

silabs.com | Building a more connected world. Rev. 0.1

Optimizing Battery Budget with BG22

This lab procedure walks through the steps to optimize Bluetooth

applications for battery-operated devices with the EFR32BG22.

In this first part of the lab, a simple beacon will be created to

demonstrate some of the low-power features of the EFR32BG22.

In the second part of the lab, optimizations will be made to

improve the power consumption in connection-based operation.

KEY POINTS

• Create a low-power beacon

• Create a low-power thermometer

• Use EFR Connect mobile app to view device

changes

 Optimizing Battery Budget with BG22
Prerequisites

silabs.com | Building a more connected world. Rev. 0.1 | 1

1 Prerequisites

For this lab you will need the following:

• Complete complementary labs:

o Lab 1 – Out of the Box Beaconing

• EFR32BG22 Thunderboard (SLTB010A)

• Micro-USB to USB Type-A cable

• Gecko SDK Suite 2.7.4 or later

o Bluetooth SDK 2.13.4.0 or later

• EFR Connect Mobile App

https://www.silabs.com/products/development-tools/software/bluetooth-low-energy/mobile-apps/efr-connect

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 2

2 Creating a Low-Power Beacon

2.1 Creating the Project

In order to create a low-power beacon, we will start with the SOC-Empty example project. The SOC-Empty project is a minimal project

that should be used as a starting point for custom Bluetooth applications. It implements basic functionality that enables peripheral con-

nectivity and contains a minimal GATT database that can be expanded to fit custom application requirements.

1. Launch Simplicity Studio

2. Connect the Thunberboard BG22 to your PC using a micro-USB cable

3. Once the device is connected to your PC, you should see it listed in the Debug Adapters window in Simplicity Studio

4. Select the J-Link for the device to display the associated Demos, Example Projects, and Documentation

5. Be sure to set the preferred SDK to Gecko SDK Suite v 2.7.4 or newer

6. Click the New Project button in the Launcher window

7. For the application type, select Bluetooth SDK and click Next >

8. Select the SOC-Empty application and click Next >

9. Set the project name to Low-Power-Lab and click Next >

3

5

6

9

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 3

10. Verify that the board, part, and build configurations have been configured correctly, then click Finish

11. Once the project is created, the Simplicity IDE will be launched

12. Open the app.c file from the Project Explorer

13. Right-click in the left margin of the Editor and select Show Line Numbers. This will make it simpler to locate the code that

needs to be modified for the lab

10

12

13

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 4

2.2 Modify the Application

In order to create a Bluetooth beacon and optimize for battery life, modifications will be made to many of the default parameters of the

SOC-Empty project. The first change will be to the TX output power. The default TX output power used by the Bluetooth stack for the

BG22 is +6dBm. Because this is a low-power beacon application, we will set the TX ouput to 0 dBm. This setting will extend the battery

life while still enabling a range of approximately 30 meters or more.

Of the 40 channels in BLE, three channels (37, 38, and 39) are reserved for broadcasting advertising packets that contain information

about the broadcasting node. These three channels are known as primary advertising channels. Beacons work by taking advantage of

Bluetooth’s ability to broadcast packets with a small amount of customizable embedded data on these advertising channels. By default,

the Bluetooth stack advertises on all three of the primary advertising channels. However, the power consumption can be reduced by

choosing to advertise on only one of these channels.

The default project uses a 100ms advertisement interval. However, typical battery-powered applications will transmit much less frequently

in order to minimize power consumption. For this lab, we will increase the advertisement interval to 1 second.

We will also reduce the advertising payload to only include the device name. This is to reduce the on-time of the radio, rather than sending

all of the information in the GATT (device name, manufacturer, OTA service, etc.)

Next, we will set the device to non-connectable. When the device advertises as connectable, it automatically switches to RX mode for

some amount of time after every advertisement to listen for an incoming connection request. Since we’re just beaconing, we don’t need

to make a connection to a device and thus can lower the power consumption by setting the device to be non-connectable.

The example projects use VCOM to print out debug messages from the application over the UART interface, but there is a small increase

to the power consumption by having this enabled. For this lab we will disable the debug messages.

Here are the steps required to make the changes above:

1. Beginning in app.c, navigate to line 70 and set the TX output power to 0 dBm using the following command

2. Configure the device to advertise on a single advertising channel by modifying the advertising channel map. Add the following

in the boot event prior to the start advertising command

3. Modify the advertising payload such that it advertises the device name “BG22” by adding the following prior to the start adver-

tising command. The 1st byte of the array is the length of the element (excluding the length byte itself) and the 2nd byte is the

advertising data (AD) type which specifies what data is included in the element. The AD type is defined by the Bluetooth SIG.

4. Increase the advertising interval to 1 second by modifying the advertise timing

5. Modify the start advertising command to advertise the user data set above and to set the device to be non-connectable

 /* Set tx power to 0dBm */

 gecko_cmd_system_set_tx_power(0);

 /* Set adv on channel 37 only */

 gecko_cmd_le_gap_set_advertise_channel_map(0, 1);

 /* Set the device name to BG22 */

 uint8_t name[] = {5,9,'B','G','2','2'};

 gecko_cmd_le_gap_bt5_set_adv_data(0, 0, sizeof(name), name);

/* Set advertising parameters. 1000ms advertisement interval.

 * The first parameter is advertising set handle

 * The next two parameters are min and max advertising interval, both in

 * units of (milliseconds * 1.6).

 * The last two parameters are duration and maxevents left as default. */

 gecko_cmd_le_gap_set_advertise_timing(0, 1600, 1600, 0, 0);

/* Start advertising and disable connections. */

gecko_cmd_le_gap_start_advertising(0,le_gap_user_data, le_gap_non_connectable);

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 5

6. Open hal-config.h

7. Disable the VCOM by setting HAL_VCOM_ENABLE to 0

1

2

3

4

5

6

7

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 6

2.3 Build and Flash the Project

Once the changes above have been made, you are now ready to build the project and flash it to your device.

1. With the project selected, click the Build icon () in the toolbar or right-click on the project and select Build Project

2. Once the project has built successfully, open the Binaries folder

3. Right-click the Low-Power-Lab.s37 file and select Flash to Device

4. When the Flash Programmer launches, click Program to flash the device

1

2

3

4

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 7

2.4 Verify the Changes using the EFR Connect App

To verify that your beacon is in fact advertising, launch the EFR Connect app on your mobile phone and open the Browser, which can

be found on the Develop tab. You should find your device advertising via the Bluetooth Browser. You will notice that the device is greyed-

out because it is non-connectable.

 Optimizing Battery Budget with BG22
Creating a Low-Power Beacon

silabs.com | Building a more connected world. Rev. 0.1 | 8

2.5 Energy Profiler (Hardware Not Included)

For further development beyond what is offered on the Thunderboard BG22, Silicon Labs recommends the EFR32xG22 Wireless Starter

Kit (WSTK): https://www.silabs.com/products/development-tools/wireless/efr32xg22-wireless-starter-kit

The WSTK offers additional debug capabilities, including Advanced Energy Monitoring (AEM) hardware which, combined with Simplicty

Studio’s Energy Profiler tool, enables real-time power consumption measurement for the on-board device or external target devices. For

more information about measuring power consumption on EFR32 devices, refer to AN969: https://www.silabs.com/documents/public/ap-

plication-notes/an969-measuring-power-consumption.pdf

Using a WSTK and the Energy Profiler to measure the current consumption of the default SOC-Empty project in advertising mode, the

averaged current consumption is measured to be about 114 μA. When measuring the current consumption of the low-power beacon

created above, the average current consumption is measured to be < 3 μA.

Figure 1: Default SOC-Empty Project

Figure 2: Modified Low-Power Beacon Project

https://www.silabs.com/products/development-tools/wireless/efr32xg22-wireless-starter-kit
https://www.silabs.com/documents/public/application-notes/an969-measuring-power-consumption.pdf
https://www.silabs.com/documents/public/application-notes/an969-measuring-power-consumption.pdf

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 9

3 Creating a Low-Power Thermometer

In this section of the lab, we will configure the BG22 for connection-based operation and use the built-in temperature sensor to transmit

temperature data. Since we will be working with the same project as we did for the low-power beacon, there are a few changes required

to allow the device to be connectable.

3.1 Modify the Project to Enable Connections

Beginning from the code created in Section 2 of this lab (above), the following changes should be made to app.c:

1. Reconfigure the device to advertise on all 3 advertising channels by modifying the advertise channel map

2. Configure the device to advertise as discoverable and connectable by modifying the start advertising command

3.2 Adding a Temperature Measurement Characteristic

In this section, we will add a temperature measurement characteristic to the device GATT. The GATT Configurator in Simplicity Studio

makes it easy to modify the characteristics within a Bluetooth device.

1. Open the Low-Power-Lab.isc file

2. In the GATT Configurator select the Characteristics tab

3. Locate the Temperature Measurement characteristc

4. Add the characteristic to your GATT by clicking and dragging it over to the Device Information service

c

 /* Set adv on all 3 channels */

 gecko_cmd_le_gap_set_advertise_channel_map(0, 7);

/* Start advertising and enable connections. */

gecko_cmd_le_gap_start_advertising(0,le_gap_general_discoverable,

le_gap_connectable_scannable);

2

1

3

4

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 10

5. Modify the Temperature Measurement characteristic settings to match the following

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 11

6. Click Generate in the upper-right corner

7. Click OK to acknowledge that the selected GATT files will be overwritten

3.3 Configuring the Internal Temperature Sensor

1. Open app.c and navigate to include files near the top. Beginning at Line 28, add the following code:

#include "em_emu.h"

#include "infrastructure.h"

void temperatureMeasure()

{

 uint8_t htmTempBuffer[5]; /* Stores temp data in the Health Thermometer (HTM) format. */

 uint8_t flags = 0x00; /* HTM flags set as 0 for Celsius, no time stamp or temp type. */

 uint32_t temperature; /* Stores temp data read from the sensor in the correct format */

 uint8_t *p = htmTempBuffer; /* Pointer to buffer needed to convert values to bitstream. */

 /* Convert flags to bitstream and append them in HTM temp data buffer (htmTempBuffer) */

 UINT8_TO_BITSTREAM(p, flags);

 /* Convert sensor data to correct temperature format */

 temperature = FLT_TO_UINT32(EMU_TemperatureGet()*10, -1);

 /* Convert temp to bitstream and place it in the HTM temp data buffer (htmTempBuffer) */

 UINT32_TO_BITSTREAM(p, temperature);

 /* Send indication of the temperature in htmTempBuffer to all "listening" clients.

 * This enables the Health Thermometer in the Blue Gecko app to display the temperature.

 * 0xFF as connection ID will send indications to all connections. */

 gecko_cmd_gatt_server_send_characteristic_notification(

 0xFF, gattdb_temperature_measurement, 5, htmTempBuffer);

}

6

7

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 12

2. Navigate to the connection_opened event handler (near line 100) and the following to initialize a software timer with an interval

of 1 second

3. Immediately following the connection_opened event handler, add a handler for the software timer and set it to trigger the

temperatureMeasure() function every second

3.4 Power Optimizing Connection Parameters

Because the temperature sensor is configured to measure and update once every second, we can request a longer connection interval

and add slave latency to lessen the wake-up frequency and on-time of the radio.

1. In the event gecko_evt_le_connection_opened_id:, add the following command to set the timing parameters to increase the

connection interval to 200 ms and add a slave latency of 5 intervals:

 case gecko_evt_le_connection_opened_id:

 printLog("connection opened\r\n");

 gecko_cmd_hardware_set_soft_timer(32768,0,0);

 break;

 case gecko_evt_hardware_soft_timer_id:

 temperatureMeasure();

 break;

/*Set timing parameters

 * Connection interval: 200 msec

 * Slave latency: as defined

 * Supervision timeout: 4500 msec The value in milliseconds must be larger than

 * (1 + latency) * max_interva * 2, where max_interval is given in milliseconds

*/

gecko_cmd_le_connection_set_timing_parameters(evt->data.evt_le_connection_opened.connection,

160, 160, 5, 450, 0, 0xFFFF);

2

3

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 13

The finished connection_opened event should look like this:

2. With the project selected, click the Build icon () in the toolbar or right-click on the project and select Build Project

3. Once the project has built successfully, open the Binaries folder

4. Right-click the Low-Power-Lab.s37 file and select Flash to Device

3.5 View the Temperature Readings in EFR Connect

1. Open the EFR Connect app on your mobile device

2. Select the Develop tab and open the Browser

3. Locate your device and Connect (the default device name is ‘Empty Example)

4. Open the Device Information Service

5. Click Indicate on the Temperature Measurement characteristic (otherwise the measurements will not be displayed)

6. View the temperature in the Temperature Measurement Value, rounded to the nearest degree Celsius

5

6

 Optimizing Battery Budget with BG22
Creating a Low-Power Thermometer

silabs.com | Building a more connected world. Rev. 0.1 | 14

3.6 Energy Profiler (Hardware Not Included)

With the thermometer characteristic configured and using the default connection parameters, the averaged current consumption of the

application is measured to be about 78uA.

After changing the connection interval and adding slave latency, the averaged current consumption is measured to be < 6.5 μA.

 Optimizing Battery Budget with BG22
Backup

silabs.com | Building a more connected world. Rev. 0.1 | 15

4 Backup

4.1 Disable EM2 Debug Mode

For this demonstration, we left debug mode enabled in EM2 (deep sleep). However, in a production application this would likely be

disabled. If you were to remove this line from init_mcu, you would get a further reduction of more than .5uA. Note though that disabling

debug mode in EM2 would then require you to recover the development board per the instructions below. For development, modifying

this setting is not recommended.

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 16

5 Appendix

5.1 Low Power Beacon

/***//**

 * @file app.c

 * @brief Silicon Labs Empty Example Project

 *

 * This example demonstrates the bare minimum needed for a Blue Gecko C application

 * that allows Over-the-Air Device Firmware Upgrading (OTA DFU). The application

 * starts advertising after boot and restarts advertising after a connection is closed.

 * # License

 * Copyright 2018 Silicon Laboratories Inc. www.silabs.com

 *

 * The licensor of this software is Silicon Laboratories Inc. Your use of this

 * software is governed by the terms of Silicon Labs Master Software License

 * Agreement (MSLA) available at

 * www.silabs.com/about-us/legal/master-software-license-agreement. This

 * software is distributed to you in Source Code format and is governed by the

 * sections of the MSLA applicable to Source Code.

 *

 **/

/* Bluetooth stack headers */

#include "bg_types.h"

#include "native_gecko.h"

#include "gatt_db.h"

#include "app.h"

/* Print boot message */

static void bootMessage(struct gecko_msg_system_boot_evt_t *bootevt);

/* Flag for indicating DFU Reset must be performed */

static uint8_t boot_to_dfu = 0;

/* Main application */

void appMain(gecko_configuration_t *pconfig)

{

#if DISABLE_SLEEP > 0

 pconfig->sleep.flags = 0;

#endif

 /* Initialize debug prints. Note: debug prints are off by default. See DEBUG_LEVEL in

app.h */

 initLog();

 /* Initialize stack */

 gecko_init(pconfig);

 while (1) {

 /* Event pointer for handling events */

 struct gecko_cmd_packet* evt;

 /* if there are no events pending then the next call to gecko_wait_event() may cause

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 17

 * device go to deep sleep. Make sure that debug prints are flushed before going to

sleep */

 if (!gecko_event_pending()) {

 flushLog();

 }

 /* Check for stack event. This is a blocking event listener. If you want non-blocking

please see UG136. */

 evt = gecko_wait_event();

 /* Handle events */

 switch (BGLIB_MSG_ID(evt->header)) {

 /* This boot event is generated when the system boots up after reset.

 * Do not call any stack commands before receiving the boot event.

 * Here the system is set to start advertising immediately after boot procedure. */

 case gecko_evt_system_boot_id:

 bootMessage(&(evt->data.evt_system_boot));

 printLog("boot event - starting advertising\r\n");

 /* Set tx power to 0 dBm */

 gecko_cmd_system_set_tx_power(0);

 /* Set adv on channel 37 only */

 gecko_cmd_le_gap_set_advertise_channel_map(0, 1);

 /* Set the device name to BG22 */

 uint8_t name[] = {5,9,'B','G','2','2'};

 gecko_cmd_le_gap_bt5_set_adv_data(0, 0, sizeof(name), name);

 /* Set advertising parameters. 1000ms advertisement interval.

 * The first parameter is advertising set handle

 * The next two parameters are min and max advertising interval, both in

 * units of (milliseconds * 1.6).

 * The last two parameters are duration and maxevents left as default. */

 gecko_cmd_le_gap_set_advertise_timing(0, 1600, 1600, 0, 0);

 /* Start advertising and disable connections. */

 gecko_cmd_le_gap_start_advertising(0,le_gap_user_data, le_gap_non_connectable);

 break;

 case gecko_evt_le_connection_opened_id:

 printLog("connection opened\r\n");

 break;

 case gecko_evt_le_connection_closed_id:

 printLog("connection closed, reason: 0x%2.2x\r\n", evt->data.evt_le_connec-

tion_closed.reason);

 /* Check if need to boot to OTA DFU mode */

 if (boot_to_dfu) {

 /* Enter to OTA DFU mode */

 gecko_cmd_system_reset(2);

 } else {

 /* Restart advertising after client has disconnected */

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 18

 gecko_cmd_le_gap_start_advertising(0, le_gap_general_discoverable, le_gap_con-

nectable_scannable);

 }

 break;

 /* Events related to OTA upgrading

 --- */

 /* Check if the user-type OTA Control Characteristic was written.

 * If ota_control was written, boot the device into Device Firmware Upgrade (DFU)

mode. */

 case gecko_evt_gatt_server_user_write_request_id:

 if (evt->data.evt_gatt_server_user_write_request.characteristic ==

gattdb_ota_control) {

 /* Set flag to enter to OTA mode */

 boot_to_dfu = 1;

 /* Send response to Write Request */

 gecko_cmd_gatt_server_send_user_write_response(

 evt->data.evt_gatt_server_user_write_request.connection,

 gattdb_ota_control,

 bg_err_success);

 /* Close connection to enter to DFU OTA mode */

 gecko_cmd_le_connection_close(evt->data.evt_gatt_server_user_write_request.con-

nection);

 }

 break;

 /* Add additional event handlers as your application requires */

 default:

 break;

 }

 }

}

/* Print stack version and local Bluetooth address as boot message */

static void bootMessage(struct gecko_msg_system_boot_evt_t *bootevt)

{

#if DEBUG_LEVEL

 bd_addr local_addr;

 int i;

 printLog("stack version: %u.%u.%u\r\n", bootevt->major, bootevt->minor, bootevt-

>patch);

 local_addr = gecko_cmd_system_get_bt_address()->address;

 printLog("local BT device address: ");

 for (i = 0; i < 5; i++) {

 printLog("%2.2x:", local_addr.addr[5 - i]);

 }

 printLog("%2.2x\r\n", local_addr.addr[0]);

#endif

}

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 19

5.2 Low Power Thermometer

/***//**

 * @file app.c

 * @brief Silicon Labs Empty Example Project

 *

 * This example demonstrates the bare minimum needed for a Blue Gecko C application

 * that allows Over-the-Air Device Firmware Upgrading (OTA DFU). The application

 * starts advertising after boot and restarts advertising after a connection is closed.

 * # License

 * Copyright 2018 Silicon Laboratories Inc. www.silabs.com

 *

 * The licensor of this software is Silicon Laboratories Inc. Your use of this

 * software is governed by the terms of Silicon Labs Master Software License

 * Agreement (MSLA) available at

 * www.silabs.com/about-us/legal/master-software-license-agreement. This

 * software is distributed to you in Source Code format and is governed by the

 * sections of the MSLA applicable to Source Code.

 *

 **/

/* Bluetooth stack headers */

#include "bg_types.h"

#include "native_gecko.h"

#include "gatt_db.h"

#include "app.h"

#include "em_emu.h"

#include "infrastructure.h"

void temperatureMeasure()

{

 uint8_t htmTempBuffer[5]; /* Stores temp data in the Health Thermometer (HTM) format.

*/

 uint8_t flags = 0x00; /* HTM flags set as 0 for Celsius, no time stamp or temp type. */

 uint32_t temperature; /* Stores temp data read from the sensor in the correct format

*/

 uint8_t *p = htmTempBuffer; /* Pointer to buffer needed to convert values to bitstream.

*/

 /* Convert flags to bitstream and append them in HTM temp data buffer (htmTempBuffer)

*/

 UINT8_TO_BITSTREAM(p, flags);

 /* Convert sensor data to correct temperature format */

 temperature = FLT_TO_UINT32(EMU_TemperatureGet()*10, -1);

 /* Convert temp to bitstream and place it in the HTM temp data buffer (htmTempBuffer)

*/

 UINT32_TO_BITSTREAM(p, temperature);

 /* Send indication of the temperature in htmTempBuffer to all "listening" clients.

 * This enables the Health Thermometer in the Blue Gecko app to display the tempera-

ture.

 * 0xFF as connection ID will send indications to all connections. */

 gecko_cmd_gatt_server_send_characteristic_notification(

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 20

 0xFF, gattdb_temperature_measurement, 5, htmTempBuffer);

}

/* Print boot message */

static void bootMessage(struct gecko_msg_system_boot_evt_t *bootevt);

/* Flag for indicating DFU Reset must be performed */

static uint8_t boot_to_dfu = 0;

/* Main application */

void appMain(gecko_configuration_t *pconfig)

{

#if DISABLE_SLEEP > 0

 pconfig->sleep.flags = 0;

#endif

 /* Initialize debug prints. Note: debug prints are off by default. See DEBUG_LEVEL in

app.h */

 initLog();

 /* Initialize stack */

 gecko_init(pconfig);

 while (1) {

 /* Event pointer for handling events */

 struct gecko_cmd_packet* evt;

 /* if there are no events pending then the next call to gecko_wait_event() may cause

 * device go to deep sleep. Make sure that debug prints are flushed before going to

sleep */

 if (!gecko_event_pending()) {

 flushLog();

 }

 /* Check for stack event. This is a blocking event listener. If you want non-blocking

please see UG136. */

 evt = gecko_wait_event();

 /* Handle events */

 switch (BGLIB_MSG_ID(evt->header)) {

 /* This boot event is generated when the system boots up after reset.

 * Do not call any stack commands before receiving the boot event.

 * Here the system is set to start advertising immediately after boot procedure. */

 case gecko_evt_system_boot_id:

 bootMessage(&(evt->data.evt_system_boot));

 printLog("boot event - starting advertising\r\n");

 /* Set tx power to 0 dBm */

 gecko_cmd_system_set_tx_power(0);

 /* Set adv on channel 37 only */

 //gecko_cmd_le_gap_set_advertise_channel_map(0, 1);

 /* Set the device name to BG22 */

 uint8_t name[] = {5,9,'B','G','2','2'};

 gecko_cmd_le_gap_bt5_set_adv_data(0, 0, sizeof(name), name);

 /* Set advertising parameters. 1000ms advertisement interval.

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 21

 * The first parameter is advertising set handle

 * The next two parameters are min and max advertising interval, both in

 * units of (milliseconds * 1.6).

 * The last two parameters are duration and maxevents left as default. */

 gecko_cmd_le_gap_set_advertise_timing(0, 1600, 1600, 0, 0);

 /* Start general advertising and enable connections. */

 gecko_cmd_le_gap_start_advertising(0,le_gap_general_discoverable, le_gap_connect-

able_scannable);

 break;

 case gecko_evt_le_connection_opened_id:

 printLog("connection opened\r\n");

 gecko_cmd_hardware_set_soft_timer(32768,0,0);

 gecko_cmd_le_connection_set_timing_parameters(evt->data.evt_le_connec-

tion_opened.connection, 160, 160, 5, 450, 0, 0xFFFF);

 break;

 case gecko_evt_hardware_soft_timer_id:

 temperatureMeasure();

 break;

 case gecko_evt_le_connection_closed_id:

 printLog("connection closed, reason: 0x%2.2x\r\n", evt->data.evt_le_connec-

tion_closed.reason);

 /* Check if need to boot to OTA DFU mode */

 if (boot_to_dfu) {

 /* Enter to OTA DFU mode */

 gecko_cmd_system_reset(2);

 } else {

 /* Restart advertising after client has disconnected */

 gecko_cmd_le_gap_start_advertising(0, le_gap_general_discoverable, le_gap_con-

nectable_scannable);

 }

 break;

 /* Events related to OTA upgrading

 --- */

 /* Check if the user-type OTA Control Characteristic was written.

 * If ota_control was written, boot the device into Device Firmware Upgrade (DFU)

mode. */

 case gecko_evt_gatt_server_user_write_request_id:

 if (evt->data.evt_gatt_server_user_write_request.characteristic ==

gattdb_ota_control) {

 /* Set flag to enter to OTA mode */

 boot_to_dfu = 1;

 /* Send response to Write Request */

 gecko_cmd_gatt_server_send_user_write_response(

 evt->data.evt_gatt_server_user_write_request.connection,

 Optimizing Battery Budget with BG22
Appendix

silabs.com | Building a more connected world. Rev. 0.1 | 22

 gattdb_ota_control,

 bg_err_success);

 /* Close connection to enter to DFU OTA mode */

 gecko_cmd_le_connection_close(evt->data.evt_gatt_server_user_write_request.con-

nection);

 }

 break;

 /* Add additional event handlers as your application requires */

 default:

 break;

 }

 }

}

/* Print stack version and local Bluetooth address as boot message */

static void bootMessage(struct gecko_msg_system_boot_evt_t *bootevt)

{

#if DEBUG_LEVEL

 bd_addr local_addr;

 int i;

 printLog("stack version: %u.%u.%u\r\n", bootevt->major, bootevt->minor, bootevt-

>patch);

 local_addr = gecko_cmd_system_get_bt_address()->address;

 printLog("local BT device address: ");

 for (i = 0; i < 5; i++) {

 printLog("%2.2x:", local_addr.addr[5 - i]);

 }

 printLog("%2.2x\r\n", local_addr.addr[0]);

#endif

}

