instructions are provided in the online Simplicity Studio 5 User’s Guide.

Alternatively, Simplicity SDK may be installed manually by downloading or cloning the latest from GitHub.

See https://github.com/SiliconLabs/simplicity_sdk for more information.

Simplicity Studio installs the Simplicity SDK by default in:

- (Windows): C:\Users\<NAME>\SimplicityStudio\SDKs\simplicity_sdk
- (MacOS): /Users/<NAME>/SimplicityStudio/SDKs/simplicity_sdk

Documentation specific to the SDK version is installed with the SDK.

3.2 Security Information

Secure Vault Integration

This version of the stack does not integrate Secure Vault Key Management.
Security Advisories

To subscribe to Security Advisories, log in to the Silicon Labs customer portal, then select Account Home. Click HOME to go to the portal home page and then click the Manage Notifications tile. Make sure that ‘Software/Security Advisory Notices & Product Change Notices (PCNs)’ is checked, and that you are subscribed at minimum for your platform and protocol. Click Save to save any changes.

The following figure is an example:

![Security Advisories](image)

3.3 Support

Development Kit customers are eligible for training and technical support. Contact Silicon Laboratories support at http://www.silabs.com/support.
Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world's most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect®, n-Link®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com