
Rev. 0.3 5/14 Copyright © 2014 by Silicon Laboratories AN792

AN792

CP2130 INTERFACE SPECIFICATION

1. Introduction

The Silicon Labs CP2130 USB-to-SPI bridge is a device that communicates over the Universal Serial Bus (USB)
using vendor-specific control and bulk transfers to perform Serial Peripheral Interface (SPI) data transfers. The
CP2130 employs USB bulk-mode transfers for high sustained data throughput. The CP2130 also includes flexible
GPIO functions that can be configured and accessed via USB. This document is the specification for the USB
transfers supported by the CP2130 and describes the configurable parameters.

Silicon Labs provides 32-bit and 64-bit dynamic link libraries that adhere to this specification for the following
operating systems:

 Windows XP® (SP2 & SP3), Vista®, 7®, and 8®

This document is intended for the following:

 Users on OSX or Linux who want to integrate the device using LibUSB.

 Users who are using an operating system that is not supported by the dynamic link libraries and who need
to implement their own interface.

 Users who want to integrate the device interface into their application.

To use the CP2130 device:

 For Windows
The recommended method of use with Windows is through the DLL, which is installed with the CP2130 Software

Package for Windows and can be found here:
C:\Silabs\MCU\CP2130_SDK\Software\Library

If you would like to interface with the device directly, you can use this document as a guide for the packet format
the CP2130 expects.

 For Linux
Read section 8 of this document for detailed instructions on how to use this interface spec with LibUSB

 For OSX
Install LibUSB on OSX using the instructions on the LibUSB website
Read section 8.1.3, 8.1.4 and 8.1.5 for instructions on how to use this interface spec with LibUSB

AN792

2 Rev. 0.3

Figure 1. System Architecture Diagram

PC

User Application
(Implements CP2130

Interface Specification)

Generic USB Driver
(Provided by OS / 3rd Party)

USB Host Controller / Root
Hub

CP2130 USB-to-SPI Bridge

SPI Slave Device

U
S

B

AN792

Rev. 0.3 3

1.1. Additional Documentation
 CP2130 data sheet:

http://www.silabs.com/products/interface/usbtospi

 CP2130 USB-to-SPI API Specification for Windows. The API documentation and libraries are included in
the CP2130 Software Development Kit (SDK), which is available for download at:
http://www.silabs.com/CP2130EK

 AN721: CP21xx Device Customization Guide:
http://www.silabs.com/interface-appnotes

 USB 2.0 Specification:
http://www.usb.org/developers/docs/

https://www.silabs.com/CP2130EK

http://www.silabs.com/products/interface/usbtospi
http://www.usb.org/developers/docs/
http://www.silabs.com/interface-appnotes
http://www.silabs.com/interface-appnotes

AN792

4 Rev. 0.3

2. USB Endpoints

The CP2130 uses three USB endpoints to communicate with the USB host:

 Control Endpoint 0—Used for USB standard requests as well as vendor requests used to send and receive
configuration and control commands to the device.

 Bulk Endpoint 1—Used for SPI data transfer commands

 Bulk Endpoint 2—Used for SPI data transfer commands

Table 1 describes the USB endpoint usage and capabilities.

The CP2130 supports two types of commands: data transfer commands and configuration and control commands.
Data transfer commands are used to send and receive data over the SPI. Configuration and control commands are
used to configure the SPI parameters and configure the CP2130 one-time programmable (OTP) ROM.

2.1. Data Transfer Priority
The CP2130 USB Endpoint 1 uses a double-buffered FIFO, whereas Endpoint 2 uses a single-buffered FIFO. To
improve SPI data transfer performance, Endpoint 1 can be used to double-buffer read data or write data transfer
packets. The transfer priority can be configured for high-priority write or high-priority read mode. The transfer
direction with the higher priority will use the double-buffered endpoint and the transfer direction with the lower
priority will use the single-buffered endpoint.

See the Set_USB_Config (Command ID 0x61) command for more information on how to configure the data
transfer priority.

Table 1. USB Endpoint Usage

Endpoint
Number

Endpoint
Type

Max Packet Size
(bytes)

Direction
(High-Priority Write)*

Direction
(High-Priority Read)*

0 Control 64 IN / OUT

1 Bulk 64 (double-buffered) OUT IN

2 Bulk 64 (single-buffered) IN OUT

*Note: IN refers to packets sent from device-to-host. OUT refers to packets sent from host-to-device.

AN792

Rev. 0.3 5

3. Control Transfers

A USB control transfer consists of a Setup stage, an optional Data IN or Data OUT stage, and a Status stage.
Control transfer requests are used to send configuration and control commands to the CP2130 using vendor
requests. For a Set operation, the wLength field specifies the number of data bytes that will be sent OUT by the
USB host as part of the command in the data phase. For a Get operation, the wLength field specifies the number of
bytes that will be returned IN by the USB device.

Table 2 describes the contents of the setup packet sent from the host to the device during the setup stage. The
setup packet can be used to initiate a configuration and control command.

Refer to the USB 2.0 Specification for more information about control transfers.

Table 2. Control Transfer Setup Packet

Name Offset Size Value Description

bmRequestType 0 1 Bitmap Characteristics of request

bRequest 1 1 Value Specific Request

wValue* 2 2 Value 16-bit field varies according to request (little-endian)

wIndex* 4 2 Value 16-bit field varies according to request (little-endian)

wLength 6 2 Count Number of bytes to transfer if there is a Data stage (little-endian)

*Note: Setup packet fields not specified in the command sections are not used and should be set to 0.

Table 3. bmRequestType Bitmap

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Direction Type Recipient

Bit Name Description

7 Direction Data Transfer Direction
0: Host-to-device
1: Device-to-Host

6:5 Type Type
00: Standard
01: Class
10: Vendor
11: Reserved

4:0 Recipient Recipient
00000: Device
00001: Interface
00010: Endpoint
00011: Other
00100–11111: Reserved

AN792

6 Rev. 0.3

4. Multi-Byte Field Endianness

Multibyte fields can be sent over USB in big-endian or little-endian byte order. Fields marked as big-endian are sent
most-significant byte first followed by less significant bytes. Fields marked as little-endian are sent least-significant
byte first followed by more significant bytes. Figure 2 shows an example of big-endian byte order, and Figure 3
shows an example of little-endian byte order.

Figure 2. Big-Endian Byte Order

Figure 3. Little-Endian Byte Order

MSB LSB...

Most-Significant Byte (MSB) First

0x12 0x34

Example: Byte order for an unsigned 16-bit value: 0x1234

Big-Endian

0x12

Example: Byte order for an unsigned 32-bit value: 0x12345678

0x34 0x56 0x78

LSB MSB...

Least-Significant Byte (LSB) First

0x34 0x12

Example: Byte order for an unsigned 16-bit value: 0x1234

Little-Endian

0x78

Example: Byte order for an unsigned 32-bit value: 0x12345678

0x56 0x34 0x12

AN792

Rev. 0.3 7

5. Data Transfer Commands (Bulk Transfers)

Data transfer commands from USB to SPI are implemented using USB bulk-mode transfers on USB Endpoints 1
and 2. The direction of Endpoint 1 and Endpoint 2 are dependent on the Transfer Priority setting.

Any previous data transfer command must complete before another data transfer command is issued. The host
may issue control commands (on Endpoint 0) while data transfer commands are in progress.

A summary of these commands is given in Table 4 with detailed descriptions in following sections.

Table 4. Data Transfer Commands

Command
Name

Command ID Comment Page

Read 0x00 Reads data from the SPI MISO line to USB 8

Write 0x01 Write data from USB to the SPI MOSI line. 9

WriteRead 0x02 Simultaneous Write/Read from USB to MOSI/MISO 10

ReadWithRTR 0x04 Read data when RTR (ReadyToRead) pin is asserted 11

AN792

8 Rev. 0.3

5.1. Read (Command ID 0x00)
5.1.1. Description

Read data bytes from SPI MISO line to USB.

5.1.2. Command (OUT Transfer)

5.1.3. Response (IN Transfer)

5.1.4. Remarks

The CP2130 returns as many packets as needed for the full transfer. If the transfer length is not a multiple of 64
bytes, then the last packet will be a short packet; otherwise the CP2130 will send a zero-length packet to indicate
that the IN transfer has completed.

The CP2130 drives the MOSI line high during read transfers.

Name Offset Size Value Description

Reserved 0 2 0x0000 Must be 0x0000

Command ID 2 1 0x00 Command ID

Reserved 3 1 0x00 Must be 0x00

Length 4 4 Count Specifies the number of bytes to read (little-endian)

Name Offset Size Value Description

Data 0 Length Array The SPI read data from the MISO line

AN792

Rev. 0.3 9

5.2. Write (Command ID 0x01)
5.2.1. Description

Write data bytes from USB to SPI MOSI line.

5.2.2. Command (OUT Transfer)

5.2.3. Remarks

The bulk OUT transfer consists of USB packets. The maximum USB packet size is 64 bytes. The first packet can
contain up to 56 bytes of Data and may be followed by packets of up to 64 bytes of Data. The last packet may be a
partial packet.

The CP2130 disregards the state of the MISO line during a write transfer.

Name Offset Size Value Description

Reserved 0 2 0x0000 Must be 0x0000

Command ID 2 1 0x01 Command ID

Reserved 3 1 0x00 Must be 0x00

Length 4 4 Count Specifies the number of bytes to write (little-endian)

Data 8 Length Array The SPI data to write to the MOSI line

AN792

10 Rev. 0.3

5.3. WriteRead (Command ID 0x02)
5.3.1. Description

Write data bytes to SPI MOSI and read data bytes from SPI MISO simultaneously.

5.3.2. Command (OUT Transfer)

5.3.3. Response (IN Transfer)

5.3.4. Remarks

The CP2130 returns as many packets as needed for the full transfer. If the transfer length is not a multiple of 64
bytes, then the last packet will be a short packet; otherwise the CP2130 will send a zero-length packet to indicate
that the IN transfer has completed.

The SPI supports full-duplex communication and the SPI write and SPI read occur simultaneously.

Name Offset Size Value Description

Reserved 0 2 0x0000 Must be 0x0000

Command ID 2 1 0x02 Command ID

Reserved 3 1 0x00 Must be 0x00

Length 4 4 Count Specifies the number of bytes to read (little-endian)

Data 8 Length Array The SPI data to write to the MOSI line

Name Offset Size Value Description

Data 0 Length Array The SPI read data from the MISO line

AN792

Rev. 0.3 11

5.4. ReadWithRTR (Command ID 0x04)
5.4.1. Description

Read data bytes from SPI MISO to USB as long as the RTR pin (GPIO.3 / CS3 / RTR) is asserted. Pause the read
if RTR (ready-to-read) is not asserted.

5.4.2. Command (OUT Transfer)

5.4.3. Response (IN Transfer)

5.4.4. Remarks

The CP2130 returns as many packets as needed for the full transfer. If the transfer length is not a multiple of 64
bytes, then the last packet will be a short packet; otherwise the CP2130 will send a zero-length packet to indicate
that the IN transfer has completed.

The CP2130 drives the MOSI line high during read transfers.

The SPI byte transfers will be paused if the RTR pin is not asserted. SPI byte transfers will resume when RTR is
asserted.

Name Offset Size Value Description

Reserved 0 2 0x0000 Must be 0x0000

Command ID 2 1 0x04 Command ID

Reserved 3 1 0x00 Must be 0x00

Length 4 4 Count Specifies the number of bytes to read (little-endian)

Name Offset Size Value Description

Data 0 Length Array The SPI read data from the MISO line

AN792

12 Rev. 0.3

6. Configuration and Control Commands (Control Transfers)

All CP2130 Configuration and Control commands are implemented using vendor-specific control transfers on the
USB control endpoint (Endpoint 0). These commands consist of a command ID, command-dependent arguments,
and return data for Get requests.

A summary of these commands is given in Table 5 with detailed descriptions in following sections.

Table 5. Configuration and Control Commands

Command Name Command
ID

Comment Page

Get_Clock_Divider 0x46 Get the GPIO.5 / CS5 / CLKOUT clock divider value 13

Get_Event_Counter 0x44 Get the GPIO.4 / CS4 / EVTCNTR mode and count 14

Get_Full_Threshold 0x34 Get the FIFO full threshold 15

Get_GPIO_Chip_Select 0x24 Get the chip select enable state for all channels 16

Get_GPIO_Mode_And_Level 0x22 Get the GPIO pin level and output mode values for all
pins

17

Get_GPIO_Values 0x20 Get the GPIO pin level for all pins 18

Get_RTR_State 0x36 Get the ReadWithRTR active state 19

Get_SPI_Word 0x30 Get the SPI control word for all channels 20

Get_SPI_Delay 0x32 Get the SPI delays for the specified channel 22

Get_ReadOnly_Version 0x11 Get device read-only version 24

Reset_Device 0x10 Reset the device 24

Set_Clock_Divider 0x47 Set the GPIO.5 / CS5 / CLKOUT clock divider value 25

Set_Event_Counter 0x45 Set the GPIO.4 / CS4 / EVTCNTR mode and count 26

Set_Full_Threshold 0x35 Set the FIFO full threshold 27

Set_GPIO_Chip_Select 0x25 Set the chip select enable state for a single channel 28

Set_GPIO_Mode_And_Level 0x23 Set the GPIO pin level and output mode for a single pin 29

Set_GPIO_Values 0x21 Set the GPIO pin level for all pins specified using a
mask

30

Set_RTR_Stop 0x37 Abort current ReadWithRTR command 31

Set_SPI_Word 0x31 Set the SPI control word for a single channel 32

Set_SPI_Delay 0x33 Set the SPI delays for a single channel 33

AN792

Rev. 0.3 13

6.1. Get_Clock_Divider (Command ID 0x46)
6.1.1. Description

Get the GPIO.5 / CS5 / CLKOUT clock divider value.

6.1.2. Setup Stage (OUT Transfer)

6.1.3. Data Stage (IN Transfer)

6.1.4. Remarks and Related Commands

GPIO.5 / CS5 / CLKOUT must be configured in CLKOUT mode in order to generate the clock output.

The output frequency is configurable through the use of the clock divider. When the divider is set to 0, the output
frequency is 93.75 kHz. For divider values between 1 and 255, the output frequency is determined by the formula:

See also Set_Clock_Divider (Command ID 0x47).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x46 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Divider 0 1 Value The GPIO.5 / CS5 / CLKOUT clock divider value. A value of 0
indicates a divider value of 256.

GPIO.5 Clock Frequency
24 MHz
Divider
---------------------=

AN792

14 Rev. 0.3

6.2. Get_Event_Counter (Command ID 0x44)
6.2.1. Description

Get the GPIO.4 / CS4 / EVTCNTR mode and count.

6.2.2. Setup Stage (OUT Transfer)

6.2.3. Data Stage (IN Transfer)

6.2.4. Mode Bitmap

6.2.5. Remarks and Related Commands

GPIO.4 / CS4 / EVTCNTR must be configured in EVTCNTR mode to use the event counter.

See also Set_Event_Counter (Command ID 0x45).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x44 Command ID

wLength 0x0003 Data stage length in bytes

Name Offset Size Value Description

Mode 0 1 Bitmap Event counter mode

Count 1 2 Value The event count (big-endian)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Overflow Reserved Mode

Bit Name Description

7 Overflow Overflow Flag
0: Event count did not overflow
1: Event count did overflow

6:3 Reserved

2:0 Mode Event Counter Mode
000–011: Reserved
010: Rising edge
011: Falling edge
110: Negative pulse
111: Positive pulse

AN792

Rev. 0.3 15

6.3. Get_Full_Threshold (Command ID 0x34)
6.3.1. Description

Get the FIFO full threshold.

6.3.2. Setup Stage (OUT Transfer)

6.3.3. Data Stage (IN Transfer)

6.3.4. Remarks and Related Commands

See also Set_Full_Threshold (Command ID 0x35).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x34 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Threshold 0 1 Value The FIFO full threshold. Default is 128 bytes.

AN792

16 Rev. 0.3

6.4. Get_GPIO_Chip_Select (Command ID 0x24)
6.4.1. Description

Get the chip select enable state for all SPI channels (0–10). When a chip select is enabled for a channel, the
corresponding CS0–CS10 pin will be asserted during SPI transfers.

6.4.2. Setup Stage (OUT Transfer)

6.4.3. Data Stage (IN Transfer)

6.4.4. Channel CS Enable Bitmap

6.4.5. Pin CS Enable Bitmap

6.4.6. Remarks and Related Commands

The channel chip select bitmap and the pin chip select bitmap both convey the same information in two different
formats. For example if the Ch 10 chip select is enabled, then the CS10 chip select is also enabled.

See also Set_GPIO_Chip_Select (Command ID 0x25).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x24 Command ID

wLength 0x0004 Data stage length in bytes

Name Offset Size Value Description

Channel CS
Enable

0 2 Bitmap Channel chip select enable bit:
0: Chip select for channel disabled
1: Chip select for channel enabled

Pin CS Enable 2 2 Bitmap Pin chip select enable bit:
0: Chip select for CSn pin disabled
1: Chip select for CSn pin enabled

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved Ch 10 Ch 9 Ch 8

1 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1 Ch 0

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved CS10 CS9 CS8 CS7 CS6 Reserved CS5

1 CS4 CS3 CS2 CS1 CS0 Reserved

AN792

Rev. 0.3 17

6.5. Get_GPIO_Mode_And_Level (Command ID 0x22)
6.5.1. Description

Get the GPIO pin level and output mode for all pins.

6.5.2. Setup Stage (OUT Transfer)

6.5.3. Data Stage (IN Transfer)

6.5.4. Level / Mode Bitmap

6.5.5. Remarks and Related Commands

See also Set_GPIO_Mode_And_Level (Command ID 0x23).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x22 Command ID

wLength 0x0004 Data stage length in bytes

Name Offset Size Value Description

Level 0 2 Bitmap GPIO pin level bit:
0: Pin is logic low
1: Pin is logic high

Mode 2 2 Bitmap GPIO pin output mode bit:
0: Open-drain
1: Push-pull

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 Reserved

1 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 Reserved GPIO.5

AN792

18 Rev. 0.3

6.6. Get_GPIO_Values (Command ID 0x20)
6.6.1. Description

Get the GPIO pin level for all pins.

6.6.2. Setup Stage (OUT Transfer)

6.6.3. Data Stage (IN Transfer)

6.6.4. Level Bitmap

6.6.5. Remarks and Related Commands

See also Set_GPIO_Values (Command ID 0x21).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x20 Command ID

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Level 0 2 Bitmap GPIO pin level bit:
0: Pin is logic low
1: Pin is logic high

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 Reserved GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 Reserved

AN792

Rev. 0.3 19

6.7. Get_RTR_State (Command ID 0x36)
6.7.1. Description

Get the ReadWithRTR active state.

6.7.2. Setup Stage (OUT Transfer)

6.7.3. Data Stage (IN Transfer)

6.7.4. Remarks and Related Commands

This command can be sent during a data transfer command. If a ReadWithRTR data transfer command is currently
active, then the Active byte will return 0x01. Once it has been determined that a ReadWithRTR is active, it is then
possible to cancel the ReadWithRTR by sending the Set_RTR_Stop (Command ID 0x37) command.

See also Set_RTR_Stop (Command ID 0x37).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x36 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Active 0 1 Value ReadWithRTR active:
0x00: ReadWithRTR mode is not active
0x01: ReadWithRTR mode is active

AN792

20 Rev. 0.3

6.8. Get_SPI_Word (Command ID 0x30)
6.8.1. Description

Get the SPI control word for all channels.

6.8.2. Setup Stage (OUT Transfer)

6.8.3. Data Stage (IN Transfer)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x30 Command ID

wLength 0x000B Data stage length in bytes

Name Offset Size Value Description

Channel 0 Word 0 1

Bitmap SPI channel word

Channel 1 Word 1 1

Channel 2 Word 2 1

Channel 3 Word 3 1

Channel 4 Word 4 1

Channel 5 Word 5 1

Channel 6 Word 6 1

Channel 7 Word 7 1

Channel 8 Word 8 1

Channel 9 Word 9 1

Channel 10 Word 10 1

AN792

Rev. 0.3 21

6.8.4. Channel N Word Bitmap

6.8.5. Remarks and Related Commands

See also Set_SPI_Word (Command ID 0x31).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Phase Polarity Mode Clock

Bit Name Description

7:6 Reserved

5 Phase Clock Phase
0: Leading edge
1: Trailing edge

4 Polarity Clock Polarity
0: Idle low
1: Idle high

3 Mode Chip Select Pin Mode
0: Open-drain
1: Push-pull

2:0 Clock Clock Frequency
000: 12 MHz
001: 6 MHz
010: 3 MHz
011: 1.5 MHz
100: 750 kHz
101: 375 kHz
110: 187.5 kHz
111: 93.8 kHz

AN792

22 Rev. 0.3

6.9. Get_SPI_Delay (Command ID 0x32)
6.9.1. Description

Get the SPI delays for the specified channel.

6.9.2. Setup Stage (OUT Transfer)

6.9.3. Data Stage (IN Transfer)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x32 Command ID

wIndex Value SPI channel to query (0–10)

wLength 0x0008 Data stage length in bytes

Name Offset Size Value Description

Channel 0 1 Value SPI channel:
0–10: Channel 0–Channel 10

Mask 1 1 Bitmap SPI Delay Enable Mask

Inter-Byte Delay 2 2 Value Inter-byte SPI delay in 10 μs units (big-endian)

Post-Assert
Delay

4 2 Value Post-assert SPI delay in 10 μs units (big-endian)

Pre-Deassert
Delay

6 2 Value Pre-deassert SPI delay in 10 μs units (big-endian)

AN792

Rev. 0.3 23

6.9.4. Mask Bitmap

6.9.5. Remarks and Related Commands

Refer to the CP2130 data sheet for more information regarding SPI delays.

See also Set_SPI_Delay (Command ID 0x33).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Toggle Pre-Deassert Post-Assert Inter-Byte

Bit Name Description

7:4 Reserved

3 Toggle CS Toggle Enable
0: Disable CS toggle
1: Enable CS toggle

2 Pre-Deassert Pre-Deassert Delay Enable
0: Disable pre-deassert SPI delay
1: Enable pre-deassert SPI delay

1 Post-Assert Post-Assert Delay Enable
0: Disable post-assert SPI delay
1: Enable post-assert SPI delay

0 Inter-Byte Inter-Byte Delay Enable
0: Disable post-assert SPI delay
1: Enable post-assert SPI delay

AN792

24 Rev. 0.3

6.10. Get_ReadOnly_Version (Command ID 0x11)
6.10.1. Description

Get the device read-only version.

6.10.2. Setup Stage (OUT Transfer)

6.10.3. Data Stage (IN Transfer)

6.10.4. Remarks

The device read-only version number reports the CP2130 hardware version number. This version cannot be
modified by the user. This document is compatible with version 1.0.

6.11. Reset_Device (Command ID 0x10)
6.11.1. Description

Reset the device.

6.11.2. Setup Stage (OUT Transfer)

6.11.3. Remarks

This command is a host-to-device request with no data stage. Approximately one millisecond after receiving this
request, the device will reset and re-enumerate on the USB host.

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x11 Command ID

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Major Version 0 1 0x01 Major read-only version number

Minor Version 1 1 0x00 Minor read-only version number

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x10 Command ID

wLength 0x0000 Data stage length in bytes

AN792

Rev. 0.3 25

6.12. Set_Clock_Divider (Command ID 0x47)
6.12.1. Description

Set the GPIO.5 / CS5 / CLKOUT clock divider value.

6.12.2. Setup Stage (OUT Transfer)

6.12.3. Data Stage (OUT Transfer)

6.12.4. Remarks and Related Commands

GPIO.5 / CS5 / CLKOUT must be configured in CLKOUT mode in order to generate the clock output.

The output frequency is configurable through the use of the clock divider. When the divider is set to 0, the output
frequency is 93.75 kHz. For divider values between 1 and 255, the output frequency is determined by the formula:

See also Get_Clock_Divider (Command ID 0x46).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x47 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Divider 0 1 Value The GPIO.5 / CS5 / CLKOUT clock divider value. A value of 0
indicates a divider value of 256.

GPIO.5 Clock Frequency
24 MHz
Divider
---------------------=

AN792

26 Rev. 0.3

6.13. Set_Event_Counter (Command ID 0x45)
6.13.1. Description

Set the GPIO.4 / CS4 / EVTCNTR mode and count.

6.13.2. Setup Stage (OUT Transfer)

6.13.3. Data Stage (OUT Transfer)

6.13.4. Mode Bitmap

6.13.5. Remarks and Related Commands

GPIO.4 / CS4 / EVTCNTR must be configured in EVTCNTR mode to use the event counter.

See also Get_Event_Counter (Command ID 0x44).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x45 Command ID

wLength 0x0003 Data stage length in bytes

Name Offset Size Value Description

Mode 0 1 Bitmap Event counter mode

Count 1 2 Value The event count (big-endian)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Mode

Bit Name Description

7:3 Reserved Must be 00000

2:0 Mode Event Counter Mode
000–011: Reserved
010: Rising edge
011: Falling edge
110: Negative pulse
111: Positive pulse

AN792

Rev. 0.3 27

6.14. Set_Full_Threshold (Command ID 0x35)
6.14.1. Description

Set the FIFO full threshold.

6.14.2. Setup Stage (OUT Transfer)

6.14.3. Data Stage (OUT Transfer)

6.14.4. Remarks and Related Commands

See also Get_Full_Threshold (Command ID 0x34).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x35 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Threshold 0 1 Value The FIFO full threshold. Default is 128 bytes.

AN792

28 Rev. 0.3

6.15. Set_GPIO_Chip_Select (Command ID 0x25)
6.15.1. Description

Set the chip select enable state for the specified channel. When a chip select is enabled for a channel, the
corresponding CS0–CS10 pin will be asserted during SPI transfers and the SPI word for the specified channel will
be used to configure the SPI.

6.15.2. Setup Stage (OUT Transfer)

6.15.3. Data Stage (OUT Transfer)

6.15.4. Remarks and Related Commands

Multiple chip selects can be enabled by sending this command with Control set to 0x01. Sending this command
with Control set to 0x01 or 0x02 also sets the active SPI channel to the channel specified. This means that the last
chip select enabled determines which SPI word setting to use based on channel number.

The Set_SPI_Word (Command ID 0x31) command can be used to specify the SPI configuration for each channel.
The Set_GPIO_Chip_Select (Command ID 0x25) command can then be used to select the active channel.

See also Get_GPIO_Chip_Select (Command ID 0x24).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x25 Command ID

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Channel 0 1 Value Chip select channel (0–10)

Control 1 1 Value Chip select channel control:
0x00: Specified chip select is disabled
0x01: Specified chip select is enabled during SPI transfers
0x02: Specified chip select is enabled during SPI transfers; all
other chip selects are disabled

AN792

Rev. 0.3 29

6.16. Set_GPIO_Mode_And_Level (Command ID 0x23)
6.16.1. Description

Set the GPIO pin level and output mode for the specified pin.

6.16.2. Setup Stage (OUT Transfer)

6.16.3. Data Stage (OUT Transfer)

6.16.4. Remarks and Related Commands

This command can override the GPIO pin modes programmed in the OTP ROM configuration. However the GPIO
pin function cannot be overridden.

See also Get_GPIO_Mode_And_Level (Command ID 0x22).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x23 Command ID

wLength 0x0003 Data stage length in bytes

Name Offset Size Value Description

Index 0 1 Value GPIO pin index (0–10)

Mode 1 1 Value The GPIO pin mode:
0x00: Input
0x01: Open-drain output
0x02: Push-pull output

Level 2 1 Value The GPIO pin level:
0x00: Logic low
0x01: Logic high

AN792

30 Rev. 0.3

6.17. Set_GPIO_Values (Command ID 0x21)
6.17.1. Description

Set the GPIO pin level for all pins specified using a mask

6.17.2. Setup Stage (OUT Transfer)

6.17.3. Data Stage (OUT Transfer)

6.17.4. Level / Mask Bitmap

6.17.5. Remarks and Related Commands

See also Get_GPIO_Values (Command ID 0x20).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x21 Command ID

wLength 0x0004 Data stage length in bytes

Name Offset Size Value Description

Level 0 2 Bitmap GPIO pin level bit:
0: Pin is logic low
1: Pin is logic high

Mask 2 2 Bitmap GPIO pin mask bit:
0: Pin level is ignored
1: Pin level is set

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 Reserved GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 Reserved

AN792

Rev. 0.3 31

6.18. Set_RTR_Stop (Command ID 0x37)
6.18.1. Description

Abort the current ReadWithRTR command.

6.18.2. Setup Stage (OUT Transfer)

6.18.3. Data Stage (OUT Transfer)

6.18.4. Remarks and Related Commands

See also Get_RTR_State (Command ID 0x36).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x37 Command ID

wLength 0x0001 Data stage length in bytes

Name Offset Size Value Description

Abort 0 1 Value Abort ReadWithRTR:
0x00: No effect
0x01: Abort current ReadWithRTR command

AN792

32 Rev. 0.3

6.19. Set_SPI_Word (Command ID 0x31)
6.19.1. Description

Set the SPI control word for a single channel.

6.19.2. Setup Stage (OUT Transfer)

6.19.3. Data Stage (OUT Transfer)

6.19.4. Channel Word Bitmap

6.19.5. Remarks and Related Commands

See also Get_SPI_Word (Command ID 0x30).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x31 Command ID

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Channel 0 1 Value SPI channel:
0–10: Channel 0–Channel 10

Channel Word 1 1 Bitmap SPI channel word

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Phase Polarity Mode Clock

Bit Name Description

7:6 Reserved

5 Phase Clock Phase
0: Leading edge
1: Trailing edge

4 Polarity Clock Polarity
0: Idle low
1: Idle high

3 Mode Chip Select Pin Mode
0: Open-drain
1: Push-pull

2:0 Clock Clock Frequency
000: 12 MHz
001: 6 MHz
010: 3 MHz
011: 1.5 MHz
100: 750 kHz
101: 375 kHz
110: 187.5 kHz
111: 93.8 kHz

AN792

Rev. 0.3 33

6.20. Set_SPI_Delay (Command ID 0x33)
6.20.1. Description

Set the SPI delays for the specified channel.

6.20.2. Setup Stage (OUT Transfer)

6.20.3. Data Stage (OUT Transfer)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x33 Command ID

wLength 0x0008 Data stage length in bytes

Name Offset Size Value Description

Channel 0 1 Value SPI channel to configure:
0–10: Channel 0–Channel 10

Mask 1 1 Bitmap SPI Delay Enable Mask

Inter-Byte Delay 2 2 Value Inter-byte SPI delay in 10 μs units (big-endian)

Post-Assert
Delay

4 2 Value Post-assert SPI delay in 10 μs units (big-endian)

Pre-Deassert
Delay

6 2 Value Pre-deassert SPI delay in 10 μs units (big-endian)

AN792

34 Rev. 0.3

6.20.4. Mask Bitmap

6.20.5. Remarks and Related Commands

Refer to the CP2130 data sheet for more information regarding SPI delays.

See also Get_SPI_Delay (Command ID 0x32).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Toggle Pre-Deassert Post-Assert Inter-Byte

Bit Name Description

7:4 Reserved

3 Toggle CS Toggle Enable
0: Disable CS toggle
1: Enable CS toggle

2 Pre-Deassert Pre-Deassert Delay Enable
0: Disable pre-deassert SPI delay
1: Enable pre-deassert SPI delay

1 Post-Assert Post-Assert Delay Enable
0: Disable post-assert SPI delay
1: Enable post-assert SPI delay

0 Inter-Byte Inter-Byte Delay Enable
0: Disable post-assert SPI delay
1: Enable post-assert SPI delay

AN792

Rev. 0.3 35

7. OTP ROM Configuration Commands (Control Transfers)

OTP ROM stores configuration options that are persistent across power-on reset and all other resets. After reset,
the CP2130 configures parameters according to values programmed in the OTP ROM. After OTP settings are
initialized, runtime parameters may be then be configured, altering the configuration of the device until the next
reset. OTP ROM configuration options can only be programmed a single time.

All CP2130 OTP ROM Configuration commands are implemented using vendor-specific control transfers on the
USB control endpoint (Endpoint 0). These commands consist of a command ID, command-dependent arguments,
and return data for Get requests.

A summary of these commands is given in Table 6 with detailed descriptions in the following sections.

Table 6. OTP ROM Configuration Commands

Command Name Command
ID

Comment Page

Get_Lock_Byte 0x6E Get the lock byte, which locks the specified fields to
prevent them from being programmed

36

Get_Manufacturing_String_1 0x62 Get the USB manufacturing string descriptor (1 of 2) 37

Get_Manufacturing_String_2 0x64 Get the USB manufacturing string descriptor (2 of 2) 38

Get_Pin_Config 0x6C Get the pin configuration values 39

Get_Product_String_1 0x66 Get the USB product string descriptor (1 of 2) 47

Get_Product_String_2 0x68 Get the USB product string descriptor (2 of 2) 48

Get_PROM_Config 0x70 Get raw OTP ROM configuration information in blocks 49

Get_Serial_String 0x6A Get the USB serial string descriptor 50

Get_USB_Config 0x60 Get the USB configuration values 51

Set_Lock_Byte 0x6F Set the lock byte, which locks the specified fields to
prevent them from being programmed

52

Set_Manufacturing_String_1 0x63 Set the USB manufacturing string descriptor (1 of 2) 53

Set_Manufacturing_String_2 0x65 Set the USB manufacturing string descriptor (2 of 2) 54

Set_Pin_Config 0x6D Set the pin configuration values 55

Set_Product_String_1 0x67 Set the USB product string descriptor (1 of 2) 63

Set_Product_String_2 0x69 Set the USB product string descriptor (2 of 2) 64

Set_PROM_Config 0x71 Set raw OTP ROM configuration information in blocks 65

Set_Serial_String 0x6B Set the USB serial string descriptor 66

Set_USB_Config 0x61 Set the USB configuration values 67

AN792

36 Rev. 0.3

7.1. Get_Lock_Byte (Command ID 0x6E)
7.1.1. Description

Get the lock byte, which locks the specified fields to prevent them from being programmed.

7.1.2. Setup Stage (OUT Transfer)

7.1.3. Data Stage (IN Transfer)

7.1.4. Lock Bitmap

7.1.5. Remarks and Related Commands

Fields that are unlocked may be programmed by sending the appropriate OTP ROM Configuration command.
Once a field has been programmed, the lock bit for the field is set to ‘0’, preventing future programming. The
default value for the field may be locked by sending this command and specifying the field as locked.

See also Set_Lock_Byte (Command ID 0x6F).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x6E Command ID

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Lock 0 2 Bitmap Lock byte bitmap bit:
0: Field is locked
1: Field is unlocked

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Transfer
Priority

Manufacturing
String 1

Manufacturing
String 2

Release
Version

Power
Mode

Max
Power

PID VID

1 Reserved Pin Config Serial
String

Product
String 2

Product
String 1

AN792

Rev. 0.3 37

7.2. Get_Manufacturing_String1 (Command ID 0x62)
7.2.1. Description

Get the USB manufacturing string descriptor (1 of 2).

7.2.2. Setup Stage (OUT Transfer)

7.2.3. Data Stage (IN Transfer)

7.2.4. Remarks and Related Commands

This command returns the string descriptor length, descriptor type, and the first 61 bytes of the Unicode string as
specified in the USB 2.0 specification. The CP2130 USB manufacturing string descriptor has a maximum length of
126 bytes, including string descriptor length and descriptor type. This means the Unicode string has a maximum
length of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length can be used to determine the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

See also:

 Get_Manufacturing_String2 (Command ID 0x64)

 Set_Manufacturing_String1 (Command ID 0x63)

 Set_Manufacturing_String2 (Command ID 0x65)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x62 Command ID

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 61 Unicode UTF-16 encoded string (little-endian; bytes 0–60)

Reserved 63 1 Value

AN792

38 Rev. 0.3

7.3. Get_Manufacturing_String2 (Command ID 0x64)
7.3.1. Description

Get the USB manufacturing string descriptor (2 of 2).

7.3.2. Setup Stage (OUT Transfer)

7.3.3. Data Stage (IN Transfer)

7.3.4. Remarks and Related Commands

This command returns the last 63 bytes of the Unicode string in the string descriptor. The CP2130 USB
manufacturing string descriptor has a maximum length of 126 bytes, including string descriptor length and
descriptor type. This means the Unicode string has a maximum length of 124 bytes or 62, 16-bit Unicode
characters.

The string descriptor length can be used to determine the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

See also:

 Get_Manufacturing_String1 (Command ID 0x62)

 Set_Manufacturing_String1 (Command ID 0x63)

 Set_Manufacturing_String2 (Command ID 0x65)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x64 Command ID

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

String 0 63 Unicode UTF-16 encoded string (little-endian; bytes 61–123)

Reserved 63 1 Value

AN792

Rev. 0.3 39

7.4. Get_Pin_Config (Command ID 0x6C)
7.4.1. Description

Get the pin configuration values.

7.4.2. Setup Stage (OUT Transfer)

7.4.3. Data Stage (IN Transfer)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x6C Command ID

wLength 0x0014 Data stage length in bytes

Name Offset Size Value Description

GPIO.0 0 1 Value GPIO.0 / CS0 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS0 (push-pull output)

GPIO.1 1 1 Value GPIO.1 / CS1 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS1 (push-pull output)

GPIO.2 2 1 Value GPIO.2 / CS2 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS2 (push-pull output)

GPIO.3 3 1 Value GPIO.3 / CS3 / RTR pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS3 (push-pull output)
0x04: RTR (input)
0x05: RTR (input)

AN792

40 Rev. 0.3

GPIO.4 4 1 Value GPIO.4 / CS4 / EVTCNTR pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS4 (push-pull output)
0x04: EVTCNTR rising edge (input)
0x05: EVTCNTR falling edge (input)
0x06: EVTCNTR negative pulse (input)
0x07: EVTCNTR positive pulse (input)

GPIO.5 5 1 Value GPIO.5 / CS5 / CLKOUT pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS5 (push-pull output)
0x04: CLKOUT (push-pull output)

GPIO.6 6 1 Value GPIO.6 / CS6 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS6 (push-pull output)

GPIO.7 7 1 Value GPIO.7 / CS7 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS7 (push-pull output)

GPIO.8 8 1 Value GPIO.8 / CS8 / SPIACT pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS8 (push-pull output)
0x04: SPIACT (push-pull output)

GPIO.9 9 1 Value GPIO.9 / CS9 / SUSPEND pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS9 (push-pull output)
0x04: SUSPEND (push-pull output)

GPIO.10 10 1 Value GPIO.10 / CS10 / SUSPEND pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS10 (push-pull output)
0x04: SUSPEND (push-pull output)

Name Offset Size Value Description

AN792

Rev. 0.3 41

Suspend Level 11 2 Bitmap Suspend pin level

Suspend Mode 13 2 Bitmap Suspend pin mode

Wakeup Mask 15 2 Bitmap Wakeup pin mask

Wakeup Match 17 2 Bitmap Wakeup pin match

Divider 19 1 Value The GPIO.5 / CS5 / CLKOUT OTP ROM clock divider value
after reset. A value of 0 indicates a divider value of 256.

Name Offset Size Value Description

AN792

42 Rev. 0.3

7.4.4. Suspend Level Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved

6 GPIO.10

Suspend Pin Level
0: Logic low
1: Logic high

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

Rev. 0.3 43

7.4.5. Suspend Mode Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Enable GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Enabled Suspend Mode and Level Enable
0: Don’t use suspend mode and levels
1: Use suspend mode and levels

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

44 Rev. 0.3

7.4.6. Wakeup Mask Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved Must be 0

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

Rev. 0.3 45

7.4.7. Wakeup Match Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

46 Rev. 0.3

7.4.8. Remarks and Related Commands

The clock divider value is used during initialization after reset. The Set_Clock_Divider (Command ID 0x47)
command can be used to override the value after initialization. This command always returns the divider value
stored in the OTP ROM, not the runtime divider value. Send the Get_Clock_Divider (Command ID 0x46) command
to obtain the runtime divider value.

Any pin (GPIO.0–GPIO.10) may be used to generate a USB remote wakeup event. The wakeup mask specifies
which pins may be used to generate a wakeup event. The wakeup match value specifies the pin values such that if
any pin selected in the wakeup mask does not match the wakeup match value, the device will generate a USB
remote wakeup event when the device is suspended.

Once a GPIO pin function has been set in the OTP ROM, the pin function cannot be changed, but the output mode
(push-pull or open-drain) may be overridden at runtime with the Set_GPIO_Chip_Select (Command ID 0x25) and
Set_GPIO_Mode_And_Level (Command ID 0x23) commands.

Refer to the CP2130 data sheet for full pin function descriptions.

See also Set_Pin_Config (Command ID 0x6D).

AN792

Rev. 0.3 47

7.5. Get_Product_String1 (Command ID 0x66)
7.5.1. Description

Get the USB product string descriptor (1 of 2).

7.5.2. Setup Stage (OUT Transfer)

7.5.3. Data Stage (IN Transfer)

7.5.4. Remarks and Related Commands

This command returns the string descriptor length, descriptor type, and the first 61 bytes of the Unicode string as
specified in the USB 2.0 specification. The CP2130 USB product string descriptor has a maximum length of 126
bytes, including string descriptor length and descriptor type. This means the Unicode string has a maximum length
of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length can be used to determine the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

See also:

 Get_Product_String2 (Command ID 0x68)

 Set_Product_String1 (Command ID 0x67)

 Set_Product_String2 (Command ID 0x69)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x66 Command ID

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 61 Unicode UTF-16 encoded string (little-endian; bytes 0–60)

Reserved 63 1 Value

AN792

48 Rev. 0.3

7.6. Get_Product_String2 (Command ID 0x68)
7.6.1. Description

Get the USB product string descriptor (2 of 2).

7.6.2. Setup Stage (OUT Transfer)

7.6.3. Data Stage (IN Transfer)

7.6.4. Remarks and Related Commands

This command returns the last 63 bytes of the Unicode string in the string descriptor. The CP2130 USB product
string descriptor has a maximum length of 126 bytes, including string descriptor length and descriptor type. This
means the Unicode string has a maximum length of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length can be used to determine the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

See also:

 Get_Product_String1 (Command ID 0x66)

 Set_Product_String1 (Command ID 0x67)

 Set_Product_String2 (Command ID 0x69)

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x68 Command ID

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

String 0 63 Unicode UTF-16 encoded string (little-endian; bytes 61–123)

Reserved 63 1 Value

AN792

Rev. 0.3 49

7.7. Get_PROM_Config (Command ID 0x70)
7.7.1. Description

Get the OTP ROM configuration information in blocks.

7.7.2. Setup Stage (OUT Transfer)

7.7.3. Data Stage (IN Transfer)

7.7.4. Remarks and Related Commands

This command can be used to read the entire OTP ROM configuration as a byte array. The OTP ROM
configuration consists of 512 bytes of data. This data is broken into 8, 64-byte blocks. Each block is indexed from 0
to 7. Send this command 8 times with block index 0–7 to retrieve the entire OTP ROM configuration.

The OTP ROM is detailed in "Appendix A—OTP ROM Format" on page 73.

See also Set_PROM_Config (Command ID 0x71).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x70 Command ID

wIndex Value Block index (0–7).

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Block 0 64 Array Returns the requested OTP ROM block data

AN792

50 Rev. 0.3

7.8. Get_Serial_String (Command ID 0x6A)
7.8.1. Description

Get the USB serial string descriptor.

7.8.2. Setup Stage (OUT Transfer)

7.8.3. Data Stage (IN Transfer)

7.8.4. Remarks and Related Commands

This command returns the string descriptor length, descriptor type, and 60 bytes of the Unicode string as specified
in the USB 2.0 specification. The CP2130 USB serial string descriptor has a maximum length of 62 bytes, including
string descriptor length and descriptor type. This means the Unicode string has a maximum length of 60 bytes or
30, 16-bit Unicode characters.

The string descriptor length can be used to determine the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

See also Set_Serial_String (Command ID 0x6B).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x6A Command ID

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 60 Unicode UTF-16 encoded string (little-endian; bytes 0–59)

Reserved 62 2 Value

AN792

Rev. 0.3 51

7.9. Get_USB_Config (Command ID 0x60)
7.9.1. Description

Get the USB configuration values.

7.9.2. Setup Stage (OUT Transfer)

7.9.3. Data Stage (IN Transfer)

7.9.4. Remarks and Related Commands

The USB configuration values affect the USB descriptors returned during USB enumeration. The device must be
reset to apply these values.

See "2.1. Data Transfer Priority" on page 4 for more information regarding data transfer priority.

See also Set_USB_Config (Command ID 0x61).

Name Value Description

bmRequestType 0xC0 Device-to-Host vendor request

bRequest 0x60 Command ID

wLength 0x0009 Data stage length in bytes

Name Offset Size Value Description

VID 0 2 Value USB vendor ID (little-endian)

PID 2 2 Value USB product ID (little-endian)

Max Power 4 1 Value Power required from the host in bus-powered mode:
0–250: Max electrical current in units of 2 mA

Power Mode 5 1 Value Power mode:
0x00: USB bus-powered; voltage regulator enabled
0x01: USB self-powered; voltage regulator disabled
0x02: USB self-powered; voltage regulator enabled

Major Release 6 1 Value USB device major release number (BCD)

Minor Release 7 1 Value USB device minor release number (BCD)

Transfer Priority 8 1 Value Data transfer priority:
0x00: High-priority read
0x01: High-priority write

AN792

52 Rev. 0.3

7.10. Set_Lock_Byte (Command ID 0x6F)
7.10.1. Description

Set the lock byte, which locks the specified fields to prevent them from being programmed.

7.10.2. Setup Stage (OUT Transfer)

7.10.3. Data Stage (OUT Transfer)

7.10.4. Lock Bitmap

7.10.5. Remarks and Related Commands

Fields that are unlocked may be programmed by sending the appropriate OTP ROM Configuration command.
Once a field has been programmed, the lock bit for the field is set to ‘0’, preventing future programming. The
default value for the field may be locked by sending this command and specifying the field as locked.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also Get_Lock_Byte (Command ID 0x6E).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x6F Command ID

wValue 0xA5F1 Memory key

wLength 0x0002 Data stage length in bytes

Name Offset Size Value Description

Lock 0 2 Bitmap Lock byte bitmap bit:
0: Field is locked
1: Field is unlocked

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Transfer
Priority

Manufacturing
String 1

Manufacturing
String 2

Release
Version

Power
Mode

Max
Power

PID VID

1 Reserved Pin Config Serial
String

Product
String 2

Product
String 1

AN792

Rev. 0.3 53

7.11. Set_Manufacturing_String1 (Command ID 0x63)
7.11.1. Description

Set the USB manufacturing string descriptor (1 of 2).

7.11.2. Setup Stage (OUT Transfer)

Data Stage (OUT Transfer)

7.11.3. Remarks and Related Commands

This command sets the string descriptor length, descriptor type, and the first 61 bytes of the Unicode string as
specified in the USB 2.0 specification. The CP2130 USB manufacturing string descriptor has a maximum length of
126 bytes, including string descriptor length and descriptor type. This means the Unicode string has a maximum
length of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length specifies the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also:

 Get_Manufacturing_String1 (Command ID 0x62)

 Get_Manufacturing_String2 (Command ID 0x64)

 Set_Manufacturing_String2 (Command ID 0x65)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x63 Command ID

wValue 0xA5F1 Memory key

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 61 Unicode UTF-16 encoded string (little-endian; bytes 0–60)

Reserved 63 1 Value

AN792

54 Rev. 0.3

7.12. Set_Manufacturing_String2 (Command ID 0x65)
7.12.1. Description

Set the USB manufacturing string descriptor (2 of 2).

7.12.2. Setup Stage (OUT Transfer)

7.12.3. Data Stage (OUT Transfer)

7.12.4. Remarks and Related Commands

This command sets the last 63 bytes of the Unicode string in the string descriptor. The CP2130 USB manufacturing
string descriptor has a maximum length of 126 bytes, including string descriptor length and descriptor type. This
means the Unicode string has a maximum length of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length specifies the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also:

 Get_Manufacturing_String1 (Command ID 0x62)

 Get_Manufacturing_String2 (Command ID 0x64)

 Set_Manufacturing_String1 (Command ID 0x63)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x65 Command ID

wValue 0xA5F1 Memory key

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

String 0 63 Unicode UTF-16 encoded string (little-endian; bytes 61–123)

Reserved 63 1 Value

AN792

Rev. 0.3 55

7.13. Set_Pin_Config (Command ID 0x6D)
7.13.1. Description

Set the pin configuration values.

7.13.2. Setup Stage (OUT Transfer)

7.13.3. Data Stage (OUT Transfer)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x6D Command ID

wValue 0xA5F1 Memory key

wLength 0x0014 Data stage length in bytes

Name Offset Size Value Description

GPIO.0 0 1 Value GPIO.0 / CS0 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS0 (push-pull output)

GPIO.1 1 1 Value GPIO.1 / CS1 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS1 (push-pull output)

GPIO.2 2 1 Value GPIO.2 / CS2 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS2 (push-pull output)

GPIO.3 3 1 Value GPIO.3 / CS3 / RTR pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS3 (push-pull output)
0x04: RTR (input)
0x05: RTR (input)

AN792

56 Rev. 0.3

GPIO.4 4 1 Value GPIO.4 / CS4 / EVTCNTR pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS4 (push-pull output)
0x04: EVTCNTR rising edge (input)
0x05: EVTCNTR falling edge (input)
0x06: EVTCNTR negative pulse (input)
0x07: EVTCNTR positive pulse (input)

GPIO.5 5 1 Value GPIO.5 / CS5 / CLKOUT pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS5 (push-pull output)
0x04: CLKOUT (push-pull output)

GPIO.6 6 1 Value GPIO.6 / CS6 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS6 (push-pull output)

GPIO.7 7 1 Value GPIO.7 / CS7 pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS7 (push-pull output)

GPIO.8 8 1 Value GPIO.8 / CS8 / SPIACT pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS8 (push-pull output)
0x04: SPIACT (push-pull output)

GPIO.9 9 1 Value GPIO.9 / CS9 / SUSPEND pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS9 (push-pull output)
0x04: SUSPEND (push-pull output)

GPIO.10 10 1 Value GPIO.10 / CS10 / SUSPEND pin function:
0x00: GPIO (input)
0x01: GPIO (open-drain output)
0x02: GPIO (push-pull output)
0x03: CS10 (push-pull output)
0x04: SUSPEND (push-pull output)

Name Offset Size Value Description

AN792

Rev. 0.3 57

Suspend Level 11 2 Bitmap Suspend pin level

Suspend Mode 13 2 Bitmap Suspend pin mode

Wakeup Mask 15 2 Bitmap Wakeup pin mask

Wakeup Match 17 2 Bitmap Wakeup pin match

Divider 19 1 Value The GPIO.5 / CS5 / CLKOUT OTP ROM clock divider value
after reset. A value of 0 indicates a divider value of 256.

Name Offset Size Value Description

AN792

58 Rev. 0.3

7.13.4. Suspend Level Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved

6 GPIO.10

Suspend Pin Level
0: Logic low
1: Logic high

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

Rev. 0.3 59

7.13.5. Suspend Mode Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Enable GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Enabled Suspend Mode and Level Enable
0: Don’t use suspend mode and levels
1: Use suspend mode and levels

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

60 Rev. 0.3

7.13.6. Wakeup Mask Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved Must be 0

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

Rev. 0.3 61

7.13.7. Wakeup Match Bitmap

Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved GPIO.10 GPIO.9 GPIO.8 GPIO.7 GPIO.6 VPP GPIO.5

1 GPIO.4 GPIO.3 GPIO.2 GPIO.1 GPIO.0 MOSI MISO SCK

Offset Bit Name Description

0

7 Reserved

6 GPIO.10

Suspend Pin Mode
0: Open-drain
1: Push-pull

5 GPIO.9

4 GPIO.8

3 GPIO.7

2 GPIO.6

1 VPP

0 GPIO.5

1

7 GPIO.4

6 GPIO.3

5 GPIO.2

4 GPIO.1

3 GPIO.0

2 MOSI

1 MISO

0 SCK

AN792

62 Rev. 0.3

7.13.8. Remarks and Related Commands

The clock divider value is used during initialization after reset. The Set_Clock_Divider (Command ID 0x47)
command can be used to override the value after initialization. This command always returns the divider value
stored in the OTP ROM, not the runtime divider value. Send the Get_Clock_Divider (Command ID 0x46) command
to obtain the runtime divider value.

Any pin (GPIO.0–GPIO.10) may be used to generate a USB remote wakeup event. The wakeup mask specifies
which pins may be used to generate a wakeup event. The wakeup match value specifies the pin values such that if
any pin selected in the wakeup mask does not match the wakeup match value, the device will generate a USB
remote wakeup event when the device is suspended.

Once a GPIO pin function has been set in the OTP ROM, the pin function cannot be changed, but the output mode
(push-pull or open-drain) may be overridden at runtime with the Set_GPIO_Chip_Select (Command ID 0x25) and
Set_GPIO_Mode_And_Level (Command ID 0x23) commands.

Refer to the CP2130 data sheet for full pin function descriptions.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also Get_Pin_Config (Command ID 0x6C).

AN792

Rev. 0.3 63

7.14. Set_Product_String1 (Command ID 0x67)
7.14.1. Description

Set the USB product string descriptor (1 of 2).

7.14.2. Setup Stage (OUT Transfer)

7.14.3. Data Stage (OUT Transfer)

7.14.4. Remarks and Related Commands

This command sets the string descriptor length, descriptor type, and the first 61 bytes of the Unicode string as
specified in the USB 2.0 specification. The CP2130 USB product string descriptor has a maximum length of 126
bytes, including string descriptor length and descriptor type. This means the Unicode string has a maximum length
of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length specifies the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also:

 Get_Product_String1 (Command ID 0x66)

 Get_Product_String2 (Command ID 0x68)

 Set_Product_String2 (Command ID 0x69)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x67 Command ID

wValue 0xA5F1 Memory key

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 61 Unicode UTF-16 encoded string (little-endian; bytes 0–60)

Reserved 63 1 Value

AN792

64 Rev. 0.3

7.15. Set_Product_String2 (Command ID 0x69)
7.15.1. Description

Set the USB product string descriptor (2 of 2).

7.15.2. Setup Stage (OUT Transfer)

7.15.3. Data Stage (OUT Transfer)

7.15.4. Remarks and Related Commands

This command sets the last 63 bytes of the Unicode string in the string descriptor. The CP2130 USB product string
descriptor has a maximum length of 126 bytes, including string descriptor length and descriptor type. This means
the Unicode string has a maximum length of 124 bytes or 62, 16-bit Unicode characters.

The string descriptor length specifies the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also:

 Get_Product_String1 (Command ID 0x66)

 Get_Product_String2 (Command ID 0x68)

 Set_Product_String1 (Command ID 0x67)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x69 Command ID

wValue 0xA5F1 Memory key

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

String 0 63 Unicode UTF-16 encoded string (little-endian; bytes 61–123)

Reserved 63 1 Value

AN792

Rev. 0.3 65

7.16. Set_PROM_Config (Command ID 0x71)
7.16.1. Description

Set the OTP ROM configuration information in blocks.

7.16.2. Setup Stage (OUT Transfer)

7.16.3. Data Stage (OUT Transfer)

7.16.4. Remarks and Related Commands

This command can be used to write the entire OTP ROM configuration as a byte array. The OTP ROM
configuration consists of 512 bytes of data. This data is broken into 8, 64-byte blocks. Each block is indexed from 0
to 7. Send this command 8 times with block index 0–7 to write the entire OTP ROM configuration.

The OTP ROM is detailed in "Appendix A—OTP ROM Format" on page 73.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also Get_PROM_Config (Command ID 0x70).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x71 Command ID

wValue 0xA5F1 Memory key

wIndex Value Block index (0–7).

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Block 0 64 Array Writes the requested OTP ROM block data

AN792

66 Rev. 0.3

7.17. Set_Serial_String (Command ID 0x6B)
7.17.1. Description

Set the USB serial string descriptor.

7.17.2. Setup Stage (OUT Transfer)

7.17.3. Data Stage (OUT Transfer)

7.17.4. Remarks and Related Commands

This command sets the string descriptor length, descriptor type, and 60 bytes of the Unicode string as specified in
the USB 2.0 specification. The CP2130 USB serial string descriptor has a maximum length of 62 bytes, including
string descriptor length and descriptor type. This means the Unicode string has a maximum length of 60 bytes or
30, 16-bit Unicode characters.

The string descriptor length specifies the number of valid bytes in the Unicode string.

The USB language ID, returned in USB string descriptor 0, is defined as 0x0409 (little-endian) or English (United
States). All USB strings must be specified according to this language ID.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also Get_Serial_String (Command ID 0x6A).

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x6B Command ID

wValue 0xA5F1 Memory key

wLength 0x0040 Data stage length in bytes

Name Offset Size Value Description

Length 0 1 Value The USB string descriptor length including Length, Descrip-
tor Type, and String

Descriptor Type 1 1 0x03 USB string descriptor constant

String 2 60 Unicode UTF-16 encoded string (little-endian; bytes 0–59)

Reserved 62 2 Value

AN792

Rev. 0.3 67

7.18. Set_USB_Config (Command ID 0x61)
7.18.1. Description

Set the USB configuration values.

7.18.2. Setup Stage (OUT Transfer)

7.18.3. Data Stage (OUT Transfer)

Name Value Description

bmRequestType 0x40 Host-to-Device vendor request

bRequest 0x61 Command ID

wValue 0xA5F1 Memory key

wLength 0x000A Data stage length in bytes

Name Offset Size Value Description

VID 0 2 Value USB vendor ID (little-endian)

PID 2 2 Value USB product ID (little-endian)

Max Power 4 1 Value Power required from the host in bus-powered mode:
0–250: Max electrical current in units of 2 mA

Power Mode 5 1 Value Power mode:
0x00: USB bus-powered; voltage regulator enabled
0x01: USB self-powered; voltage regulator disabled
0x02: USB self-powered; voltage regulator enabled

Major Release 6 1 Value USB device major release number (BCD)

Minor Release 7 1 Value USB device minor release number (BCD)

Transfer Priority 8 1 Value Data transfer priority:
0x00: High-priority read
0x01: High-priority write

Mask 9 1 Bitmap Mask bitmap bit:
0: Do not write the field
1: Write the field

AN792

68 Rev. 0.3

7.18.4. Mask Bitmap

7.18.5. Remarks and Related Commands

The USB configuration values affect the USB descriptors returned during USB enumeration. The device must be
reset to apply these values.

See "2.1. Data Transfer Priority" on page 4 for more information regarding data transfer priority.

Use the Get_Lock_Byte (Command ID 0x6E) command to determine which fields can be written.

The wValue field must be set to the memory key value in order to write to OTP memory. For all other commands,
the wValue field should be cleared to 0 to reduce the risk of OTP memory corruption.

See also Get_USB_Config (Command ID 0x60).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transfer Pri-
ority

Reserved Release
Version

Power Mode Max Power PID VID

AN792

Rev. 0.3 69

8. Interfacing with the CP2130 using LibUSB

For users that are not using a Windows platform, LibUSB will be the easiest way to integrate the CP2130 with a
modern host OS such as Linux or OSX. This document is accompanied by a sample C++ application that makes
use of LibUSB to show how to set GPIO values, Write and Read, from the device. This sample code should be
used as an example of how to open and close the device in LibUSB and how to issue control requests to endpoint
0 and bulk requests to endpoint 1 or 2.

8.1. LibUSB and Linux
This section will show how to use LibUSB with Ubuntu 12.04. The instructions should be similar across most Linux
OS distributions. For specific installation instructions on installation and usage, visit the LibUSB website at
www.libusb.org.

8.1.1. Installation on Linux

To install the driver in Ubuntu Linux use the Advanced Packaging Tool (apt-get). This will download and place all
the files needed for LibUSB in their proper locations. Type the following command into a terminal:

sudo apt-get install libusb-1.0-0-dev

In order for a device to be accessible by non-root users a udev file needs to be created. This file is included in the
sample source files which allows access to any Silicon Labs device. Place the file in /etc/udev/rules.d directory.
Here is the functional part of the file:

SUBSYSTEM=="usb", ATTRS{idVendor}=="10c4", MODE="0666"
SUBSYSTEM=="usb_device", ATTRS{idVendor}=="10c4", MODE="0666"

The udev file above will allow access to any Silicon Labs device because it is matching off of the VID only. For
more information and guidance on writing or customizing udev files, visit the writing page at www.reactivated.net/
writing_udev_rules.html.

After performing these steps, your device can by plugged in and will be accessible via LibUSB.

8.1.2. Usage on Linux

To use LinUSB in your application you’ll need to include the proper header file and link against the LibUSB
libraries. In this C++ example, use the included libusb header file:

#include <libusb-1.0/libusb.h>

For usage in other languages, see the see the Bindings section of the bUSB website at www.libusb.org/#Bindings.

To link with the LinUSB libraries, add this command line switch to the linker:

-lusb-1.0

8.1.3. Initialization and Device Discovery

The sample application shows the calls necessary to initialize and discover a device.

The steps that need to be taken to get a handle to the CP2130 device are:

1. Initialize LibUSB using libusb_init().

2. Get the device list using libusb_get_device_list() and find a device to connect to.

3. Open the device with LibUSB using libusb_open().

4. Detach any existing kernel connection by checking libusb_kernel_driver_active() and using
libusb_detach_kernel_driver() if it is connected to the kernel.

5. Claim the interface using libusb_claim_interface().

Here is the program listing from the sample application with comments for reference:

// Initialize libusb
 if (libusb_init(&context) != 0)
 goto exit;

http://www.reactivated.net/writing_udev_rules.html
http://www.reactivated.net/writing_udev_rules.html
http://www.libusb.org/
http://www.libusb.org/
http://www.libusb.org
http://www.libusb.org
http://www.libusb.org/#Bindings

AN792

70 Rev. 0.3

 // Search the connected devices to find and open a handle to the CP2130
 deviceCount = libusb_get_device_list(context, &deviceList);
 if (deviceCount <= 0)
 goto exit;
 for (int i = 0; i < deviceCount; i++)
 {
 if (libusb_get_device_descriptor(deviceList[i], &deviceDescriptor) == 0)
 {
 if ((deviceDescriptor.idVendor == 0x10C4) &&
 (deviceDescriptor.idProduct == 0x87A0))
 {
 device = deviceList[i];
 break;
 }
 }
 }
 if (device == NULL)
 {
 std::cout << "ERROR: Device not found" << std::endl;
 goto exit;
 }

 // If a device is found, then open it
 if (libusb_open(device, &cp2130Handle) != 0)
 {
 std::cout << "ERROR: Could not open device" << std::endl;
 goto exit;
 }

 // See if a kernel driver is active already, if so detach it and store a
 // flag so we can reattach when we are done
 if (libusb_kernel_driver_active(cp2130Handle, 0) != 0)
 {
 libusb_detach_kernel_driver(cp2130Handle, 0);
kernelAttached = 1;
 }

 // Finally, claim the interface
 if (libusb_claim_interface(cp2130Handle, 0) != 0)
 {
 std::cout << "ERROR: Could not claim interface" << std::endl;
 goto exit;
 }

AN792

Rev. 0.3 71

8.1.4. Uninitialization

The sample code also shows the calls necessary to uninitialize a device.

The steps need to be taken to disconnect from the CP2130 device are:

1. Release the interface using libusb_release_interface().

2. Reattach from the kernel using libusb_attach_kernel_driver() (only if the device was connected to the
kernel previously).

3. Close the LibUSB handle using libusb_close().

4. Free the device list we obtained originaly using libusb_free_device_list().

5. Uninitialize LibUSB using libusb_exit().

Here is the program listing from the sample application for reference:

 // Cleanup and deinitialize libusb
 if (cp2130Handle)
 libusb_release_interface(cp2130Handle, 0);
 if (kernelAttached)
 libusb_attach_kernel_driver(cp2130Handle, 0);
 if (cp2130Handle)
 libusb_close(cp2130Handle);
 if (deviceList)
 libusb_free_device_list(deviceList, 1);
 if (context)
 libusb_exit(context);

8.1.5. USB Requests

There are three types of USB requests that can be sent to the CP2130: control, bulk in, and bulk out. The control
requests are used for vendor specific general purpose requests to the control endpoint. The bulk pipes will allow for
reading and writing data to the SPI lines, MISO and MOSI. The sample source shows examples of each of these.

8.1.5.1. Control Requests

The example GPIO function will get/set the GPIO values with a control request. Each of the commands defined in
section “6. Configuration and Control Commands (Control Transfers)” can be used with the LibUSB control
request function. Each of the paramaters will map to the LibUSB function. In this example we will refer to section
“6.6. Get_GPIO_Values (Command ID 0x20)” .

In this command there is a bmRequestType, bRequest and wLength. In this case the other paramaters, wValue
and wIndex, are set to 0. These parameters are used directly with the libusb_control_transfer_function and it will
return the number of bytes transferred. Here is the definition:

int libusb_control_transfer(libusb_device_handle* dev_handle, uint8_t
bmRequestType, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, unsigned char*
data, uint16_t wLength, unsigned int timeout)

After putting the defined values from section “6.6.2. Setup Stage (OUT Transfer)” in the function, this is the
resulting call to get the GPIO

unsigned char control_buf_out[2];
libusb_control_transfer(cp2130Handle, 0xC0, 0x20, 0x0000, 0x0000,
control_buf_out, sizeof(control_buf_out), usbTimeout);

The function will return the data in the control_buf_out buffer and the return value will be 2, the size of that buffer.
The GPIO values can be read form the control_buf_out buffer as defined in section “6.6.4. Level Bitmap” .

All the other requests should be formatted in the same way, according to the LibUSB documentation.

http://libusb.sourceforge.net/api-1.0/group__syncio.html#gab8ae853ab492c22d707241dc26c8a805

AN792

72 Rev. 0.3

8.1.5.2. Bulk OUT Requests

The example write function will send data to the SPI MOSI line. To perform writes, use the description in section
“5.2. Write (Command ID 0x01)” to transmit data with the LibUSB bulk transfer function. Here is the definition:

int libusb_bulk_transfer(struct libusb_device_handle* dev_handle, unsigned char endpoint,
unsigned char* data, int length, int * transferred, unsigned int timeout)

To perform a write to the MOSI line, pack a buffer with the specified data and payload then send the entire packet.
Here is an example from the sample application that will write 6 bytes to endpoint 1:

 unsigned char write_command_buf[14] = {

 0x00, 0x00, // Reserved

 0x01, // Write command

 0x00, // Reserved

 0x06, 0x00, 0x00, 0x00, // Write 6 bytes, little‐endian

 0x00, 0x11, 0x22, 0x33, 0x44, 0x55 // Test data, 6 bytes

 };

 libusb_bulk_transfer(cp2130Handle, 0x01, write_command_buf,

sizeof(write_command_buf), &bytesWritten, usbTimeout);

The function will return 0 upon success, otherwise it will return an error code to check for the failure reason.

8.1.5.3. Bulk IN Requests

Note: Because there is no input to the SPI the read is commented out. The code itself demonstrates reading 6 bytes, but will
not succeed since there is nothing to send this data to the host. This code is meant to serve as an example of how to
perform a read in a developed system.

The example read function will send a request to read data from the SPI MISO line. To perform reads, use the
description in section “5.1. Read (Command ID 0x00)” to request data with the LibUSB bulk transfer function (see
definition in “8.1.5.2. Bulk OUT Requests” , or the LibUSB documentation).

To perform a read from the MISO line, pack a buffer with the specified read command then send the entire packet.
Immediately after that, perform another bulk request to get the response. Here is an example from the sample
application that will try to read 6 bytes from endpoint 1:

 // This example shows how to issue a bulk read request to the SPI MISO line

 unsigned char read_command_buf[14] = {

 0x00, 0x00, // Reserved

 0x00, // Read command

 0x00, // Reserved

 0x06, 0x00, 0x00, 0x00, // Read 6 bytes, little‐endian

 };

 unsigned char read_input_buf[6];

 libusb_bulk_transfer(cp2130Handle, 0x01, read_command_buf,

sizeof(read_command_buf), &bytesWritten, usbTimeout);

 libusb_bulk_transfer(cp2130Handle, 0x01, read_input_buf, sizeof(read_input_buf),

&bytesRead, usbTimeout))

The bulk transfer function will return 0 upon success, otherwise it will return an error code to check for the failure
reason. In this case make sure to check that the bytesWritten is the same as the command buffer size as well as a
successful transfer.

http://libusb.sourceforge.net/api-1.0/group__syncio.html#gab8ae853ab492c22d707241dc26c8a805

AN792

Rev. 0.3 73

APPENDIX A—OTP ROM FORMAT

Table 7 describes the OTP ROM configuration fields and their default values. Table 8 describes the pin
configuration fields and their default values.

Table 7. OTP ROM Format (512 Bytes)

Field Offset Size Default Set Commands Note

VID 0 2 0x10C4

Set_USB_Config (Command
ID 0x61)

(little-endian)

PID 2 2 0x87A0 (little-endian)

Max Power 4 1 0x32 50 x 2 mA = 100 mA

Power Mode 5 1 0x00 USB bus-powered; voltage
regulator enabled

Release
Version

6 2 0x0100 Major release, minor release
(big-endian)

Transfer
Priority

8 1 0x01 High-priority write

Manufacturing
String 1

9 63 0x2A, 0x03,
L“Silicon

Laboratories”

Set_Manufacturing_String1
(Command ID 0x63) 126-byte USB string descriptor

(padded with 0x00)Manufacturing
String 2

72 63
Set_Manufacturing_String2

(Command ID 0x65)

Product String
1

135 63 0x32, 0x03,
L“CP2130 USB-
to-SPI Bridge”

Set_Product_String1
(Command ID 0x67) 126-byte USB string descriptor

(padded with 0x00)Product String
2

198 63
Set_Product_String2
(Command ID 0x69)

Serial String 261 62
0x12, 0x03,

<Unique Serial>
Set_Serial_String

(Command ID 0x6B)

Unique serial—32-bit
hexadecimal serial number
represented as 8, UTF-16 upper-
case letters/numerals.
Example: L“56789ABC”.
Max 62-byte USB string
descriptor.

Reserved 323 1 0xFF —

Pin Config 324 20 See Table 8
Set_Pin_Config (Command

ID 0x6D)

Customized
Fields

344 2 0xFFFF —

Lock Byte 346 2 0xFFFF
Set_Lock_Byte (Command

ID 0x6F)

Reserved 348 164 0xFF, ..., 0xFF —

AN792

74 Rev. 0.3

Table 8. Pin Config Default Values (20 Bytes)

Field Default Function

GPIO.0 0x03 CS0 (push-pull output)

GPIO.1 0x03 CS1 (push-pull output)

GPIO.2 0x03 CS2 (push-pull output)

GPIO.3 0x04 RTR (input)

GPIO.4 0x04 EVTCNTR rising edge (input)

GPIO.5 0x04 CLKOUT (push-pull output)

GPIO.6 0x00 GPIO (input)

GPIO.7 0x02 GPIO (push-pull output)

GPIO.8 0x04 SPIACT (push-pull output)

GPIO.9 0x04 SUSPEND (push-pull output)

GPIO.10 0x04 SUSPEND (push-pull output)

Suspend Level 0x0000

Suspend Mode and Levels are not usedSuspend
Mode

0x0000

Wakeup Mask 0x0000
No pins used for wakeup

Wakeup Match 0x0000

Divider 0x00 CLKOUT = 93.75 kHz

AN792

Rev. 0.3 75

APPENDIX B—PIN CONFIGURATION OPTIONS

Some of the pins of the CP2130 are configurable as inputs, open-drain outputs, or push-pull outputs. These
options are configured when the device has enumerated and is operating in a normal mode. When the CP2130 is
in USB suspend, all of the configurable pins are limited to be open-drain or push-pull outputs. The following
describes the differences between open-drain and push-pull, and the difference in behavior in Suspend mode. See
the CP2130 data sheet for the electrical specifications of the GPIO pins.

 GPIO Input
When a pin is configured as a GPIO input, the pin can read a logic high or logic low value. Internally, the
GPIO pin is connected to the VIO pin through a resistor. If the pin is not connected externally, it will return a
logic high or 1. Any voltages connected to the pin should conform to data sheet specifications.

 Open-Drain Output
When a pin is configured as a GPIO open-drain output, the pin can output a logic high or logic low value.
The default value is logic high, and a logic high value is created by internally connecting the GPIO pin to
the VIO pin through a resistor. In this mode, the pin is unable to source much current when driving a logic
high. If the Set_GPIO_Mode_And_Level (Command ID 0x23) or Set_GPIO_Values (Command ID 0x21)
command is used to change the output to a logic low, the pin is internally connected to GND.

 Push-Pull Output
When a pin is configured as a GPIO push-pull output, the pin can output a logic high or logic low value.
When driving a logic high value, the pin is directly connected to the VIO pin internally and can source
current for devices, such as LEDs. When driving a logic low value, the pin is internally connected to GND.

 Suspend Mode
When the device is in Suspend mode, all of the GPIO pins are forced to be open-drain or push-pull outputs.
The mode of each GPIO pin (open-drain or push-pull) and output value (logic-high or logic-low) is an OTP
ROM configurable value which is set using the Set_Pin_Config (Command ID 0x6D) command. The
modes and values of the pins during Suspend can be the same or different as when the device is in Normal
mode. To maintain the same electrical characteristics of a GPIO Input Pin during Suspend, configure the
pin for open-drain mode with the output latch value set to logic-high or 1.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Introduction
	1.1. Additional Documentation

	2. USB Endpoints
	2.1. Data Transfer Priority

	3. Control Transfers
	4. Multi-Byte Field Endianness
	5. Data Transfer Commands (Bulk Transfers)
	5.1. Read (Command ID 0x00)
	5.1.1. Description
	5.1.2. Command (OUT Transfer)
	5.1.3. Response (IN Transfer)
	5.1.4. Remarks

	5.2. Write (Command ID 0x01)
	5.2.1. Description
	5.2.2. Command (OUT Transfer)
	5.2.3. Remarks

	5.3. WriteRead (Command ID 0x02)
	5.3.1. Description
	5.3.2. Command (OUT Transfer)
	5.3.3. Response (IN Transfer)
	5.3.4. Remarks

	5.4. ReadWithRTR (Command ID 0x04)
	5.4.1. Description
	5.4.2. Command (OUT Transfer)
	5.4.3. Response (IN Transfer)
	5.4.4. Remarks

	6. Configuration and Control Commands (Control Transfers)
	6.1. Get_Clock_Divider (Command ID 0x46)
	6.1.1. Description
	6.1.2. Setup Stage (OUT Transfer)
	6.1.3. Data Stage (IN Transfer)
	6.1.4. Remarks and Related Commands

	6.2. Get_Event_Counter (Command ID 0x44)
	6.2.1. Description
	6.2.2. Setup Stage (OUT Transfer)
	6.2.3. Data Stage (IN Transfer)
	6.2.4. Mode Bitmap
	6.2.5. Remarks and Related Commands

	6.3. Get_Full_Threshold (Command ID 0x34)
	6.3.1. Description
	6.3.2. Setup Stage (OUT Transfer)
	6.3.3. Data Stage (IN Transfer)
	6.3.4. Remarks and Related Commands

	6.4. Get_GPIO_Chip_Select (Command ID 0x24)
	6.4.1. Description
	6.4.2. Setup Stage (OUT Transfer)
	6.4.3. Data Stage (IN Transfer)
	6.4.4. Channel CS Enable Bitmap
	6.4.5. Pin CS Enable Bitmap
	6.4.6. Remarks and Related Commands

	6.5. Get_GPIO_Mode_And_Level (Command ID 0x22)
	6.5.1. Description
	6.5.2. Setup Stage (OUT Transfer)
	6.5.3. Data Stage (IN Transfer)
	6.5.4. Level / Mode Bitmap
	6.5.5. Remarks and Related Commands

	6.6. Get_GPIO_Values (Command ID 0x20)
	6.6.1. Description
	6.6.2. Setup Stage (OUT Transfer)
	6.6.3. Data Stage (IN Transfer)
	6.6.4. Level Bitmap
	6.6.5. Remarks and Related Commands

	6.7. Get_RTR_State (Command ID 0x36)
	6.7.1. Description
	6.7.2. Setup Stage (OUT Transfer)
	6.7.3. Data Stage (IN Transfer)
	6.7.4. Remarks and Related Commands

	6.8. Get_SPI_Word (Command ID 0x30)
	6.8.1. Description
	6.8.2. Setup Stage (OUT Transfer)
	6.8.3. Data Stage (IN Transfer)
	6.8.4. Channel N Word Bitmap
	6.8.5. Remarks and Related Commands

	6.9. Get_SPI_Delay (Command ID 0x32)
	6.9.1. Description
	6.9.2. Setup Stage (OUT Transfer)
	6.9.3. Data Stage (IN Transfer)
	6.9.4. Mask Bitmap
	6.9.5. Remarks and Related Commands

	6.10. Get_ReadOnly_Version (Command ID 0x11)
	6.10.1. Description
	6.10.2. Setup Stage (OUT Transfer)
	6.10.3. Data Stage (IN Transfer)
	6.10.4. Remarks

	6.11. Reset_Device (Command ID 0x10)
	6.11.1. Description
	6.11.2. Setup Stage (OUT Transfer)
	6.11.3. Remarks

	6.12. Set_Clock_Divider (Command ID 0x47)
	6.12.1. Description
	6.12.2. Setup Stage (OUT Transfer)
	6.12.3. Data Stage (OUT Transfer)
	6.12.4. Remarks and Related Commands

	6.13. Set_Event_Counter (Command ID 0x45)
	6.13.1. Description
	6.13.2. Setup Stage (OUT Transfer)
	6.13.3. Data Stage (OUT Transfer)
	6.13.4. Mode Bitmap
	6.13.5. Remarks and Related Commands

	6.14. Set_Full_Threshold (Command ID 0x35)
	6.14.1. Description
	6.14.2. Setup Stage (OUT Transfer)
	6.14.3. Data Stage (OUT Transfer)
	6.14.4. Remarks and Related Commands

	6.15. Set_GPIO_Chip_Select (Command ID 0x25)
	6.15.1. Description
	6.15.2. Setup Stage (OUT Transfer)
	6.15.3. Data Stage (OUT Transfer)
	6.15.4. Remarks and Related Commands

	6.16. Set_GPIO_Mode_And_Level (Command ID 0x23)
	6.16.1. Description
	6.16.2. Setup Stage (OUT Transfer)
	6.16.3. Data Stage (OUT Transfer)
	6.16.4. Remarks and Related Commands

	6.17. Set_GPIO_Values (Command ID 0x21)
	6.17.1. Description
	6.17.2. Setup Stage (OUT Transfer)
	6.17.3. Data Stage (OUT Transfer)
	6.17.4. Level / Mask Bitmap
	6.17.5. Remarks and Related Commands

	6.18. Set_RTR_Stop (Command ID 0x37)
	6.18.1. Description
	6.18.2. Setup Stage (OUT Transfer)
	6.18.3. Data Stage (OUT Transfer)
	6.18.4. Remarks and Related Commands

	6.19. Set_SPI_Word (Command ID 0x31)
	6.19.1. Description
	6.19.2. Setup Stage (OUT Transfer)
	6.19.3. Data Stage (OUT Transfer)
	6.19.4. Channel Word Bitmap
	6.19.5. Remarks and Related Commands

	6.20. Set_SPI_Delay (Command ID 0x33)
	6.20.1. Description
	6.20.2. Setup Stage (OUT Transfer)
	6.20.3. Data Stage (OUT Transfer)
	6.20.4. Mask Bitmap
	6.20.5. Remarks and Related Commands

	7. OTP ROM Configuration Commands (Control Transfers)
	7.1. Get_Lock_Byte (Command ID 0x6E)
	7.1.1. Description
	7.1.2. Setup Stage (OUT Transfer)
	7.1.3. Data Stage (IN Transfer)
	7.1.4. Lock Bitmap
	7.1.5. Remarks and Related Commands

	7.2. Get_Manufacturing_String1 (Command ID 0x62)
	7.2.1. Description
	7.2.2. Setup Stage (OUT Transfer)
	7.2.3. Data Stage (IN Transfer)
	7.2.4. Remarks and Related Commands

	7.3. Get_Manufacturing_String2 (Command ID 0x64)
	7.3.1. Description
	7.3.2. Setup Stage (OUT Transfer)
	7.3.3. Data Stage (IN Transfer)
	7.3.4. Remarks and Related Commands

	7.4. Get_Pin_Config (Command ID 0x6C)
	7.4.1. Description
	7.4.2. Setup Stage (OUT Transfer)
	7.4.3. Data Stage (IN Transfer)
	7.4.4. Suspend Level Bitmap
	7.4.5. Suspend Mode Bitmap
	7.4.6. Wakeup Mask Bitmap
	7.4.7. Wakeup Match Bitmap
	7.4.8. Remarks and Related Commands

	7.5. Get_Product_String1 (Command ID 0x66)
	7.5.1. Description
	7.5.2. Setup Stage (OUT Transfer)
	7.5.3. Data Stage (IN Transfer)
	7.5.4. Remarks and Related Commands

	7.6. Get_Product_String2 (Command ID 0x68)
	7.6.1. Description
	7.6.2. Setup Stage (OUT Transfer)
	7.6.3. Data Stage (IN Transfer)
	7.6.4. Remarks and Related Commands

	7.7. Get_PROM_Config (Command ID 0x70)
	7.7.1. Description
	7.7.2. Setup Stage (OUT Transfer)
	7.7.3. Data Stage (IN Transfer)
	7.7.4. Remarks and Related Commands

	7.8. Get_Serial_String (Command ID 0x6A)
	7.8.1. Description
	7.8.2. Setup Stage (OUT Transfer)
	7.8.3. Data Stage (IN Transfer)
	7.8.4. Remarks and Related Commands

	7.9. Get_USB_Config (Command ID 0x60)
	7.9.1. Description
	7.9.2. Setup Stage (OUT Transfer)
	7.9.3. Data Stage (IN Transfer)
	7.9.4. Remarks and Related Commands

	7.10. Set_Lock_Byte (Command ID 0x6F)
	7.10.1. Description
	7.10.2. Setup Stage (OUT Transfer)
	7.10.3. Data Stage (OUT Transfer)
	7.10.4. Lock Bitmap
	7.10.5. Remarks and Related Commands

	7.11. Set_Manufacturing_String1 (Command ID 0x63)
	7.11.1. Description
	7.11.2. Setup Stage (OUT Transfer)
	7.11.3. Remarks and Related Commands

	7.12. Set_Manufacturing_String2 (Command ID 0x65)
	7.12.1. Description
	7.12.2. Setup Stage (OUT Transfer)
	7.12.3. Data Stage (OUT Transfer)
	7.12.4. Remarks and Related Commands

	7.13. Set_Pin_Config (Command ID 0x6D)
	7.13.1. Description
	7.13.2. Setup Stage (OUT Transfer)
	7.13.3. Data Stage (OUT Transfer)
	7.13.4. Suspend Level Bitmap
	7.13.5. Suspend Mode Bitmap
	7.13.6. Wakeup Mask Bitmap
	7.13.7. Wakeup Match Bitmap
	7.13.8. Remarks and Related Commands

	7.14. Set_Product_String1 (Command ID 0x67)
	7.14.1. Description
	7.14.2. Setup Stage (OUT Transfer)
	7.14.3. Data Stage (OUT Transfer)
	7.14.4. Remarks and Related Commands

	7.15. Set_Product_String2 (Command ID 0x69)
	7.15.1. Description
	7.15.2. Setup Stage (OUT Transfer)
	7.15.3. Data Stage (OUT Transfer)
	7.15.4. Remarks and Related Commands

	7.16. Set_PROM_Config (Command ID 0x71)
	7.16.1. Description
	7.16.2. Setup Stage (OUT Transfer)
	7.16.3. Data Stage (OUT Transfer)
	7.16.4. Remarks and Related Commands

	7.17. Set_Serial_String (Command ID 0x6B)
	7.17.1. Description
	7.17.2. Setup Stage (OUT Transfer)
	7.17.3. Data Stage (OUT Transfer)
	7.17.4. Remarks and Related Commands

	7.18. Set_USB_Config (Command ID 0x61)
	7.18.1. Description
	7.18.2. Setup Stage (OUT Transfer)
	7.18.3. Data Stage (OUT Transfer)
	7.18.4. Mask Bitmap
	7.18.5. Remarks and Related Commands

	8. Interfacing with the CP2130 using LibUSB
	8.1. LibUSB and Linux
	8.1.1. Installation on Linux
	8.1.2. Usage on Linux
	8.1.3. Initialization and Device Discovery
	8.1.4. Uninitialization
	8.1.5. USB Requests

	Appendix A—OTP ROM Format
	Appendix B—Pin Configuration Options

