SILICON LABS

Optimizing Battery Budget with BG22

This lab procedure walks through the steps to optimize Bluetooth
applications for battery-operated devices with the EFR32BG22.
In this first part of the lab, a simple beacon will be created to
demonstrate some of the low-power features of the EFR32BG22.
In the second part of the lab, optimizations will be made to
improve the power consumption in connection-based operation.

silabs.com | Building a more connected world.

KEY POINTS

¢ Create a low-power beacon
o Create a low-power thermometer

e Use EFR Connect mobile app to view device
changes

Prerequisites

Optimizing Battery Budget with BG22

1 Prerequisites

For this lab you will need the following:

e Complete complementary labs:
o Lab 1 - Out of the Box Beaconing
e EFR32BG22 Thunderboard (SLTB010A)
e Micro-USB to USB Type-A cable
e Gecko SDK Suite 2.7.4 or later
o Bluetooth SDK 2.13.4.0 or later
e EFR Connect Mobile App

silabs.com | Building a more connected world.

Rev.0.1]1

https://www.silabs.com/products/development-tools/software/bluetooth-low-energy/mobile-apps/efr-connect

Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

2 Creating a Low-Power Beacon

2.1 Creating the Project

In order to create a low-power beacon, we will start with the SOC-Empty example project. The SOC-Empty project is a minimal project
that should be used as a starting point for custom Bluetooth applications. It implements basic functionality that enables peripheral con-
nectivity and contains a minimal GATT database that can be expanded to fit custom application requirements.

Launch Simplicity Studio

Connect the Thunberboard BG22 to your PC using a micro-USB cable

Once the device is connected to your PC, you should see it listed in the Debug Adapters window in Simplicity Studio
Select the J-Link for the device to display the associated Demos, Example Projects, and Documentation

Be sure to set the preferred SDK to Gecko SDK Suite v 2.7.4 or newer

Click the New Project button in the Launcher window

oA wWNE

== Launcher - Simplicity Studic ™

File Edit MNavigate Search Project Run Window Help

Signin = 3 F |Search |
Debug Adapters LA | 8 ~B Em B = O . .
é J-Link Silicon Labs (440172452) J-Link Silicon Labs (440172458)
Thunderboard EFR32BG22 (SLTBO10A)
Preferred SDK: Gecko SDK Suite w2.7.4: Bluetooth 2.13.4.0, EmberZMet 6.7.3.0, Mici
Click here to change the preferred SDE.

Debug Mode: hACL Change
Adapter Firrmware Yersion: vBplb44 Mo adapter firmware directory specified.

(@ =
7. For the application type, select Bluetooth SDK and click Next >

8. Select the SOC-Empty application and click Next >
9. Set the project name to Low-Power-Lab and click Next >

Project Configuration

Select the project name and location.

e Project name: | Low-Power-Lab)|

Use default location

C\Users\chtaylor\SimplicityStudio\wd_LabWorkspace\Low-Power-Lab Browse...

With project files:
(®) Link sdk and copy project sources

@' < Back Mext = Cancel

silabs.com | Building a more connected world. Rev. 0.1]2

| Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

10. Verify that the board, part, and build configurations have been configured correctly, then click Finish

= O X
Froject setup
Select the board, part, and initial build configurations. 1! /
Boards:
Search | v

Thunderboard EFR32BG22 (BRD4184A Rev AQT) *

Part:

| Search |v

| EFR32BG22C224F512IM40 |

Check the configurations to include in the project

v GNU ARM v7.2.1 Select All
Default (active)
Select Mone
Set Active

Manage toolchains...
Manage build targets...

11. Once the project is created, the Simplicity IDE will be launched

12. Open the app.c file from the Project Explorer

13. Right-click in the left margin of the Editor and select Show Line Numbers. This will make it simpler to locate the code that
needs to be modified for the lab

== Simplicity IDE - Low-Power-Lab/app.c - Simplicity Studic ™
File Edit Source Refacter MNavigate Search Project Run Window Help

DG B R i QB
[T Project Explorer 52 2% ¥ = 8| [gappe i3
! P = PP
v 5 Low-Power-Lab [GMNU ARM v7.2.1 - Default] [EFR32BG22 512IM40 - Gecko SDK Suite: Bluetooth - =¥
[Includes
= app
= hardware
latf e TS e e e e e g
(& platform Toggle Breakpoint Ctrl+Shift+B
[z= protocol
[app.c Add Breakpoint...
(8] app.h Add Dynamic-Printf...
[€ application_properties.c Toggle Breakpoint Enabled L tories In
[8] ble-configuration.h Breakpoint Properties.. = |prassssssss
p P
[h] board_features.h)
[A dmadrv_configh Breakpoint Types ¥ s
@ gatt_db.c Build Selected File(s) s of sili
@ gatt_db.h Clean Selected File(s)
[1] hal-config.h o
[hal-config-app-common.h QTR SiiE
&) init_app.c Add Bookmark...
init, .h
(5] init_2pp Add Task..,
@ init boarde oy e s ss s
[5] init_board.h ~ Show Quick Diff Ctrl+Shift+ 0
[£] init_mcu.c e Show Line Numbers
[0] init_mcu.h Foldi 3
- olding
[main.c
[ptic Preferences...
ti.h
@ .FL.;A.,, oL #include "app.h"

silabs.com | Building a more connected world. Rev. 0.1 |3

Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

2.2 Modify the Application

In order to create a Bluetooth beacon and optimize for battery life, modifications will be made to many of the default parameters of the
SOC-Empty project. The first change will be to the TX output power. The default TX output power used by the Bluetooth stack for the
BG22 is +6dBm. Because this is a low-power beacon application, we will set the TX ouput to 0 dBm. This setting will extend the battery
life while still enabling a range of approximately 30 meters or more.

Of the 40 channels in BLE, three channels (37, 38, and 39) are reserved for broadcasting advertising packets that contain information
about the broadcasting node. These three channels are known as primary advertising channels. Beacons work by taking advantage of
Bluetooth’s ability to broadcast packets with a small amount of customizable embedded data on these advertising channels. By default,
the Bluetooth stack advertises on all three of the primary advertising channels. However, the power consumption can be reduced by
choosing to advertise on only one of these channels.

The default project uses a 100ms advertisement interval. However, typical battery-powered applications will transmit much less frequently
in order to minimize power consumption. For this lab, we will increase the advertisement interval to 1 second.

We will also reduce the advertising payload to only include the device name. This is to reduce the on-time of the radio, rather than sending
all of the information in the GATT (device name, manufacturer, OTA service, etc.)

Next, we will set the device to non-connectable. When the device advertises as connectable, it automatically switches to RX mode for
some amount of time after every advertisement to listen for an incoming connection request. Since we're just beaconing, we don’t need
to make a connection to a device and thus can lower the power consumption by setting the device to be non-connectable.

The example projects use VCOM to print out debug messages from the application over the UART interface, but there is a small increase
to the power consumption by having this enabled. For this lab we will disable the debug messages.

Here are the steps required to make the changes above:

1. Beginning in app.c, navigate to line 70 and set the TX output power to 0 dBm using the following command

/* Set tx power to 0dBm */
gecko cmd system set tx power (0);

2. Configure the device to advertise on a single advertising channel by modifying the advertising channel map. Add the following
in the boot event prior to the start advertising command

/* Set adv on channel 37 only */
gecko _cmd le gap set advertise channel map (0, 1);

3. Modify the advertising payload such that it advertises the device name “BG22” by adding the following prior to the start adver-
tising command. The 15 byte of the array is the length of the element (excluding the length byte itself) and the 2" byte is the
advertising data (AD) type which specifies what data is included in the element. The AD type is defined by the Bluetooth SIG.

/* Set the device name to BG22 */
uint8 t name[] = {5,9,'B','G','2','2"};
gecko cmd le gap bt5 set adv data(0, 0, sizeof (name), name);

4. Increase the advertising interval to 1 second by modifying the advertise timing

/* Set advertising parameters. 1000ms advertisement interval.

* The first parameter is advertising set handle

* The next two parameters are min and max advertising interval, both in
* units of (milliseconds * 1.6).

* The last two parameters are duration and maxevents left as default. */

gecko cmd le gap set advertise timing(0, 1600, 1600, 0, 0);

5. Modify the start advertising command to advertise the user data set above and to set the device to be non-connectable

/* Start advertising and disable connections. */
gecko _cmd le gap start advertising (0, le gap user data, le gap non connectable);

silabs.com | Building a more connected world. Rev. 0.1 |4

| Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

app.c &4 I
61 /* Handle events */
62 switch (BGLIB MSG ID(evt->header)) {
632 /* This boot event 1is generated when the system boots up after reset.
64 * Do not call any stack commands before receiving the boot event.
65 Here the system is set to start advertising immediately after boot procedure.
66 case gecko evt system boot id:
&7
68 bootMessage (& (eve->data.eve_sSysStem Boot)) ;
659 printLog ("boot event - starting advertisingirin™);
71 /* Set tx power to 0 dBm */
T2 a gecko _cmd system Set tX power (0);
74 /* Set adv on channel 37 only */
75 e gecko cmd le gap set advertise channel map (0, 1)
76
77 /* Set the device name to BG22 *,
78 eaints_t name[] = {5,5,'B','G',"2",'2'};
T4 gecko _cmd le gap bti set _adv _data(0, 0, sizeof (name), name);
B1S . advertising parameters. l000ms advertisement interval.
g2 advertising set handle
B3 . are min and max advertising interval, both in
B4 # 1.6).
BS x T parameters are duration and maxevents leftr as default. *
B6 egeckc_cmd_le_gap_set_adveItise_tirﬂing|:CI,. 1600, 1600, O, Q);
88 /* Start general adwvertising and enable connections. *
B9 e gecko _cmd le gap start advertising (0, 1= gap ussr data, 1s gap non connsctabls);
]
a1 break;

6. Open hal-config.h
7. Disable the VCOM by setting HAL_VCOM_ENABLE to 0

[75 Project Explorer 2@] B Y= 8 app.c [@ hal-config.h 22
v 25 Low-Power-Lab [GNU ARM v7.2.1 - Default] [EFR32BG22C224F512IM40 - A 19 R
[l Includes e
(= app
= hardware 2
= platform
= protocol
] app.c
[8] app.h
[£] application_properties.c
[B] ble-configuration.h
[n| board_features.h
[B] dmadrv_config.h

www.silabs.con<

of this software is 5ili

. You

1 Labs Master Software License

Laboratories use of this

10 . W 1 terms of

1 g y the
% gatt_db.c 3 * gections of the MSLA applicable .
gatt_db.h 7 x
a [B] hal-config.h I R R R R r R L L S LR L n R f LS S St Lt s
[B] hal-config-app-common.h 17
[init_app.c 12 fifndef HAL CONFIG_H
[0 init_app.h #define HAL CONFIG H
[£ init_board.c
@ init_board.h #include "board features.h"
[€] init_meu.c #include "hal-config-board.h™
@ init_mcu.h #include "hal-config-app-common.h”
[£ main.c
ffifndef HAL VCCM ENABLE
[€ ptic — —
@ ptih #define HAL WVCCM ENAEBLE (D)
[B] vartdrv_config.h H?ndlf
BaBuild Loa.tct f#ifndef HAL T2CSENSOR_ENABLE
uild_Log. - -
9 + b_lflg bat fdefine HAL I2CSENSOR_ENABLE (0}
create_bl_files.ba . - -
- - ' fendif
efr32bgadcadaf51im4D.1d #ifndef HAL SPIDISPLAY ENABLE
gattxml #define HAL SPIDISPLAY ENABLE (0)
o Low-Power-Lab.isc v sendif

silabs.com | Building a more connected world.

| Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

2.3 Build and Flash the Project

Once the changes above have been made, you are now ready to build the project and flash it to your device.

1. With the project selected, click the Build icon (%) in the toolbar or right-click on the project and select Build Project
2. Once the project has built successfully, open the Binaries folder
3. Right-click the Low-Power-Lab.s37 file and select Flash to Device

== Simplicity IDE - soc-empty_7/app.c - Simplicity Studic ™
File Edit Source Refactor Mavigate Search Project Run Window Help
o |eﬁvzvz$v9§vz R
[Project Explorer 53 EE -
w 5 Low-Power-Lab [GNU ARM v7.2.1 - Default] [EFR32B(224F512IM40 - Gecko SDK Suite: Bluetc
v 1;' Binaries
%f&« Low-Power-Lab.axf - [arm/le]
O Low-Power-Lab.bin - [unknown/le]

O Low-Power-Lab.hex - [unknown/lg]
O Low-Power-Lab.s37 - [unknown,” ~

[ml Includes Rl i
= app Open
7.2.1-
(7= GMNU ARM v7.2.1 - Default Open With 5
= hardware
(= platform [B Copy Ctrl+C
% protocol Paste Ctrl+V
app.c

Delet Delet
[apph W Delete elete
[application_properties.c Move...
[H ble-configuration.h Rename... F2
[H board_features.h Imoort R
[B dmadrv_config.h mpe
[¢] gatt_db.c 27 Refresh F5
[B] gatt_db.h
[n hal-config.h Run As 2
[H hal-config-app-common.h Debug As >
[init_app.c Profile As >
m fnft_app.h Team »
[£] init_board.c]
[B] init_board.h Compare With]
[init_meu.c Replace With >
[H] init_mcu.h - .

- [Z3] Browse Files Here
[£ main.c
[€ ptic @ Open Command Line Here
[W pti.h e Flash to Device...
<
Properties Alt+Enter &
W{Debuqﬁdapters 2 | Qutline] : ¥~ O = 0 ®

4. When the Flash Programmer launches, click Program to flash the device

£ Flash Programme O
Change Device

Device
Board Mame: Thunderboard EFR32BG22
MCU Mame: EFR32BG22C224F512IM40

Adapter
Mame: J-Link Silicon Labs {440172458)

Flash Part
File Tyjpe ® hex Cbin 0x0

File

| mplicityStudic'wd_LabWorkspace'\Low-Power-Lab\GNU ARM v7.2.1 - Default\Low-Power-Lab.s37 V| Browse...

Erase Pragram a

Advanced Settings...

silabs.com | Building a more connected world. Rev. 0.1 |6

Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

2.4 Verify the Changes using the EFR Connect App

To verify that your beacon is in fact advertising, launch the EFR Connect app on your mobile phone and open the Browser, which can
be found on the Develop tab. You should find your device advertising via the Bluetooth Browser. You will notice that the device is greyed-
out because it is non-connectable.

=2
<

Browser

= Log @ 0 connections Q, Filter
DS = Q
Connectable -75dBm Unspecified
65:FA:A2:D4:6D:69
* o o
Connectable -53dBm Unspecified
BG22 (@ 968ms

58:8E:81:66:AF:69

Non-Connectable -57dBm Unspecified

Stop Scanning

Rev. 0.1 |7

silabs.com | Building a more connected world.

Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

25 Energy Profiler (Hardware Not Included)

For further development beyond what is offered on the Thunderboard BG22, Silicon Labs recommends the EFR32xG22 Wireless Starter
Kit (WSTK): https://www.silabs.com/products/development-tools/wireless/efr32xg22-wireless-starter-kit

The WSTK offers additional debug capabilities, including Advanced Energy Monitoring (AEM) hardware which, combined with Simplicty
Studio’s Energy Profiler tool, enables real-time power consumption measurement for the on-board device or external target devices. For
more information about measuring power consumption on EFR32 devices, refer to AN969: https://www.silabs.com/documents/public/ap-
plication-notes/an969-measuring-power-consumption.pdf

Using a WSTK and the Energy Profiler to measure the current consumption of the default SOC-Empty project in advertising mode, the
averaged current consumption is measured to be about 114 pA. When measuring the current consumption of the low-power beacon
created above, the average current consumption is measured to be < 3 pA.

H‘HHI\HHH\HHIHHHHIHHIHHH}H\HHHHMHHHIIHHH}|HHHHIHHWHHI'IHH
lH AL HHhHuU UL { \HHMIHMIMHMIHM

Figure 1: Default SOC-Empty Project

] | |
| \L

l“w |f|' ’ "'IJ‘\PU'”' f \N{“ ll,\\ h‘!\Ir‘lll ”H‘L\'I’ |aJ,\ \“*'ww/"r H p, IM"‘H“"'MIH |J f'“"',f J‘ a\ llrﬂ\h lNWJI' *hﬂ"r"‘ur'w jllln J' |L 'h'W'l" ﬂrWl fnn H{& H

|

Figure 2: Modified Low-Power Beacon Project

silabs.com | Building a more connected world. Rev. 0.1 |8

https://www.silabs.com/products/development-tools/wireless/efr32xg22-wireless-starter-kit
https://www.silabs.com/documents/public/application-notes/an969-measuring-power-consumption.pdf
https://www.silabs.com/documents/public/application-notes/an969-measuring-power-consumption.pdf

Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

3 Creating a Low-Power Thermometer

In this section of the lab, we will configure the BG22 for connection-based operation and use the built-in temperature sensor to transmit
temperature data. Since we will be working with the same project as we did for the low-power beacon, there are a few changes required
to allow the device to be connectable.

3.1 Modify the Project to Enable Connections
Beginning from the code created in Section 2 of this lab (above), the following changes should be made to app.c:

1. Reconfigure the device to advertise on all 3 advertising channels by modifying the advertise channel map

/* Set adv on all 3 channels */
gecko _cmd le gap set advertise channel map (0, 7);

2. Configure the device to advertise as discoverable and connectable by modifying the start advertising command

/* Start advertising and enable connections. */
gecko cmd le gap start advertising(0, le gap general discoverable,
le gap connectable scannable) ;

3.2 Adding a Temperature Measurement Characteristic

In this section, we will add a temperature measurement characteristic to the device GATT. The GATT Configurator in Simplicity Studio
makes it easy to modify the characteristics within a Bluetooth device.

Open the Low-Power-Lab.isc file

In the GATT Configurator select the Characteristics tab

Locate the Temperature Measurement characteristc

Add the characteristic to your GATT by clicking and dragging it over to the Device Information service

e & “Low-Power-Lab.isc i3

€ Bluetooth SDK, version:2.13.4.0

PobdPR

@ GATT Configurator
g

GATT Configurator

Source filters « [3 Custom BLE GATT

BT [~]Apple HomekKit Silicon Labs v [E) Generic Access

Profiles Characteristics . Descriptors % E::I::::::E

type filter text ~ [E] Device Information
[5] Serial Numnber String A [#) Manufacturer Name String
[5] Software Revision String [#] Model Murnber String
[5] Sport Type for Aerobic and Anaercbic Thresholds [5] System ID
[5] Supported New Alert Category [%] Temperature Measurement
(7] Supported Unread Alert Category ~ [Silicon Labs OTA
[5] System ID [5] Silicon Labs OTA Centrol

(5] TDS Control Point
(5] Temperature
e [%] Temperature Measurement
[5] Temperature Type
[5] Three Zone Heart Rate Limits
[5] Time Accuracy
[5] Time Source

(%] Time Update Control Point
[#] Time Update State v

silabs.com | Building a more connected world. Rev. 0.1]9

| Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

5. Modify the Temperature Measurement characteristic settings to match the following

v [3 Custom BLE GATT
v [=) Generic Access
[3] Device Name
[4] Appearance
v E‘] Cevice Information
[#] Manufacturer Name String
[#] Model Number String
[4] System ID
D Temperature Measuremnent
v =] Silicon Labs OTA
[#] Silicon Labs OTA Control

|
L
1

E"‘/ == " T

General settings

Mame | Temperature Measurement

[
Characteristic settings
] | ternperature_measurement | uuiD | 2A1C

51G type | u:urg.l::lluetu:uDth.characteristic.temperatu|

Value settings
Value | | Value type |utf-8 ~
Length |5 El::l}-te []Variable length
Properties
Marne Requirement State By
Indicate Optional True %
Set properties’ information
Caopabilities
oL

silabs.com | Building a more connected world. Rev. 0.1] 10

Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

6. Click Generate in the upper-right corner
7. Click OK to acknowledge that the selected GATT files will be overwritten

o "Low-Power-Lab.isc 3 = O

ﬁ Bluetooth SDK, version:2.13.4.0 ° B Generate <¢ Preview

@ GATT Configurator

Source filters ~ [& Custom BLE GATT o
BT Apple HomekKit Silicon Labs w B Generic Access : J
3 B - B [#) Device Name =
Profiles | Services | Characteristics . Descriptors ®
(&) Appearance
type filter text ~ [E] Device Information F
[3) Serial Number String o (&) Manufacturer Name String iy
[#) software Revision String | Q Model Number String Eug

[#) sport Type for Aerobic and Anaet
[5] Supported New Alert Category
[5) Supported Unread Alert Category AppBuilder has determined that the files listed below exist and would be changed. All selected files will be overwritten.

[8) System D })

[#) TDS Control Point Overwrite? | File

[8] Temperature Ch\Users\chtaylor\SimplicityStudio\w4_LabWorkspace\Low-Power-Lab'\\gattxml
[2] Temperature Measurement ChUsers\chtaylor\ SimplicityStudic'wd_LabWorkspace\Low-Power-Lab\.\gatt_db.c
[&] Temperature Type ChUsersh\chtaylor\ SimplicityStudio'wd_LabWorkspace\Low-Power-Lab\\gatt_db.h
[#) Three Zone Heart Rate Limits

[&) Tirme Accuracy
[5] Time Source
[# Time Update Control Point

Characteristic — TEMIETUT SETTITYS
Mame: Termnerature Meazurement

Create .bak files for all the files that get overwritten.

3.3 Configuring the Internal Temperature Sensor

1. Open app.c and navigate to include files near the top. Beginning at Line 28, add the following code:

#include "em emu.h"
#include "infrastructure.h"

void temperatureMeasure ()

{
uint8 t htmTempBuffer[5]; /* Stores temp data in the Health Thermometer (HTM) format. */
uint8 t flags = 0x00; /* HTM flags set as 0 for Celsius, no time stamp or temp type. */
uint32 t temperature; /* Stores temp data read from the sensor in the correct format */
uint8 t *p = htmTempBuffer; /* Pointer to buffer needed to convert values to bitstream. */

/* Convert flags to bitstream and append them in HTM temp data buffer (htmTempBuffer) */
UINT8 TO BITSTREAM(p, flags):;

/* Convert sensor data to correct temperature format */
temperature = FLT TO UINT32 (EMU TemperatureGet ()*10, -1);

/* Convert temp to bitstream and place it in the HTM temp data buffer (htmTempBuffer) */
UINT32 TO BITSTREAM(p, temperature);

/* Send indication of the temperature in htmTempBuffer to all "listening" clients.
* This enables the Health Thermometer in the Blue Gecko app to display the temperature.
* 0OxFF as connection ID will send indications to all connections. */

gecko _cmd gatt server send characteristic notification
OxFF, gattdb temperature measurement, 5, htmTempBuffer) ;

silabs.com | Building a more connected world. Rev. 0.1 |11

| Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

2. Navigate to the connection_opened event handler (near line 100) and the following to initialize a software timer with an interval
of 1 second

case gecko evt le connection opened id:
printLog ("connection opened\r\n");
gecko _cmd hardware set soft timer(32768,0,0);

break;

3. Immediately following the connection_opened event handler, add a handler for the software timer and set it to trigger the
temperatureMeasure() function every second

case gecko evt hardware soft timer id:
temperatureMeasure () ;
break;

case gecko evt le connection opened id:
printLog ("connection openedhrhn™);
a gecko _cmd hardware set soft_timer (32768,0,0);
break:;

a case gecko evt hardware soft timer id:

temperatureMeasure () ;
break;

34 Power Optimizing Connection Parameters

Because the temperature sensor is configured to measure and update once every second, we can request a longer connection interval
and add slave latency to lessen the wake-up frequency and on-time of the radio.

1. Inthe event gecko_evt_le _connection_opened_id:, add the following command to set the timing parameters to increase the
connection interval to 200 ms and add a slave latency of 5 intervals:

/*Set timing parameters
* Connection interval: 200 msec
* Slave latency: as defined
* Supervision timeout: 4500 msec The value in milliseconds must be larger than
* (1 + latency) * max interva * 2, where max interval is given in milliseconds
*/
gecko _cmd le connection set timing parameters (evt->data.evt le connection opened.connection,
160, 160, 5, 450, 0, OxFFFF);

silabs.com | Building a more connected world. Rev. 0.1] 12

| Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

The finished connection_opened event should look like this:

case gecko_evt_le connection opened id:

printlog ("connection openedirin®);

/. Step 3.3.2 —
gecko_cmd hardware set_soft_timer (32768,0,0);

(1 + late 7} * max inters 2, wl max interval is given in mill

gec:ko_cmd_le_c:onnec:t,ign_set_t,irn_ing_parameters(evt,—>dat,a.evt,_le_connection_opened.connection, led, 1le0, 5, 450, 0, OxFFFF);

break;

With the project selected, click the Build icon (%) in the toolbar or right-click on the project and select Build Project
Once the project has built successfully, open the Binaries folder
4. Right-click the Low-Power-Lab.s37 file and select Flash to Device

wn

3.5 View the Temperature Readings in EFR Connect

Open the EFR Connect app on your mobile device

Select the Develop tab and open the Browser

Locate your device and Connect (the default device name is ‘Empty Example)

Open the Device Information Service

Click Indicate on the Temperature Measurement characteristic (otherwise the measurements will not be displayed)
View the temperature in the Temperature Measurement Value, rounded to the nearest degree Celsius

S

E—3
al T8

OTA
Empty Example = s¢dem
i= Log 8 1 Connections
O Read
System ID
UUID: 0x2A23
O Read

Temperature Measurement
UUID: 0x2A1C

Descriptors
Client Characteristic Configuration (UUID: 0x2902)

e I) Indicate

Temperature Measurement Value in units
of Fahrenheit

Time Stamp field present

Temperature Type field present

silabs.com | Building a more connected world. Rev. 0.1] 13

Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

3.6 Energy Profiler (Hardware Not Included)

With the thermometer characteristic configured and using the default connection parameters, the averaged current consumption of the
application is measured to be about 78uA.

IIIiH}HI}II"IIlHiIllIHlIHIII}IHIIIIHlIh”IHHIIIHHIIIIIIHIIHII}HIIN}IIIIHlHlIHlIIIIIIIH}IIIlH}'llHl|HlHllII}IHIIHIIHHHWHHIII

silabs.com | Building a more connected world. Rev.0.1] 14

Optimizing Battery Budget with BG22
Backup

4 Backup

41 Disable EM2 Debug Mode

For this demonstration, we left debug mode enabled in EM2 (deep sleep). However, in a production application this would likely be
disabled. If you were to remove this line from init_mcu, you would get a further reduction of more than .5uA. Note though that disabling
debug mode in EM2 would then require you to recover the development board per the instructions below. For development, modifying
this setting is not recommended.

[

S4= f/ CAUTICH! With the line below, EMZ2 enters Debug Mode to support development.
95 Removing that line will lower power draw but also makes further flashing and
96 debugging imnpossikble while in EM2 slee

97 To remedy this, set the WS5TE switch next to the battery holder to USE (powers
88 down the EFR). Execute Simplicity Commander with command line parameters:

93 "./commander.exe device recover"”

oo and then immediately move tThe switch to the AFM postion. An additional

01 " /commander.exe device masserase”

02 // command complete=s the recovery procedure.

03 EMO->CTRL |= EMO CTRL EMIDBGEN;

silabs.com | Building a more connected world. Rev. 0.1] 15

Optimizing Battery Budget with BG22
Appendix

5 Appendix

5.1 Low Power Beacon
/***//**

* @file app.c
@brief Silicon Labs Empty Example Project

This example demonstrates the bare minimum needed for a Blue Gecko C application
that allows Over-the-Air Device Firmware Upgrading (OTA DFU). The application

starts advertising after boot and restarts advertising after a connection is closed.
R R b b b b b b b b b b b d b b b b b b db b b b d b d b I b 2 b 2 db 2b b b db b d b I b 4 b b db b ab b d b b b b b b b b ab 2b a2 d b b b b b b db b db b b b b b 4

* X% o X %

* # License

* <pb>Copyright 2018 Silicon Laboratories Inc. www.silabs.com
R IR e b b b b b S Sh b 2 dh b b Sb b b 2 Sh b b dh b b 2 Sh b b S b b Sh b Sb b b 2 dh b 2h b b 2 4R b b 2 b b b dh b b SR b b S dh b I J Sh b Sh b b dh b b b db b 4

* The licensor of this software is Silicon Laboratories Inc. Your use of this
* software is governed by the terms of Silicon Labs Master Software License

* Agreement (MSLA) available at

* www.silabs.com/about-us/legal/master-software-license-agreement. This

* software is distributed to you in Source Code format and is governed by the
* sections of the MSLA applicable to Source Code.

*
*

************************************~)<****~)<**********~)<************************/

/* Bluetooth stack headers */
#include "bg types.h"
#include "native gecko.h"
#include "gatt db.h"

#include "app.h"

/* Print boot message */
static void bootMessage (struct gecko msg system boot evt t *bootevt);

/* Flag for indicating DFU Reset must be performed */
static uint8 t boot to dfu = 0;

/* Main application */
void appMain (gecko configuration t *pconfig)
{
#if DISABLE SLEEP > 0
pconfig->sleep.flags = 0;

#endif

/* Initialize debug prints. Note: debug prints are off by default. See DEBUG LEVEL in
app.h */

initLog () ;

/* Initialize stack */
gecko_init (pconfiq);

while (1) {
/* Event pointer for handling events */

struct gecko cmd packet* evt;

/* 1f there are no events pending then the next call to gecko wait event () may cause

silabs.com | Building a more connected world. Rev. 0.1 | 16

Optimizing Battery Budget with BG22
Appendix

* device go to deep sleep. Make sure that debug prints are flushed before going to
sleep */
if (!gecko_event pending()) {
flushLog () ;
}

/* Check for stack event. This is a blocking event listener. If you want non-blocking
please see UGl36. */
evt = gecko wait event();

/* Handle events */
switch (BGLIB MSG ID(evt->header)) ({
/* This boot event is generated when the system boots up after reset.
* Do not call any stack commands before receiving the boot event.
* Here the system is set to start advertising immediately after boot procedure. */
case gecko evt system boot id:

bootMessage (& (evt->data.evt system boot));
printLog ("boot event - starting advertising\r\n");

/* Set tx power to 0 dBm */
gecko _cmd system set tx power(0);

/* Set adv on channel 37 only */
gecko _cmd le gap set advertise channel map(0, 1);

/* Set the device name to BG22 */

uint8 t name[] = {5,9,'B','G','2","'2"};

gecko cmd le gap bt5 set adv_data(0, 0, sizeof(name), name);
/* Set advertising parameters. 1000ms advertisement interval.

The first parameter is advertising set handle

The next two parameters are min and max advertising interval, both in
units of (milliseconds * 1.06).

The last two parameters are duration and maxevents left as default. */
gecko cmd le gap set advertise timing(0, 1600, 1600, 0, 0);

X% % X o

/* Start advertising and disable connections. */
gecko cmd le gap start advertising (0, le gap user data, le gap non connectable);

break;

case gecko evt le connection opened id:
printLog ("connection opened\r\n") ;
break;

case gecko evt le connection closed id:

printLog("connection closed, reason: 0x%2.2x\r\n", evt->data.evt le connec-
tion closed.reason);

/* Check if need to boot to OTA DFU mode */
if (boot to dfu) {
/* Enter to OTA DFU mode */
gecko_cmd system reset (2);
} else {
/* Restart advertising after client has disconnected */

silabs.com | Building a more connected world. Rev. 0.1 | 17

| Optimizing Battery Budget with BG22
Appendix

gecko cmd le gap start advertising (0, le gap general discoverable, le gap con-
nectable scannable);

}

break;

/* Events related to OTA upgrading

/* Check if the user-type OTA Control Characteristic was written.
* If ota control was written, boot the device into Device Firmware Upgrade (DFU)
mode. */
case gecko evt gatt server user write request id:

if (evt->data.evt gatt server user write request.characteristic ==
gattdb ota control) {

/* Set flag to enter to OTA mode */

boot to dfu = 1;

/* Send response to Write Request */

gecko _cmd gatt server send user write response(
evt->data.evt gatt server user write request.connection,
gattdb ota control,
bg err success);

/* Close connection to enter to DFU OTA mode */
gecko _cmd le connection close(evt->data.evt gatt server user write request.con-
nection);

}

break;
/* Add additional event handlers as your application requires */

default:
break;

}

/* Print stack version and local Bluetooth address as boot message */
static void bootMessage (struct gecko msg system boot evt t *bootevt)
{
#if DEBUG LEVEL

bd addr local addr;

int i;

printlLog ("stack version: %u.%u.%u\r\n", bootevt->major, bootevt->minor, bootevt-
>patch);
local addr = gecko _cmd system get bt address()->address;

printLog ("local BT device address: ");
for (i = 0; i < 5; i++) {
printLog ("%2.2x:", local addr.addr[5 - 1i]);
}
printLog ("%2.2x\r\n", local addr.addr[0]);
#endif
}

silabs.com | Building a more connected world. Rev. 0.1] 18

Optimizing Battery Budget with BG22
Appendix

5.2 Low Power Thermometer
/***//**

* @file app.c
@brief Silicon Labs Empty Example Project

This example demonstrates the bare minimum needed for a Blue Gecko C application
that allows Over-the-Air Device Firmware Upgrading (OTA DFU). The application

* starts advertising after boot and restarts advertising after a connection is closed.
R IR e b b b b b b b b 2 dh b b Sb b b 2 Sh b b dh b b 2 b b b S b b dh b b Sb b b 2 dh b 2h b b 2 SR b b SR b b dh b b S b b db b I d Sh b Sh b I db b b b db b 4

* % % X

* # License

* <p>Copyright 2018 Silicon Laboratories Inc. www.silabs.com
R i b b b b b I b b b b b db b b b b b b ab b b b b b d b I b 2 b 4 b b b b b b d b I b b b b db b ab b b b b b I b b b b b b b b d b b b b b b b b b b b b b b4

*

The licensor of this software is Silicon Laboratories Inc. Your use of this
software is governed by the terms of Silicon Labs Master Software License
Agreement (MSLA) available at
www.silabs.com/about-us/legal/master-software-license-agreement. This
software is distributed to you in Source Code format and is governed by the
sections of the MSLA applicable to Source Code.

*
*
*
*
*
*
*
*

***/

/* Bluetooth stack headers */
#include "bg types.h"
#include "native gecko.h"
#include "gatt db.h"

#include "app.h"

#include "em emu.h"
#include "infrastructure.h"

void temperatureMeasure ()
{ uint8 t htmTempBuffer[5]; /* Stores temp data in the Health Thermometer (HTM) format.
*
/uint8_t flags = 0x00; /* HTM flags set as 0 for Celsius, no time stamp or temp type. */
uint32 t temperature; /* Stores temp data read from the sensor in the correct format
*
/uint8_t *p = htmTempBuffer; /* Pointer to buffer needed to convert values to bitstream.

*/

/* Convert flags to bitstream and append them in HTM temp data buffer (htmTempBuffer)
*/
UINT8 TO BITSTREAM(p, flags);

/* Convert sensor data to correct temperature format */
temperature = FLT TO UINT32 (EMU TemperatureGet ()*10, -1);

/* Convert temp to bitstream and place it in the HTM temp data buffer (htmTempBuffer)
*/
UINT32 TO BITSTREAM(p, temperature);

/* Send indication of the temperature in htmTempBuffer to all "listening" clients.
* This enables the Health Thermometer in the Blue Gecko app to display the tempera-
ture.
* O0xFF as connection ID will send indications to all connections. */
gecko_cmd gatt server send characteristic notification/(

silabs.com | Building a more connected world. Rev. 0.1] 19

Optimizing Battery Budget with BG22
Appendix

OxFF, gattdb temperature measurement, 5, htmTempBuffer);

}

/* Print boot message */
static void bootMessage (struct gecko msg system boot evt t *bootevt);

/* Flag for indicating DFU Reset must be performed */
static uint8 t boot to dfu = 0;

/* Main application */
void appMain (gecko configuration t *pconfig)
{
#if DISABLE SLEEP > 0
pconfig->sleep.flags = 0;
#endif

/* Initialize debug prints. Note: debug prints are off by default. See DEBUG LEVEL in
app.h */
initLog () ;

/* Initialize stack */
gecko_init (pconfiq);

while (1) {
/* Event pointer for handling events */
struct gecko cmd packet* evt;

/* if there are no events pending then the next call to gecko wait event() may cause
* device go to deep sleep. Make sure that debug prints are flushed before going to
sleep */
if (!gecko_event pending()) {
flushLog () ;
}

/* Check for stack event. This is a blocking event listener. If you want non-blocking
please see UGl36. */
evt = gecko wait event();

/* Handle events */
switch (BGLIB MSG ID(evt->header)) {
/* This boot event is generated when the system boots up after reset.
* Do not call any stack commands before receiving the boot event.
* Here the system is set to start advertising immediately after boot procedure. */
case gecko evt system boot id:

bootMessage (& (evt->data.evt system boot));
printLog ("boot event - starting advertising\r\n");

/* Set tx power to 0 dBm */
gecko cmd system set tx power(0);

/* Set adv on channel 37 only */
//gecko_cmd le gap set advertise channel map (0, 1);

/* Set the device name to BG22 */
uint8 t name[] = {5,9,'B','G','2","'2"};

gecko _cmd le gap bt5 set adv_data(0, 0, sizeof(name), name);

/* Set advertising parameters. 1000ms advertisement interval.

silabs.com | Building a more connected world. Rev. 0.1 | 20

Optimizing Battery Budget with BG22
Appendix

The first parameter is advertising set handle

The next two parameters are min and max advertising interval, both in
units of (milliseconds * 1.6).

The last two parameters are duration and maxevents left as default. */
gecko _cmd le gap set advertise timing(0, 1600, 1600, 0, 0);

Xk X o

/* Start general advertising and enable connections. */
gecko cmd le gap start advertising (0, le gap general discoverable, le gap connect-
able scannable);

break;
case gecko evt le connection opened id:
printLog ("connection opened\r\n");

gecko _cmd hardware set soft timer(32768,0,0);
gecko cmd le connection set timing parameters(evt->data.evt le connec-
tion opened.connection, 160, 160, 5, 450, 0, OxFFFF);

break;

case gecko evt hardware soft timer id:
temperatureMeasure () ;

break;

case gecko evt le connection closed id:

printLog("connection closed, reason: 0x%2.2x\r\n", evt->data.evt le connec-
tion closed.reason);

/* Check if need to boot to OTA DFU mode */
if (boot to dfu) {
/* Enter to OTA DFU mode */
gecko _cmd system reset (2);
} else {
/* Restart advertising after client has disconnected */
gecko cmd le gap start advertising (0, le gap general discoverable, le gap con-
nectable scannable) ;

}

break;

/* Events related to OTA upgrading

/* Check if the user-type OTA Control Characteristic was written.
* If ota control was written, boot the device into Device Firmware Upgrade (DFU)
mode. */
case gecko evt gatt server user write request id:

if (evt->data.evt gatt server user write request.characteristic ==
gattdb ota control) {
/* Set flag to enter to OTA mode */
boot to dfu = 1;
/* Send response to Write Request */
gecko cmd gatt server send user write response (
evt->data.evt gatt server user write request.connection,

silabs.com | Building a more connected world. Rev. 0.1 |21

| Optimizing Battery Budget with BG22
Appendix

gattdb ota control,
bg err success);

/* Close connection to enter to DFU OTA mode */
gecko _cmd le connection close(evt->data.evt gatt server user write request.con-
nection);

}
break;

/* Add additional event handlers as your application requires */

default:
break;

}

/* Print stack version and local Bluetooth address as boot message */
static void bootMessage (struct gecko msg system boot evt t *bootevt)
{
#if DEBUG LEVEL

bd addr local addr;

int i;

printLog ("stack version: %u.%u.%u\r\n", bootevt->major, bootevt->minor, bootevt-
>patch);
local addr = gecko cmd system get bt address()->address;

printLog("local BT device address: ");
for (1 = 0; i < 5; 1i++) {
printLog ("%2.2x:", local addr.addr[5 - 1i]);
}
printLog ("%$2.2x\r\n", local addr.addr[0]);
#endif

}

silabs.com | Building a more connected world. Rev. 0.1 | 22

