

silabs.com | Building a more connected world. Rev. 0.1

PSA Crypto API Lab

This lab procedure walks through the steps to generate a wrapped

key in the Secure Vault High device and use the PSA Crypto API

to perform the ECDSA digital signature.

KEY POINTS

• Secure key storage in the Secure Vault

High device

• ECDSA sign and verify

 PSA Crypto API Lab
Prerequisites

silabs.com | Building a more connected world. Rev. 0.1 | 1

1 Prerequisites

For this lab you will need the following:

• EFR32xG21B 2.4G Hz 10 dBm Radio Board (BRD4181C)

• Simplicity Studio v5 with Gecko SDK Suite v3.2.0

• Terminal program to receive UART communication form the WSTK

1.1 Update the SE firmware

Click the Update to <version> in Update to <version> | Changelog link (if it appears) to update
the Secure FW (version 1.2.8 or above).

1.2 Erase the flash

Run the security erasedevice command in Simplicity Commander to erase the main flash. This proce-
dure is to make sure there is no security key in NVM3.

commander security erasedevice

 PSA Crypto API Lab
Prerequisites

silabs.com | Building a more connected world. Rev. 0.1 | 2

1.3 Import the Project to Simplicity IDE

1. Go to Launcher Perspective of Simplicity Studio, click the Tools icon to select Simplicity IDE

2. Click OK to launch the Simplicity IDE

3. Import the psa_crypto_ecdsa project from the folder containing the psa_crypto_ecdsa.sls (in

psa_crypto_api_lab.zip) file

4. Click Next, Next, and Finish to generate the project

 PSA Crypto API Lab
Prerequisites

silabs.com | Building a more connected world. Rev. 0.1 | 3

5. Open the app_process.c file to start the lab

 PSA Crypto API Lab
Coding

silabs.com | Building a more connected world. Rev. 0.1 | 4

2 Coding

The figure below is the expected output on the terminal program.

Hints:

• The slides in the PSA Crypto.pptx

• The PSA Crypto API document - https://docs.silabs.com/mbed-tls/latest/

• The PSA Crypto macros are defined in the crypto_values.h (C:\SiliconLabs\Simplic-

ityStudio\v5\developer\sdks\gecko_sdk_suite\v3.2\util\third_party\crypto\mbedtls\include\psa)

• The source code of the PSA Crypto ECDSA platform example (C:\SiliconLabs\Simplic-

ityStudio\v5\developer\sdks\gecko_sdk_suite\v3.2\app\common\example\psa_crypto_ecdsa)

2.1 PSA Crypto Initialization

Write the code for PSA Crypto initialization in the app_process.c.

// Initialize the PSA Crypto
printf(" + PSA Crypto initialization... ");

// Write your code here

2.2 Set Up the Key Attributes

Write the code to set up the key attributes in the app_process.c.

// Set up the key attribute to create a SECP256R1 persistent wrapped key, key ID is
PERSISTENT_KEY_ID
printf(" + Setting up the key attribute to create a SECP256R1 persistent wrapped key\n");

// Write your code here

2.3 Generate a SECP256R1 Persistent Wrapped Key

Write the code to generate a SECP256R1 persistent wrapped key in the app_process.c.

// Generate a SECP256R1 persistent wrapped key
printf(" + Creating a SECP256R1 (256-bit) PERSISTENT WRAPPED key... ");

// Write your code here

https://docs.silabs.com/mbed-tls/latest/

 PSA Crypto API Lab
Coding

silabs.com | Building a more connected world. Rev. 0.1 | 5

2.4 Sign a Hash with the SECP256R1 Private Key

Write the code to sign a hash in the app_process.c.

// Sign a hash with the SECP256R1 private key
printf(" + Signing a hash with a SECP256R1 (256-bit) PERSISTENT WRAPPED private key... ");

// Write your code here

2.5 Verify the Signature with the SECP256R1 Public Key

Write the code to verify the signature in the app_process.c.

// Verify the signature with the SECP256R1 public key
printf(" + Verifying the signature of a hash with a SECP256R1 (256-bit) public key.. ");

// Write your code here

2.6 Reference solution

The reference solution can be found in the app_process_solution.c (in psa_crypto_api_lab.zip) file.

 PSA Crypto API Lab
Testing

silabs.com | Building a more connected world. Rev. 0.1 | 6

3 Testing

3.1 Build and Download the Code to the BRD4181C Radio Board

 PSA Crypto API Lab
Testing

silabs.com | Building a more connected world. Rev. 0.1 | 7

3.2 First Run

There is no key in the device, the persistent wrapped key is generated and stored in the flash through

the NVM3 driver.

3.3 Consecutive Run

Move the Power Source Select switch to the USB position to power off the radio board, then back to
the AEM position to power on the radio board to re-run the program.

The persistent wrapped key is retrieved from the flash for ECDSA operations.

3.4 Destroy the Key

There are two ways to destroy the persistent wrapped key in the flash.

1. API

o Add code below to app_process.c to destroy the key.
 printf(" + Destroying the SECP256R1 (256-bit) PERSISTENT WRAPPED key.. ");
 ret = psa_destroy_key(key_id);
 if (ret != PSA_SUCCESS) {
 printf("Failed: %ld\n", ret);
 goto exit;
 }
 printf("OK\n");

2. Simplicity Commander

o Erase the NVM3 area (default size is 40 kB) to destroy the key.
commander device pageerase --range 0xf4000:0xfe000

Erasing range 0x000f4000 - 0x000fe000

DONE

	1 Prerequisites
	1.1 Update the SE firmware
	1.2 Erase the flash
	1.3 Import the Project to Simplicity IDE

	2 Coding
	2.1 PSA Crypto Initialization
	2.2 Set Up the Key Attributes
	2.3 Generate a SECP256R1 Persistent Wrapped Key
	2.4 Sign a Hash with the SECP256R1 Private Key
	2.5 Verify the Signature with the SECP256R1 Public Key
	2.6 Reference solution

	3 Testing
	3.1 Build and Download the Code to the BRD4181C Radio Board
	3.2 First Run
	3.3 Consecutive Run
	3.4 Destroy the Key

