
EFM32 Series 0: DMA (ARM PrimeCell µDMA PL230)

EFM32 - DMA

 DMA has read/write access to most of the EFM32 memory map

 Flash writes can not be done in memory map, but through sequenced writes to
peripheral registers

 RAM and EBI secondary mapping in code space not accessible by DMA

2

DMA – Configuration Overview

 Registers in source/destination peripherals
 Configure peripherals to send correct DMA requests and/or behave correctly when a

DMA access is performed

 DMA registers
 Configure trigger sources for each channel

 Set up interrupts, check status etc.

 Each channel has primary and alternate structure in RAM

 Source address

 Destination address

 DMA cycle number (N)

 Arbitration rate(2R)

 Cycle type
 Basic

 Auto

 Ping-pong

 Scatter-gather (Memory or peripheral)

 Data size and increment

3

Channel Configuration

4

Channel Descriptor

 Stored in RAM

 Updated for every transfer

 Only need to allocate memory for descriptors that are used

5

DMA cycle timing

 DMA transfer timing affected by CPU activity on the bus
 Timing of DMA transfers is not predictable

 Margins in timing must be included to ensure reliable operation

 Error handlers should be implemented in-case of overflow/underflow

 Bus matrix arbitration settings (only in GG, LG and WG)
 CPU priority (default): CPU priority (0 wait-state access)

 DMA priority: DMA priority (0 wait-state access)

 DMAEM1 priority: DMA priority when sleeping, CPU priority when awake

 Lower numbered DMA channels have priority
 Priority can be increased individually for each channel

Example DMA timing

6

DMA – Basic Mode

 Performs 2R transfers per request until N transfers have been done. Arbitrates after 2R

 Normal with 2R=1 in EFM32

 Example with 2R=2, N=6:

Transfer

Transfer

DMA ch req

Transfer

Transfer

DMA ch req

Transfer

Transfer

DMA ch req

DMA ch done (interrupt)

Primary descriptor Arbitrate

7

DMA – Auto Mode

 Performs N transfers per request. Arbitrates for every 2R transfers

 Example with 2R=2, N=6

Transfer

Transfer

DMA ch req

Transfer

Transfer

Transfer

Transfer
DMA ch done (interrupt)

Primary descriptor

Arbitrate

8

DMA – Ping-pong Mode

 Auto : Ping-Pong: N requests on Primary, then N requests on Alternate, then Primary...
Arbitration for every 2R transfers
 Continues as long as CPU reconfigures the descriptors while the other is running

 Example: 2R=2, N=4:

Transfer

Transfer

DMA ch req

Transfer

Transfer

DMA ch req

Transfer

Transfer

DMA ch req

Primary descriptor Alternate descriptor

Transfer

Transfer

DMA ch req

DMA interrupt

Transfer

Transfer

DMA ch req

Transfer

Transfer

DMA ch req

DMA interrupt

DMA interrupt

Arbitrate

9

DMA – Peripheral Scatter-gather Mode

 Scather-gather: Uses Primary to modify tasks in Alternate
1) Primary structure copies task to Alternate structure

2) N transfers completed on Alternate

3) If Primary N>0 goto 1)

 One DMA request for each 2R transfers

 Example: Task A (2R=2, N=2), Task B (2R=2, N=4), Task C (2R=2, N=2)

Copy A to alternate
DMA ch req

Copy B to alternate

DMA ch req

Transfer A

Transfer A

Primary descriptor Alternate descriptor

Transfer B

Transfer B

DMA ch req

Copy C to alternate

DMA ch req

DMA interrupt

Transfer C

Transfer C

Transfer B

Transfer B

Arbitrate

10

DMA – Memory Scatter-gather Mode

 Scather-gather: Uses Primary to modify tasks in Alternate
1) Primary structure copies task to Alternate structure

2) N transfers completed on Alternate

3) If Primary N>0 goto 1)

 One request initiates whole sequence

 Example: Task A (2R=2, N=2), Task B (2R=2, N=4), Task C (2R=2, N=2)

Copy A to alternate
DMA ch req

Copy B to alternate

Transfer A

Transfer A

Primary descriptor Alternate descriptor

Transfer B

Transfer B

Copy C to alternate

DMA interrupt

Transfer C

Transfer C

Transfer B

Transfer B

Arbitrate

11

DMA – LEUART/LESENSE DMA in EM2

 LEUART and LESENSE can use DMA from «EM2»

 What is actually happening:

1. LEUART/LESENSE DMA requests wakes up:

 Regulated power domain

 HFRCO

 Bus system

 RAM

 DMA

2. DMA transfers the data to or from RAM

3. The additional resources are shut off

 Functionally the same as EM2

 Other peripherals like TIMERs etc are still clock
gated

 Power consumption during DMA transfer the
same as EM1

 Usually short and seldom

DMA

Z
Z
Z

32-bit Bus

RXRAM LEUART

CPUDMA

RAM LEUART

12

DMA – Single vs burst requests

 Most peripherals support only burst DMA requests

 2R transfers done for each request

 UART and USART support combined single and burst DMA requests

 Single and/or burst requests are sent depending on TX/RX FIFO fill level

 Default:

 DMA performs single transfers until TX buffer is full or RX buffer is empty

 DMA_CHUSEBURSTS = 1

 DMA waits until TX buffer is full or RX buffer is empty before transferring everything in one burst

 Both buffer elements can be read/written in one transfer as one combined 32-bit word.

TXDATA 0

TXDATA 1
Burst DMA req

Bus

Single DMA req
RXDATA 1

RXDATA 0
Burst DMA req

Bus

Single DMA req

To transmit shift register To transmit shift register13

DMA Debugging Techniques

 DMA debugging is challenging for a number of reasons:

 DMA is not stopped with CPU breakpoints

 Race conditions easily created between CPU and DMA

 Bus contention creates non-predictable timing

 DMA source and destination locations have poor debug visibility

 Useful techniques:

 Check DMA_CHREQSTATUS to check that DMA requests are set as expected. Do not enable DMA channel for this.

 Split multi-step DMA transfers to include an intermediate RAM buffer debugging. Use IDE watchpoints to check RAM
buffer contents.

 Use IDE watchpoints to check that DMA descriptors in RAM are updated correctly (especially N value)

 Trigger DMA request with from SW (DMA_CHSWREQ) to check that DMA channel behaves correctly before enabling
peripheral DMA request.

 Enable peripheral underflow/overflow interrupts to get notified if the DMA is not transferring data fast enough

 Check DMA_ERR flag to see if DMA is accessing unmapped memory region.

 Use peripheral PRS signal output to GPIO pins to check timing

14

DMA Feature Extensions in GG, LG and WG

 Retain descriptor state between transfers

 Speed up execution of consequtive DMA requests on same channel by not re-loading
DMA descriptor from RAM for every DMA request

 Looped transfers for ch 0 and 1

 Automatic relead of N value a configurable number of times

 Useful to create a ring buffer

 2D copy on ch 0

 Copy of rectangular memory area between memory locations

 Useful for graphics update

15

DMA EFM32 Family variations

Family Channels Descriptor
retention

Looping 2D copy

ZG 4 No No No

TG 8 No No No

G 8 No No No

LG 12 Yes Yes Yes

WG 12 Yes Yes Yes

GG 12 Yes Yes Yes

16

DMA Configuration with emlib

DMA_Init() – Set up common DMA config registers

DMA_CfgChannel() – Set up DMA channel config registers

DMA CfgDescr()/DMA_CfgDescrScatterGather() – Configure alternate and primary descriptors in RAM

Once channel has been configured it can be activated in desired mode:

DMA_ActivateBasic()/* Basic mode */

DMA_ActivateAuto() /* Auto mode */

DMA_ActivatePingPong() /* Ping-pong mode */

DMA_ActivateScatterGather()

DMA_RefreshPingPong()

DMA interrupt handler are implemented in emlib, but callbacks can be registered by application

 emlib DMA config includes DMA interrupt handler
 Callback functions registered during DMA config

17

Hands-on task 1 - Basic Mode

1. Open an\fae_training\iar\dma.eww and got to adc_basic project

2. Run code and check that DMA->CHREQSTATUS[0] is set to 1

3. Uncomment the DMA_ActivateBasic() function

4. Set a breakpoint in ADC0_IRQHandler()

5. Run code and verify that success is reached without triggering ADC IRQ breakpoint and that
ramBufferAdcData is filled with samples

6. Decrease ADC_CLOCK_DIV to 10 and run code

7. Find lowest clock divisor that does not trigger ADC IRQ breakpoint

8. Set compiler optimization to high/speed

9. Find lowest clock divisor that does not trigger ADC IRQ breakpoint

10. Expand example by changing to ping-pong mode

18

Hands-on task 2 – Ping-pong Mode

1. Open an\fae_training\iar\dma.eww and got to adc_ping_pong project

2. Set a breakpoint in ADC0_IRQHandler()

3. Run code and check that both ramBufferAdcDatax buffers are filled

4. Find lowest clock divisor that does not trigger ADC IRQ breakpoint

5. Set ADC_SAMPLES = 5 and run code. Breakpoint should hit.

6. Find lowest ADC_SAMPLE that does not trigger breakpoint

19

Examples in DMA appnote

 Flash transfer

 Memory transfer from flash to RAM using auto mode

 ADC transfer

 Basic transfer from ADC to RAM

 ADC transfer (ping-pong)

 Transfer from ADC to RAM using ping-pong

 SPI Master

 RX and TX DMA channels handling SPI master operation

 SPI TX (ping-pong)

 Send SPI data at max frequency using when using only TX DMA

 UART RX and TX

 RX and TX DMA channels handling UART operation

 Scatter-gather transfer

 3 transfers between different memory segments executed automatically

 GPIO trigger

 Transition on GPIO input triggers DMA transfer from RAM to a set of GPIO pins

 I2C master

 Read and write of an I2C slave using DMA

20

More information in
AN0013 EFM32 DMA

