
Silicon Labs Gecko Bootloader
M A Y 2 0 1 7

Multi-platform, Unified Bootloader

Gecko Bootloader: Platform Support

2

 The Gecko Bootloader (BTL) has been developed as a single BTL for all stacks

 Gecko BTL is available now for

 Zigbee

 Thread

 Bluetooth

 Flex

 Gecko BTL supports

 Various communications modes (UART XMODEM, SPI, BGAPI UART DFU, EZSP)

 Internal & External SPI Storage

 A variety of utilities including crypto libraries, CRC, tokens, etc.

 Legacy .ebl files as well as the new .gbl format

 Debug prints and asserts

 Signed firmware, encrypted firmware and secure boot

 GPIO “Bootloader Recovery Mode”

Gecko Bootloader: Platform Support

3

 Pre-xG12 EFR32 ICs support both legacy and Gecko Bootloader

 EFR32xG1 (including stacked flash variants, e.g. EFR32MG1P632x/732x)

 Prebuilt bootloaders still included for legacy configurations

 Intent is to deprecate legacy bootloader soon

 All new chips (EFR32xG1n) will require the new Gecko Bootloader

 Any legacy bootloader support from xG12 alpha is discontinued

 This applies to EFR32xG12 and beyond

 Prebuilt bootloader binaries + AppBuilder samples

 Provided to replicate functionality of legacy bootloader configurations

 Binaries only provided for typical use cases on dev kit variants of radio boards

 SoC and UART NCP bootloaders for Bluetooth and mesh – no security features

 Only a few MG12/BG12 board variants found in new BLE or mesh dev kits

Gecko Bootloader: Two-stage Design

4

 Enables in-field upgrades of the bootloader

 First stage

 Contains just enough code to be able to update the main bootloader (<2kB)

 Main bootloader

 Contains everything necessary to update the application (~12-13kB)

 EBL/GBL file parser

 SPI flash storage driver

 Internal flash storage driver

 NCP protocol parsers

 Security features

First
stage

Main
bootloader

Application

Gecko Bootloader: Device Memory Map

5

 On EFR32xG1, bootloader resides in main flash

 First stage bootloader @ 0x0

 Main bootloader @ 0x800

 Application @ 0x4000

 On newer devices (xG12 & beyond), bootloader resides in bootloader area

 Application @ 0x0

 First stage bootloader @ 0x0FE10000

 Main bootloader @ 0x0FE10800

 Bootloader flash is not erased with commander device masserase or debug-unlock

 To remove the bootloader, a new dummy bootloader has to be flashed (these are included)

 Crypto keys are stored in Lockbits page, which is erased

 Firmware update content can reside in upper flash or ext. Dataflash

 Storage Slot concept allows for >1 image stored in download area

 Facilitates multi-boot use cases

Gecko Bootloader: NCP Bootloader Operation

 The device reboots into the bootloader.

 A GBL file containing an application image is transmitted
from the host to the device via UART or SPI

 The bootloader applies the application upgrade from the
GBL upgrade file on-the fly into App space (i.e.
“standalone bootload” use case).

 The device boots into the application. Application upgrade
is complete.

6

Host
Running
Image

Bootloader
New

Image

Image
New

Image

Bootloader

Gecko Bootloader: SoC Operation

 GBL file downloaded onto the storage medium of the
device (e.g. int. flash or ext. SPI flash) via App or pre-
programming.

 At application’s discretion, downloaded image is verified
and asked to be installed (i.e. “application bootload” use
case).

 The device reboots into the bootloader.

 The bootloader applies the application upgrade from the
GBL upgrade file into App space.

 The device boots into the application. Application upgrade
is complete.

7

Storage
Internal/External

Running
Image

Bootloader

New
Image

Bootloader

Image
New

Image

 Legacy Ember bootloaders used EBL (Ember BootLoad) version 2

 Can be optionally supported by Gecko Bootloader for reuse of files across generations

 Gecko Bootloader not compatible with encrypted EBLv2 files

 Legacy bootloader does not use older .ebl security

 Some changes to add security features, MCU compatibility, etc

 New Simplicity Commander syntax (not image builder) for app and btl

 App: commander gbl create <newFile.gbl> --app <myapp.s37>

 AppBuilder Gecko Bootloader build creates:

 Bootloader .s37 file

 Bootloader .gbl file

 Bootloader “-combined.s37” file with both first- and second-stages in one file

 Once a chip has a first-stage bootloader, only the second-stage needs to be loaded when changed

 commander gbl create <newFile.gbl> --bootloader <mybtl.s37> --device EFR32...

 Using the --bootloader flag with --device ensures positioning in bootloader location for the part

Some Details about the Gecko Bootloader

8

 Main bootloader is field upgradeable

 Allows for critical bug fixes, changes in bootloader features

 Contains logic for acquiring/verifying images, knowledge of file format, etc.

 First stage is very simple and only knows how to upgrade the second stage

 Only contains basic flash read/write/verify code for main flash controller

 Not upgradeable, but fewer pieces to ‘go wrong’

 Security of the bootloader upgrade image is provided by signing, encrypting of the GBL

 Can’t field-upgrade from legacy bootloader to Gecko Bootloader

Gecko Bootloader: Self-Upgrade Mechanism

9

 Secure Firmware Update

 Signed GBL file: ECDSA-P256 ensures only accepting images trusted by vendor

 Encrypted GBL file: AES-128 ensures encryption during transfer, image storage

 Verification of new image before bootloading

 Secure Boot

 Verification of image in flash before running

 Signed application image: ECDSA-P256

 In-field upgradeable

 2 stage bootloader allows for security or other features to be added after deployment

 Encryption is hardware accelerated

Gecko Bootloader: Security Features

10

 GBL File Signing using Public Key Cryptography Verification of new image before bootloading

 Manufacturer installs a public key in each device

 Private Key is held only by the manufacturer

 GBLs are signed using this key at production time

 Devices in the field validate the signature before installing

 Signing is supported using ECC and the P-256 curve (NIST approved)

 Message Digest is calculated with SHA-256

Gecko Bootloader: Security Features

11

 EM3xx Bootloader and prior EFR32 Bootloaders were provided as binaries

 Designed to work with Dev Kits

 EFR32 BTLs could be modified manually with header edits and recompiled

 Gecko Bootloader has full App Builder support

 Most features selectable in interface

 Features are provided as plugins which can be edited by customers if necessary

Gecko Bootloader: App Builder Integration

12

 Gecko Bootloaders are presented like Sample Apps

 Specific to the stack and target part/board

 Can be compiled with either IAR or GCC

Gecko Bootloader: App Builder Interfaces

13

 Plugins are used to select options

 Pinouts, speeds, flash memory parts, etc., are made available graphically, avoiding header edits

Gecko Bootloader: App Builder Interfaces

14

 Bootloaders are compiled like other apps and result in .s37 binaries

 Compile builds Second Stage as .s37; post-build script adds -combined.s37 with both stages

 Simplicity Commander is used to convert to .gbl for bootloader OTA (2nd Stage only)

 Commander can be used to upload bootloader file, as can other tools

Gecko Bootloader: Simplicity Commander

15

Thank you

