
EFM32 Series 0: Serial interfaces

Agenda

 SPI/UART

 I2C

 LEUART

 USB

 Hardware considerations

 Device configuration (descriptors)

 Stack API

 States and callbacks

 LEUART Hands-On

2

SPI and UART

SPI and UART Highlights

• Up to 3 USARTs

• UART/SPI (master/slave)

• IrDA

• SmartCards (ISO7816)

• 8 Mbit/s UART, 16 Mbit/s SPI master

• I2S support (ZG, TG, LG, GG and WG)

• Up to 2 UARTs

• Subset of USART with support for

asynchronous communication

ZERO
ARM Cortex-M0+

TINY
ARM Cortex-M3

WONDER
ARM Cortex-M4

FPU

GIANT
ARM Cortex-M3

LEOPARD
ARM Cortex-M3

GECKO
ARM Cortex-M3

LINKS
3

Baud Rate Calculation

4

Transmit Buffer

 2 level FIFO + shift register

 TXDOUBLE writes to both elements

 TXBIL controls TXBL IRQ

 0 => IRQ goes high when buffer is empty

 1 => IRQ goes high when buffer is half-empty

 IRQs: TXBL, TXOF, TXC

5

Receive Buffer

 2 level FIFO + shift register

 RXDOUBLE reads both elements

 RXDATAV IRQ cleared by reading RXDATA/RXDOUBLE

 ‘Peak’ registers leaves contents unchanged

6

Half-Duplex

 Allows communication using only one line

 LOOPBCK connects RX to TX pin

 TXTRIEN tristates transmitter when idle

7

SPI Timing

CS hold time cannot be configured with AUTOCS.
Use GPIO if precise control is required.

8

USART Special Modes

I2S

IrDA

9

SPI DMA RX

 Problem: SPI Master must transmit in order to receive

 Solution 1: Dummy TX DMA

 Needs two DMA channels

 Can cause problem if RX DMA is unable to keep up (TX DMA channel has no knowledge of RXDATAV/RXFULL)

 Solution 2: AUTOTX

 SPI transmits automatically while space in RX buffer

 Currently only works on WG (errata LG,GG,TG)

 Last bytes must be fetched with interrupts. Example in AN0013

10

I²C

I2C Highlights

• Up to 2 I2C peripherals included

• I2C and SMBus support

• Data rates up to 1 MBit/s

• Hardware address recognition in EM3

EFM32

I
2
C master/slave

Other I
2
C

master

Other I
2
C

slave

VDD

I
2
C

EEPROM

SDA

SCL

ZERO
ARM Cortex-M0+

TINY
ARM Cortex-M3

WONDER
ARM Cortex-M4

FPU

GIANT
ARM Cortex-M3

LEOPARD
ARM Cortex-M3

GECKO
ARM Cortex-M3

LINKS
11

I2C State Machine

12

I2C

 emlib handles I2C protocol state machine

 Polled transfer:

 Interrupt driven transfer:

DMA example in AN0013

13

Low Energy UART

DMA

LEUART Highlights

• Up to 2 LEUARTs

• Full UART with 32 kHz clock

• Available even in Deep Sleep

• 150 nA at 9600 baud/s

• DMA support

• Valid wake-up packet

Z
Z
Z

32-bit Bus

RX
RAM LEUART

CPUDMA

RAM LEUART

ZERO
ARM Cortex-M0+

TINY
ARM Cortex-M3

WONDER
ARM Cortex-M4

FPU

GIANT
ARM Cortex-M3

LEOPARD
ARM Cortex-M3

GECKO
ARM Cortex-M3

14

Baud rate

256 x (32768 / 9600 – 1) = 617.813333

15

LEUART + DMA in EM2

STARTFRAME

SIGFRAME

RXBLOCK

RXDATA

= IRQ

=

DMA

RAM

DMATXDATA

RXDMAWU

RXDMAWU

16

USB

ZERO
ARM Cortex-M0+

TINY
ARM Cortex-M3

WONDER
ARM Cortex-M4

FPU

GIANT
ARM Cortex-M3

LEOPARD
ARM Cortex-M3

GECKO
ARM Cortex-M3

Universal Serial Bus Controller

USB Highlights

• USB 2.0 compliant

• Support for USB Device and Host

• Full speed (12 Mbit/s)

• 14 endpoints (2 KB buffers)

• Integrated 3.3V regulator (up to 100 mA)

• Dedicated DMA for USB

• Pre-programmed USB device bootloader

• Free stack in Simplicity Studio

• Mass Storage Host/Device

• Human Interface Host/Device

• Vendor Unique Device

• Communication Class Device (USB-to-RS232)

18

USB Overview

19

USB Host

20

Bus Powered Device

21

Self Powered Device

22

Power Switch

23

USB Descriptors

http://www.beyondlogic.org/usbnutshell/usb5.shtml

24

http://www.beyondlogic.org/usbnutshell/usb5.shtml

Device Descriptor

25

Configuration Descriptor

26

HID Descriptors

27

USB State Machine

Communication only possible in this state

Called for every state change

28

Transmit Functions and Buffers

 API functions only initiate transfer

 USBD_Read()

 USBD_Write()

 Application receives callback when transfer is complete (or fails)

 All read/write buffers must be WORD (32-bit) aligned

 Buffer sizes should be rounded up to the next WORD boundary

 Buffers must be statically allocated, NOT on the stack

 Macros exist

 STATIC_UBUF()

 UBUF()

 Receive buffers should be rounded up to nearest maxpacket size IF host will send more data than device
expects

29

Callbacks

 Application receives callbacks when

 Transfers complete or fail

 State changes

 Connection established or lost

 Control message received

 Start-of-Frame received

 Line reset received

 Only callbacks that are used needs to be implemented

30

Using EM2

 USB can run off LF clock when suspended or disconnected

 Application can use USBD_SafeToEnterEM2() to determine when it is safe to enter EM2

 Optionally the stack can enter EM2 automatically (SLEEPONEXIT)

31

Configuration

 USB stack is configured in

 usbconfig.h

 descriptors.h

 USB Stack can output debug information over UART

 Uses retargetio.c and retargetserial.c

32

Documentation

 Doxygen usb documentation

 AN0065 EFM32 as USB Device

 AN801 EFM32 as USB Host

 AN0046 USB Hardware Guidelines

 AN0042 USB-UART Bootloader

 Device and Host examples in SS

 usbdcdc, usbhidkbd, usbdmsd …

33

Demo

Demo USB HID Keyboard

34

Hands-on LEUART

 Open training_leuart

 Set TFT in ‘EFM’ mode

 Fill in the missing code

 Missing code is marked with «TODO»

 Connect USB-UART adapter

 TX (Orange) to PC7

 GND (Black) to GND (pin zero on any port header)

 Verify that code works

 Only bytes from start frame to CR (enter) is printed to TFT

 Missing code

1. Enable DMA wakeup by LEUART on RX data

2. Define a start frame (byte)

3. Enable RX unblock on start frame

4. Enable RX block (two places)

35

