SILICON LABS

Getting Started with Silicon Labs Bluetooth
SDK (v2.11.0 or later)

KEY FEATURES

This training gives introduction to the usage of Silicon Labs Bl ho el i
Bluetooth SDK. The most important use cases are demonstrated BRI ERER KT SRR
with sample applications, and the most important APl commands BEREEEUETKZy gReEL
are introduced while adding them to the sample applications. The
basics can be learned by implementing a GATT server, and
advanced skills can be acquired by implementing a GATT client.

silabs.com | Smart. Connected. Energy-friendly

Bluetooth Basics

1 Bluetooth Basics

The Bluetooth connection is an asymmetric connection between a central device (e.g. a smartphone) and a peripheral device (e.g. a
sensor). Typically the central device is the client that queries data from the peripheral device which is in this case a server.

The most common use case is the following:
1) The peripheral device is advertising itself
2) The central device is scanning for devices and finds the peripheral device
3) The central device initiates a connection
4) The central device discovers the database of the peripheral device
5) The central device reads/writes the database of the peripheral device (e.g. reads sensor data).

However

- The central device can also advertise and the peripheral device can also initiate connection
- The peripheral device can also discover/read/write the database of the central device

In this latter case the central device is the server and the peripheral device is the client.

All Bluetooth devices that implement server functionality (basically all Bluetooth devices) have to implement a so called GATT database.
This database has a fix structure, which cannot be changed during a connection, and most commonly it is not changed during the lifetime
of the device. When a client connects to the server, the first step is the discovery of this database. When this is done

- The client can read the attributes of the database
- The client can write the attributes of the database
- The server can send notification, that some attribute has changed

In the following we demonstrate how to implement the key steps of a Bluetooth connection, like
- Advertising
- Scanning
- Discovering remote database
- Reading / writing remote database

with Silicon Labs Bluetooth SDK.
Note: All Bluetooth connections have a master and a slave device. This is, however, not to be confused with the server and client roles.

The master and slave roles are used in the physical layer (master is who sends packets first), while server and client roles are used in
the application layer (client queries data from the server). These roles are independent from each other.

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |1

Start Development

2 Start Development

2.1 Prepare your device

This training assumes you already have installed Simplicity Studio with Bluetooth stack on your computer. If you haven’t done so yet,
please follow the instructions of QSG139: Bluetooth Development with Simplicity Studio.

Before creating a Bluetooth project, it is important to note, that all Bluetooth project assumes, that you have already flashed a bootloader
to your device. Without a bootloader Bluetooth projects will not start. Hence, if you have not flashed a bootloader yet, follow the procedure
described in this section. If you have, then you can skip this section.

You can either flash

e adummy bootloader or

e a Gecko Bootloader

The dummy bootloader will do nothing, but start your application (it jumps directly to the application area). You can find the image of a
dummy bootloader in the following directory:

C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.5\platform\bootloader\util\bin
Pick the one corresponding to your part and flash it to your device using Simplicity Commander.

Gecko Bootloader has many features including firmware update via UART and OTA (over-the-air), as described in UG266: Silicon Labs
Gecko Bootloader User’s Guide. The recommended Gecko Bootloader configuration for Bluetooth applications is Bluetooth in-place OTA
DFU Bootloader. The easiest way to flash this bootloader to your device is by starting the SoC — Empty demo from Simplicity Studio.
Demos will flash both a bootloader and an application to your device.

To start the SoC — Empty demo:
1) Open Simplicity Studio
2) Connect your device
3) Select your device on the Debug Adapters tab
4) Check that the Preferred SDK contains Bluetooth SDK v2.11.0 or later
5) Click on SOC — Empty in the Demos column
6) Select “Run” mode
7) Click Start

##+ Launcher - soc-empty/app.h - Simplicity Studio ™ =+ Demos =
File Edit Source Refactor Mavigate Search Project Run Window = Select Demo
' -8 F Getting Started | Documentation | Compatible Tools | R || Sdetademeoandthemodewith whichto runit
[#H Debug Adapters: 111 = 0 Demos - =
= — Name Description
SESARRB-BEE INCP target - Empty Bluetooth: NCP (Network co-processor) target applic...
> < J-Link Silicon Labs (440043203) = Bluetooth SDK 2.9.2.0 S0C - Ematy. Bluetaatie A minimal project structurs, used as.a star..,
I 50C - Empty - RAIL - DMP Bluctooth: A minimal project structure, used as a ster...
- J-Link Silicon Labs (440046135) ~ Bluetooth 50C - Light - RAIL - DMP Bluetaath: Implements the Light (GATT Server) Role. ..
> EFR32MG13 2.4 GHz 19 dBm Radio Board (BRD4168A Rev A0D) 50C - Smart Phone App Eluetooth: For use with the Silicon Labs Smart Phone ...
NCP target - Empty
> Wireless Starter Kit Mainboard (BRD4001A Rev A01)
Pl J-Link Silicon Labs (440050133) Bluetooth: NCP (Network co-processar) target application with no GATT
EFR32 Blue Gecko Bluetooth Starter Kit (SLWSTKG020B) services included. Bluctooth: A minimal praject structure, used a5 a starting paint for custom applications. The
o Iz m Radic Boar (A Rev mn) project has the basic functionality enabling peripheral connectivity, without GATT services.
> Wireless Starter Kit Mainboard (BRD4001A Rev A01) SOC - Empty

> M No name (10150.12.27) Bluetooth: A minimal project structure, used as s starting point for

> Mo name (10.150.12.28) custom applications. The project has the basic functionality enabling

1 Noname 001501229
i Eo name agigﬁ;? SOC - Smart Phone App Run under Energy Profiler

> o name (10.150.12.31) Run without bootlosder

> 1 No name (10.150.12.33) Bluetooth: For use with the Silicon Labs Smart Phone App. Demonstrates

5 No name (10.150.12.73) the Health Thermometer Profile, Proximity Profile, and implements an [Filter by selected product ine

>

newName (10.150.12.34) @
Dynamic Multiprotocol :

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |2

Start Development

2.2 Create a new Bluetooth project

When starting development, it is strongly recommended to start with a Software Example project instead of building up a project from the
beginnings.
For a basic setup use the SoC — Empty example.

1) Open Simplicity Studio

2) Connect your device

3) Select your device on the Debug Adapters tab (or on the My Products tab)

4) Click on New Project

5) Select Bluetooth SDK, click Next

6) If you have multiple versions of Bluetooth SDK installed, select the one you want to use on the next window, click

Next

7) Select SOC - Empty example, click Next

8) Name your project

9) Check your device. If you want to develop for another device, you can change the target device here

10) Select the toolchain you want to use (IAR / GCC).

s Launcher - soc-empty-v261/efi32bg12p332F1024g1125.d - Simplicity Studio ™
File Edit Navigate Search Project Run Window Help

- -8 F Search & | [ouncher] {} Simplicity IDE %5 Debug 1, Network Analyzer - Energy Profiler {}: Configurator
W{Debugﬂdaptevs:i‘ AREAXRRLG-BEEE = A

ik Son Labs ioozas3) EFR32 Blue Gecko Bluetooth Starter Kit (SLWSTK6020B)

1 < J-Link Silicon Labs (440046135)

=5

P L-Link Silicon Labs (440050193) Preferred SDK: Gecko SDK Suite v2.5.1: Bluetacth 2.17.1.0
EFR32 Blue Gecko Bluetooth Starter Kit (SLWSTKG0208) Click herdto change the preferred SOK.

> 3 ladio Boarc A Rev ADO)
b FA Wireless Starter Kit Mainboard (BRD400LA Rev AOL)

Diebug Mode MeU Change
Adspter Firmware Version: 1v3p3b928 Updated adapter firmware available. lnstell (chengalog)

d [ESEE==) . B - [ESEEY) . [
Applications Select Application Project Configuration Project setup — o I
Select an application type Select either a blank application or a sample application. H| select the project name and location. Select the board, part, and initial build configurations. 11 /
Sample Application I
Select an application you are building: ple Appl Project name: | soc-empty 11 —
A 4 SOC-Er
% Bluetooth SDK = = Pty . . . Use default location Search 2
Bluetooth SDK, Bluetooth Sart SDK, Bluetooth Homekit SDK, Gecko st (I Silicon Labs Bluetooth Smart application demo implementing a minimal
Suite: Bluetooth 2.3.1.0, EmberZNet 58.0.0, Flex11.0.0, MCU 5.1.2, Thre: (i project structure as a starting point for custom applications. The project R LL I e e fotia i) RS e ks iace Talees | B Toves== | BGMLLL Bluetooth Module Radio Board (ERD4300A Rev 402) * I

2200 (5 stacks) has the basic funetionality enabling peripheral connectivity, without

0 GATT services.,

With project files:

& Gecko Bootloader @ Link libraries and copy sources Part:
Gecko SDK Suite: Bluetooth 23.1.0, EmberZNet 5.3.0.0, Flex 1100, MCU |fl || & NeP target - Empty Search -
512, Thread 2200 Silicon Labs Bluetooth Smart application NCP (Network ¢o-processor) o

target demo with no GATT services included.

i

Check the configurations to include in the project

ili &@ NCP target - Switched Multiprotocol Trust Center
&, Silicon Labs Flex SDK @ get P 4| ¥ GNU ARM e 93 Select All
Gecko SDK Suite: Bluetooth 23.1.0, EmberZNet 5.8.0.0, Flex1.1.0.0, MCU " Silicon Labs Bluetooth Smart application NCP (Network co-processor) Default (active)
51.2, Thread 2200 f target demo with Switched Multiprotocol Trust Center GATT services of 9] 4R ARM (v7 20312100y
il included. Defautt
< m » .. Set Active
& soc- React

Manage toolchains.

[T Show internal demo stacks Manage SDK:, 7] Start with a blank application Manage build targets...

@ <k | Net> || Fmsh][canca | @ [<Back | Net> [Fnisn [Conca | @ [<Back | Net> | Fnisn [cancel | @ [<pak Nets |[_fmsn JJ_cancel]

Alternatively
1) Open Simplicity Studio
2) Connect your device
3) Select your device on the Debug Adapters tab
4) Check that the Preferred SDK contains Bluetooth SDK v2.11.0 or later
5) Click on SOC — Empty in the Software Examples column

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |3

Start Development

2.3 Add Debug Messages

The easiest way to display debug messages is using the UART interface. If you have a WSTK, the UART interface of your device can be
easily connected to your PC via USB using virtual COM port (VCOM). Since Bluetooth SDK v2.11.0, the SoC — Empty software example
is prepared for logging debug messages via the virtual COM port of the WSTK. To enable debug messages, simply open app.h in your
SoC — Empty project and define DEBUG_LEVEL to any value greater than 0. To add custom debug messages to the code, use the
printLog() function the same way as you would use printf().

2.4 Build and flash your code

The SoC — Empty example is ready to build. To build and upload your project to your device

1) Click the build icon |-
2) Find the .hex file in your project in the Binaries directory
a [soc-empty 11 [GMU ARM vw4.9.3 - Default] [EFR32BG1EB232F256GMAE - Gecko !
a ﬁ_ﬁ' Binaries
» ﬁ soc-empty_11.axf - [arm/le]
» €3 soc-empty_11.bin - [unknown/le]
» 2 soc-empty 11.hex - [unknown/le]
» 1 soc-empty_11.537 - [unknown,/le]
[Includes
3) Rightclick and select Flash to Device
4) Click Program

File

ac\SimplicityStudicwd_workspace\soc-empty 114GNU ARM v4.9.3 - Default\soc-empty 11.hex

Advanced Settings...

Erase | |[Program |
Alternatively
1) Click the Debug icon -
2) After the project was built and uploaded click the start button Lg
&

3) If you do not want to debug, disconnect your device with the disconnect button

The code is still running on the device.

Now if you open the COM port on your PC with a terminal program (e.g. TeraTerm) you should see the debug messages printed.

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |4

Implementing the Server Side

3 Implementing the Server Side

3.1 The GATT Database

Every Bluetooth connection has a GATT client and a GATT server. The server holds a GATT database: a collection of Characteristics
that can be read and written by the client. The Characteristics are grouped into Services, and the group of Services determines a Bluetooth
Profile.

If you are implementing a GATT server (typically on the peripheral device), you have to define a GATT database structure. This structure
cannot be modified during runtime (except that some services/characteristics can be temporarily disabled), so it has to be designed in
advance. If you are implementing a GATT client you can leave the GATT database as it is.

When creating a new project, or when opening the .isc file in a project, the BLE GATT configurator automatically opens. The GATT
configurator is a simple-to-use tool to help you build your own GATT database. A list of predefined Profiles/Services/Characteristics/De-
scriptors is shown in a pane in the upper left and your current GATT database structure is shown in a pane in the upper right. An options
menu is provided to the right of the Database pane.

Click an item in the Database pane to see and modify its settings in a pane in the lower right. To add a Profile/Service/Characteristic/De-
scriptor to your database, simply drag and drop it from the list to your database.

To get more information about a Profile/Service/Characteristic/Descriptor, click it either in the list or in your database. The description is
displayed in the lower-left pane. You can find a detailed description of any Profile/Service/Characteristic/Descriptor on https://www.blue-
tooth.com/specifications/gatt.

To learn more about the GATT configurator, see UG365: GATT Configurator User’s Guide.

B Generate ||| << Preview

& General

BLE GATT Configurator -l

Source filters 4 [Custom BLE GATT i
[7]516 [7] Apple Homekit [7]Silabs 4 [E) Generic Access -
Device Name =
Characteristics [#) Appearance x
type filter text 4 B Device Information i
Manufacturer Name String I
Boot Keyboard Output Report o (&) Model Number String N
Boot Mouse Input Report (3] system D =
[E) CGM Feature m 4 [E silicon Labs OTA
CGM Measurement Silicon Labs OTA Control
CGM Session Run Time Silicon Labs OTA Data

[#) CGM Session Start Time

(%] CGM Specific Ops Control Point

() CGM Status

CSC Feature

(5] €SC Measurement

[[E Current Time |

Cycling Power Control Point

Cycling Power Feature

B Cycling Power Measurement

Cycling Power Vector N

mn

Characteristic = General settings
Mame: Current Time
Type: org.bluetooth.characteristic.current_time MName Manufacturer Name String
UuID: 2428 "
Source: SIG [} User description
Value: Characteristic settings
Length: 10 byte [D D 2429
Variable length: false
Type: HEX SIG type org.bluetooth.characteristic.manufactt
Value settings
Value Silicon Labs Value type
Length 12 |2 byte [Variable length
Properties
Mame Requirement State g
Read Mandatery True %
Const Opticnal True

Set properties’ information

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |5

https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt

Implementing the Server Side

3.2 Advertising

In order to be able to create connection between two Bluetooth devices, one of the devices has to advertise itself. This has two purposes:
- To see which devices are in range
- Connection can be requested only from a device that is currently advertising

The advertisement packet is a 31 byte packet that usually contains the name of the advertiser device and the UUIDs of the most important

services it has in its database. The advertisement packet is automatically assembled by the stack based on the GATT database — unless
user type advertisement mode is selected.

To change the device name that will be advertised
1) Open the GATT configurator
2) Select the Device Name characteristic under Generic Access service.
3) Change the Value field from “Empty Example” e.g. to “Bob’s device”. Use a custom name.
4) Change the Length field to the length of the device name. E.g. to 12 in case of “Bob’s device”
5) Click Generate

To change the services to be advertised
1) Open the GATT configurator
2) Select the service to be advertised: select Silicon Labs OTA service.
3) Tick the Advertise service checkbox
4) Click Generate

To start advertisement:

1) Setthe advertisement interval and duration:

gecko cmd le gap set advertise timing(0,160,160,0,0);

This will set the advertisement interval to 100ms and the duration to infinite. For more info read the Bluetooth Smart Software
API| Reference Manual.

2) Start advertising in discoverable and connectable mode:

gecko cmd le gap start advertising (0, le gap general discoverable,
le gap undirected connectable);

These steps are already implemented in SOC — Empty example project in the boot event, so you do not have to modify the code!

You can stop advertising with the following command:

gecko cmd le gap stop advertising(0);

Note: the advertisement is automatically stopped when a connection has been established! If you want to connect to multiple devices,
you have to restart advertisement upon each connection establishment.

After modifications, build and flash your project to the device again, and find your device with the Blue Gecko smartphone
app. Now you should see your device name changed to e.g. “Bob’s De”. The “vice” is missing from the end, because you are
advertising a service with 128bit UUID which uses up 16 byte from the 31-byte advertisement packet. Flags uses 3 more bytes,
device name header uses 2 more bytes and service uuid header uses 2 more bytes again. This leaves only 8 bytes for the de-
vice name!

My Devic fo) -42dem
00:0B:57:0B:4C:28

06 C133D9A33A4F48638D9DDC8314C358B2

Flags Complete service classes(128-bit)

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 | 6

Implementing the Server Side

3.3 Add a predefined service

Bluetooth SIG has defined a number of services with assigned 16bit UUIDs that can be used by any devices to provide interoperability
between them. E.g. if you want to set the current time on the device, it is suggested to add the predefined Current Time Service.

To add the predefined service (group of characteristics):

1) Open GATT configurator by double clicking on the .isc file of the project

2) Select the Services tab on the left pane

3) Drag and drop the service from the left pane to the right pane. E.g. add Current Time Service to your GATT database

To make Current Time characteristic writable (needed if you want to set time on the device):

4) Select Current Time characteristic in your database
5) Click on the State of the Write property in the lower left pane

6) Setitto True
7) Set the Length to 10

8) Set the Value to D0070101000000000000 (which corresponds to 2000-01-01 00:00:00)

£} *soc-empty_1l.isc ga [*mainc | retargetserialconfigh

& General
BLE GATT Configurator

Source filters

SIG [] Silabs

type filter t!t 2

4 [[3) Custom BLE GATT
4 [E) Generic Access
Device Name
Appearance
4 [E) Device Information
Manufacturer Name String

3 Alert Notification Service

» [E) Automation 10

3 Battery Service

i+ [E] Bloed Pressure

v [E) Body Composition

» [E) Bond Management Service

1 [E] Continuous Glucose Monitoring

T To] Current Time
Lecal Time Information
Reference Time Information

I Cycling Power

b [E Cycling Speed and Cadence

3 Device Information

» [E) Generic Access

a

i [E) Model Number String

System ID
4 [E] Silicon Labs OTA

(] Silicon Labs OTA Control
" [Corent Tmglh
(¢ Local TimeIs ation

Reference Time Information

4

E/(p.:;)x@;[.!»

Characteristic

Name: Current Time

Type: org.bluetooth.characteristic.current_time
UUID: 2A28

Value:
Length: 2 byte
Variable length: false
Type: HEX

Property requirements:
Read - Mandatory - true
Write - Optional - false
Write Without Response - Excluded - false
Indicate - Excluded - false
Notify - Mandatary - true
Descriptors:
Descriptor
MName: Client Characteristic Configuraticn
Type: org.bluetooth.descriptor.gatt.client_characteristic_configuration
Abstract:
The Client Characteristic Configuration descriptor defines how the characteristic may be configured
by a specific client.
Summary:
This descriptor shall be persistent across connections for bonded devices. The Client
Characteristic Configuration descriptor is unique for each client. A client may read and write this

~ | General settings
Name Current Time
] User description

Characteristic settings
1D current time UuID 2428

(]

SIG type org bluctooth.characteristic.current_tir

Value settings

Length 10 |2 byte [C]Variable length

Value D0070101000000000000 | Valuetype |hex =

Properties
Name Requirement
Read Mandatory
Set properties' information | Write Optional
Write Without Respense Excluded
Indicate Excluded
Metify Mandatory

silabs.com | Smart. Connected. Energy-friendly

Rev. 0.6 |7

Implementing the Server Side

34 Add a custom service

Often you need a characteristic that you cannot find among the predefined ones. Let us say you want to read the voltage of your board
in millivolts. In this case you can create custom characteristics within a custom service.

To define a custom characteristic for this specific case do the followings:

1)

2)
3)
4)
5)

6)
7)
8)
9)
10)
11)

12)
13)

14)
15)
16)
17)
18)
19)

20)
21)

Open GATT configurator by double clicking on the .isc file of the project

. . . Ci -
Click the create new item icon “ -
Click New Service

Select the new Service and rename it in the name field, e.g. MyVoltageService

Note down the 128-bit UUID of your service for future reference
. .) -

Click the create new item icon
Click New Characteristic
Select the new Characteristic and rename it in the name field, e.g. BoardVoltage
Tick the checkbox near to ID, and give it an ID, e.g. board_voltage

Set the length field to 2 (16bit will be enough to describe the voltage about 3300)

Set the type field to hex

Add Read property by clicking Add new item (EE:I) in the Properties tab , and selecting Read
Set the state of the Read property to True

Click again the create new item icon 3~
Click New Characteristic

Select the new Characteristic and rename it in the name field, e.g. BoardVoltageNotification
Tick the checkbox near to ID, and give it an ID, e.g. board_voltage_notification

Set the length field to 2

Set the type field to hex

Add Notify property by clicking Add new item (:l:':)in the Properties tab , and selecting Notify
Set the state of the Notify property to True

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |8

Implementing the Server Side

& General
BLE GATT Configurator il
Souree filters 4 [Custom BLE GATT
SIG [7] Silicon Labs 4 [Generic Access = —
=
[Device Name L 3
Services 5] Appearance €9 MNew Characteristic
type filter text a Device Information o New Descrptor
[Manufacturer Name String Esd
[Alert Notification Service - [#] Model Number String
+ [E] Automation 10 [System ID e
[EBattery Service a4 Silicon Labs OTA
» [E] Blood Pressure E [& silicon Labs OTA Control
3 Body Composition a Current Time Service
I Bond Management Service s B Current Time
I Continuous Glucose Monitoring B Local Time Information

3 \E Current Time Service |

3 Cycling Power

3 Cycling Speed and Cadence
3 Device Information

3 Generic Access

3 Generic Attribute

Reference Time Information

MyVoltageService
'+ BoardVoltage

¢ BoardVoltageNotification

[Glucose
I Health Thermometer i
Characteristic = General settings
Name: Characteristic
Type: custom.type Mame BoardVoltageMotification
ULID: 91d2454e-blee-4€l5-87ea-0d23bbeb51a8 BT User description T
Custorn characteristic
Value: 000

Characteristic settings
Length: 1 byte
Variable length: false ID board_voltage_notification I lUUID 91d2454a-blee-dalS-&?aa-Qde&aSSlI

Type: HEX
SIG type custom.type
Value settings
Length 2 E byte [Variable length
Properties

Name Requirement State
l Motify Optional] ®

Set properties’ information

3.5 Generate Database

When you finished editing the database, click Generate in the upper-right corner of the GATT editor. This generates the following
files:

gatt.xml — an xml format description of your database structure.

gatt_db.h — a header file that contains the definitions for your characteristic handles. You can read and write the values of your charac-
teristics by referring to these definitions. The definition names are generated from the IDs given in the GATT editor.

gatt_db.c — a source file defining the database and the default values of the characteristics.

Your GATT database is ready for build.

.
Generation validation =

AppBuilder has determined that the files listed below exist and would be changed. All selected files will be overwritten.

Overwrite? File

Ci\Users\arkahvac\SimplicityStudio\wd_workspace\soc-empty_11\gattxml
Ci\Users\arkalvach\SimplicityStudic\wd_workspace\soc-empty_11\\gatt_db.c
C:\Users\arkalvac\SimplicityStudio\vd_workspace\soc-empty_11\\gatt_db.h
Ci\Usersharkalvach\SimplicityStudio'wd_workspace\soc-empty_11\\BgBuild_Log .t

[7] Create .bak files for all the files that get overwritten.

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |9

Implementing the Server Side

To check your database, you can use your smartphone:
1) Build your project and flash it to your device
2) Download the Blue Gecko app (http://silabs.com/bluegeckoapp) to your smartphone, and open it

3) Select Bluetooth Browser

4) Connect to your device (find your device name, and tap it)

5) Now you can browse your database

6) Check the entries you have added. Note, that your custom services and characteristics are listed as unknown ser-
vice/lcharacteristic, because the service/characteristic type is determined based on the UUIDs, and not on the names
you are using in your database!

7) Service list is usually cached by applications. If you cannot find your newly added services, click Refresh services in

the local menu while you are connected to the device.

3 V.4 811:00 30 9 .4 & 17:21 30 ¥ 4 & 17:21
Bluetooth Smart Applications (7] & Bluetooth Browser H Empty Example
DEVICES .
Health Thermometer Generic Access
0x1800
View current and saved thermometer readings. Empty Example .

Health Thermometer Profile 00:0B:57:0B:4C:28

BLE Device)

-43 dB . .
00:08:57:07:37:3A " Device Information
. 0x180A
Bluetooth Beaconing
Identify and detect proximity beacons related to Unknown @) -75dBm
retail products. 00:08:57:05:83:67 \
Unknown ©0) -00 dBm : OTA Service
38:01:95:24:18:2D o ’ 1d14d6ee-fd63-4fa1-bfad-8f47b42119f0
Key Fobs

Detect and find Key Fobs via intelligent alerts.
Find Me Profile

Current Time Service
0x1805

Bluetooth Browser

View info about nearby devices and their
properties. Unknown service

©133d9a3-3a4f-4863-8d9d-dc8314c358b2

Scanning...

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 | 10

http://silabs.com/bluegeckoapp

Implementing the Server Side

3.6 Reading/Writing the Local Database
In peripheral devices we are mostly measuring something or controlling something on the device.

To make a measurement readable by remote devices, the values has to be written into the local GATT database. Let us say we want to
monitor the voltage of the board. We measure the voltage every second, and write its value to the database in our custom characteristic
(BoardVoltage) every second. This value can be then read by the client any time.

We can also notify the client, that the value has changed / has been updated. We send therefore notifications via the BoartVoltageNotifi-
cation characteristic after each measurement. Here the new value is automatically sent to the client without request.

To implement this, do the followings:

1) Create a new event handler for the “connection opened” event. This event will be triggered when a device connected
to our device. Find the switch() statement in appMain() in app.c and add the following case:

case gecko evt le connection opened id:
break;

2) If the connection is opened we start measuring the voltage every second. Within the connection_opened event han-
dler set up a soft timer that will fire every second:

case gecko evt le connection opened id:
gecko cmd hardware set soft timer (32768,0,0);
break;

3) Create a new event handler for the expired timer. This will be triggered every second:

case gecko evt hardware soft timer id:
break;

4) Copy em_adc.c and em_adc.h from
C:\SiliconLabs\SimplicityStudio\v4\developer\sdks\gecko_sdk_suite\v2.5\platform\emlib\
into the project and add the following line to app.c:

#include "em adc.h"

5) Declare variables and initialize ADC in appMain() before gecko_init (pconfig) ;

uint32 t adcData;

uintl6 boardVoltage;

ADC InitSingle TypeDef initSingle = ADC INITSINGLE DEFAULT;
initSingle.acqTime = adcAcqTimel6;

initSingle.reference = adcRef5VDIFF;

initSingle.posSel = adcPosSelAVDD;

initSingle.negSel = adcNegSelVSS;

CMU_ClockEnable (cmuClock ADCO, true);

6) Within the hardware_soft_timer event handler read the voltage

ADC_InitSingle (ADCO, &initSingle);
ADC Start (ADCO, adcStartSingle);

while((ADC_IntGet(ADCO) & ADC_IF_SINGLE) = ADC_IF_SINGLE);
adcData = ADC DataSingleGet (ADCO) ;
boardVoltage = (uintl6) (adcData * 5000 / 4096);

printlog ("voltage: %d mv\r\n",boardvoltage);

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |11

Implementing the Server Side

7) And write it to the local database (BoardVoltage). Also send a notification with the new value (BoardVoltageNotifica-
tion)

boardVoltage = ((boardVoltage & Ox00FF) << 8) | ((boardVoltage & 0xFFO00) >> 8);

gecko cmd gatt server write attribute value(gattdb board voltage, 0, 2,
(const uint8*) &boardVoltage) ;
gecko cmd gatt server send characteristic notification (0xFF,
gattdb board voltage notification, 2, (const uint8%*)&boardvoltage);

You can check the value with your smartphone.

1) Open the Blue Gecko app (http://silabs.com/bluegeckoapp) on your smartphone

2) Select Bluetooth Browser

3) Connect to your device

4) Find the unknown service with the UUID of your custom service, open it

5) Open the first characteristic. This will automatically read its value.

6) Convert the hex value to decimal, the value should be around 3300mV.

7) Open the second characteristic. Here you can see the voltage automatically updated every second.

8) Convert the hex value to decimal, the value should be around 3300mV.

0] 11:00 LA = 16: i = 16:43
3hvdn = 30 % .4 = 16:42 % i Ui
Bluetooth Smart Applications (%) < Bluetooth Browser My Devic
DEVICES Unknown service

Health Thermometer ©133d9a3-3a4f-4863-8d9d-dc8314c358b2

View current and saved thermometer readings. My Devic @0) -30d8m

Health Thermometer Profile HTP 00:0B:57:0B:4C:28

Unknown Characteristic
9:55 RTOS 000 -60 dom : ;ilazgeaof-gcdzx-uza-ss6e-03a4c6 .
00:0B:57:17:D3:E4

Bluetooth Beaconing

Identify and detect proximity beacons related to Unknown o) -87dBm :

retail products. 38:01:95:24:18:20 ENCODING

Hex

Key Fobs

Detect and find Key Fobs via intelligent alerts.

Find Me Profile e

Decimal

Bluetooth Browser

View info about nearby devices and their Unknown Characteristic

properties 3a8f64eb-

f11f-4f33-89a1-578486aa149d
{canning. .

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |12

http://silabs.com/bluegeckoapp

Implementing the Server Side

To control the device / set parameters of the device you can use writable characteristic. E.g. if you want to set the current time on the
device, you can write the Current Time characteristic from your smartphone. Your application will be notified about the changes, and you
can read the new value from the GATT database and you can configure your device according to it. To process e.g. the updated Current
Time written from your smartphone implement the followings:

1) Create a new event handler for attribute changes:

case gecko evt gatt server attribute value id:
break;

This will be triggered e.g. when a characteristic was written by a remote device
2) Define a structure that corresponds to the Current Time characteristic structure as it is defined by Bluetooth SIG

(https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.current_time.xml

). This is important to be compatible with the standard. You can put the following code into app.c

PACKSTRUCT (struct date time t{
uintlé year;
uint8 month;
uint8 day;
uint8 hours;
uint8 minutes;
uint8 seconds;

1)

PACKSTRUCT (struct day of week t {
uint8 day;
b

PACKSTRUCT (struct day date time t {
struct date time t date time;
struct day of week t day of week;

P

PACKSTRUCT (struct exact time 256 t {
struct day date time t day date time;
uint8 fractions 256;

1)

PACKSTRUCT (struct current time t {
struct exact time 256 t exact time 256;
uint8 adjust reason;

b

3) Process the received value within the gatt_server_attribute_value event handler:

if (evt->data.evt gatt server attribute value.attribute == gattdb current time) {

struct current time t* current time =
(struct current time t*) (evt->data.evt gatt server attribute value.value.data);

struct date time t* datetime =
& (current time->exact time 256.day date time.date time);

printLog ("current time modified: %$4d-%2d-%2d %$2d:%2d:%2d\r\n",
datetime->year, datetime->month, datetime->day,
datetime->hours, datetime->minutes, datetime->seconds);

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |13

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.current_time.xml

Implementing the Server Side

Now you can test the working with your smartphone:

1) Open the Blue Gecko app (http://silabs.com/bluegeckoapp) on your smartphone

2) Select Bluetooth Browser

3) Connect to your device

4) Find the Current Time Service open it

5) Find the Current Time characteristic

6) Set the value to the current date

7) Check the value in the debug message on the COM port

&

30 .4 W 11:30

My Devic

30 WA = 1642 % 10 W .4 W 10:40
< Bluetooth Browser < My Devic
DEVICES Current Time
0x2A2B
My Devic 40) -30 dBm :
00:0B:57:08:4C:28
o 2000 year
9:55RTOS $0) -60dBm Year
00:0B:57:17:D3:E4
January
Month
Unknown 100 -87dBm 1 day
38:01:95:24:18:2D0
Day
0 hour
Hours
0 minute
Minutes
Os
Seconds
Monday
Day of Week
0
Fractions256
Adjust Reason

$canning. .

o m
woltage: 3354 mU
current time modified: 2681%7- 4- 5 18: 8: @

woltage: 3356 ml
woltage: 3356 ml

Current Time
0x2A2B

2017 year
Year

April

Month

5 day

Day

18 hour
Hours

0 minute
Minutes

0s

Seconds
Wednesday
Day of Week
0
Fractions256
Adjust Reason

O
(]

woltage: 3355 ml

silabs.com | Smart. Connected. Energy-friendly

Rev. 0.6 |14

http://silabs.com/bluegeckoapp

Implementing the Client Side

4 Implementing the Client Side

The GATT server is basically only responding for requests from the client, which is relatively easy to implement. The GATT client, how-
ever, generates a series of requests, basically implementing a state machine. Hence, this section requires some more insights in the
code, and recommended only for advanced trainings. The client code can be added to the server code, since a Bluetooth device can
be used both as a server and as a client at the same time. However, to get a cleaner implementation, it is suggested starting the imple-
mentation of the client code from a new SoC-Empty project.

4.1 Scanning

If you are implementing a central device (a client) which will connect to an advertising peripheral device first you have to start scanning.
In scanning mode the Bluetooth device is searching for nearby devices that are currently advertising in order to create a connection with
one or more of them. To start scanning do the followings:

1) Setthe scanning parameters in the system_boot event handler in appMain() in app.c:

case gecko evt system boot id:

gecko cmd le gap set discovery timing(le gap phy 1m, 160, 160);
gecko cmd le gap set discovery type(le gap phy 1Im, 1);
break;

This will result in a continuous active scanning. For details see Bluetooth Smart Software API Reference Manual
2) Start scanning right after setting the setting parameters

case gecko evt system boot id:

gecko cmd le gap set discovery timing(le gap phy 1m, 160, 160);
gecko cmd le gap set discovery type(le gap phy 1m, 1);
gecko cmd le gap start discovery(le gap phy 1m, le gap discover observation);
printlog ("Scanning started\r\n");
break;

3) Setup atimer to stop scanning e.g. after 5 seconds

case gecko evt system boot id:

gecko cmd le gap set discovery timing(le gap phy 1m, 160, 160);
gecko cmd le gap set discovery type(le gap phy 1m, 1);
gecko cmd le gap start discovery(le gap phy 1m, le gap discover observation);
printLog ("Scanning started\r\n");
gecko cmd hardware set soft timer (5*32768,1,1);
break;

4) Create a new event handler for the expired timer:

case gecko evt hardware soft timer id:
break;

5) In the event handler stop scanning

case gecko evt hardware soft timer id:
if (evt->data.evt hardware soft timer.handle == 1) {
gecko cmd le gap end procedure () ;
printLog ("Scanning stopped\r\n");

break;

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 | 15

Implementing the Client Side

While the device is scanning for nearby devices a new le_gap_scan_response event is raised by the stack for each advertisement packet
received. To handle these events:

1) Create an array for scanned devices in a global variable

#define MAX SCANNED DEVICES 10

struct gecko_msg le_gap_scan_response_evt_t scanned devices[MAX SCANNED DEVICES];
uint8 num scanned devices = 0, i, *addr;

2) Create an event handler for scan responses:

case gecko evt le gap scan response id:
break;

3) Within the event handler check if the device was already scanned, and add to the list if it was not:

addr = evt->data.evt le gap scan response.address.addr;
for (i=0; i<num scanned devices; 1i++)
if (memcmp (scanned devices([i].address.addr,addr,6)==0)
break;
if (i == num scanned devices && num scanned devices < MAX SCANNED DEVICES) {
memcpy (scanned devices[num scanned devices].address.addr, addr,6);
scanned devices[num scanned devices].address_ type

evt->data.evt le gap scan response.address type;
scanned devices[num scanned devices].rssi =

evt->data.evt le gap scan response.rssi;
printLog ("%d) %02x:%02x:%02x:%02x:%02x:%02x - rssi: %d\r\n",num scanned devices,
addr[5], addr([4], addr[3], addr[2], addr[l], addr[0],
scanned devices[num scanned devices].rssi);
num_scanned devices++;

Now you can build your code, and flash it to the device. Connect to the serial port and take a look at the list of scanned devices. If you
have a peripheral device in the near advertising, you have to see it listed

When scanning was completed, you can connect to any discovered device. For the sake of simplicity let us connect to the closest device,
the rssi of which is at least -50dBm:

1) Declare variables:

int8 max rssi;
uint8 closest device;

2) Find the closest device, right after scanning was stopped in the hardware_soft_timer event handler:

max rssi = -50;
closest device = num_scanned devices;
for (i = 0; 1 < num scanned devices; 1i++){
if (scanned devices[i].rssi > max rssi) {
max rssi = scanned devices[i].rssi;
closest device = 1i;

3) And connectto it

if (closest device < num scanned devices)
gecko cmd le gap open(scanned devices[closest device].address,
scanned devices[closest device].address type);

4) Declare a global variable for the connection handle

silabs.com | Smart. Connected. Energy-friendly

Rev. 0.6 | 16

Implementing the Client Side

uint8 conn handle;

5) And save the connection handle within the le_connection_opened event handler for future reference

case gecko evt le connection opened id:

printLog ("connected\r\n") ;

conn_handle = evt->data.evt le connection opened.connection;
break;

Now place a server and a client next to each other and see on the terminal if they get connected.

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |17

Implementing the Client Side

4.2 Discovering Remote Database

After the connection was established the structure of the remote database is unknown for the client. In order to discover the database, a
service discovery has to be run on it. This will return with UUIDs of implemented services/characteristics and with handles of services
and characteristics — which can be used as reference while reading/writing.

To start service discovery:

1) Declare global variables indicating service discovery state, and storing service handles:

uint8 service discovery = 0;
uint32 service handles[1l] = {O0xFFFFFFFF};
uint8 service to find[2] = {0x00,0x18};

2) Start service discovery in the connection_parameters (connection is established) event handler:

case gecko evt le connection parameters id:
printLog ("connection established\r\n");
gecko cmd gatt discover primary services(conn handle);
service discovery = 1;

break;

3) Create a new event handler for discovered services:

case gecko evt gatt service id:
break;

4) Save service handles within the gatt_service event handler for services you are interested in.
E.g. for Generic Access service:

if (memcmp (evt->data.evt gatt service.uuid.data, service to find, 2) == 0){
service handles[0] = evt->data.evt gatt service.service;

5) Create a new event handler for the end of the discovery process:

case gecko evt gatt procedure completed id:
if (service discovery) {
service discovery = 0;
//characteristic discovery can be started here

}

break;

To start characteristic discovery:

1) Declare global variables indicating characteristic discovery state, and storing characteristic handles:

uint8 characteristic discovery = 0;
uintl6 characteristic handles([1l] = {O0xFFFF};
uint8 char to find[2] = {0x00,0x2a};

2) Start characteristic discovery in the gatt_procedure_completed event handler:

gecko cmd gatt discover characteristics(conn handle, service handles[0]);
characteristic discovery = 1;

3) Create a new event handler for discovered characteristics:

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 | 18

Implementing the Client Side

case gecko evt gatt characteristic id:
break;

4) Save characteristic handles within the gatt_characteristic event handler for characteristics you are interested in.

E.g. for Device Name characteristic:

if (memcmp (evt->data.evt gatt characteristic.uuid.data, char to find, 2) == 0){
characteristic handles[0] = evt->data.evt gatt characteristic.characteristic;

5) Extend the gatt_procedure_completed event handler:

else if (characteristic discovery) {
characteristic discovery = 0;
//reading/writing remote database can be started here

4.3 Reading/Writing Remote Database

After service discovery any characteristic can be read/written, provided that you have saved the characteristic handle and you have rights
to read/write the given characteristic

E.g. to read the Device Name characteristic of the remote device do the following:

1) Declare areceive buffer

uint8 remote device name[50];

2) Initiate read process e.g. in the gatt_procedure_completed event handler:

gecko cmd gatt read characteristic value(conn handle,characteristic handles([0]);

3) Create a new event handler for the received data

case gecko evt gatt characteristic value id:
break;

4) Process the received data within the event handler:

memcpy (remote device name,evt->data.evt gatt characteristic value.value.data,

evt—>data.evtigatticharacteriSticivalue.value.len);
remote device name[evt->data.evt gatt characteristic value.value.len] = *\0’;
printLog ("remote device name: %$s\r\n",remote device name);

Similarly, you can write to characteristics using gecko_cmd_gatt_write_characteristic_value(conn_handle,char_handle,len,data).

Now build and flash your code, place a server and a client next to each other and see on the terminal if the client is able to connect and
find the device name of the server.

Scanning started

B> 25:d4:17:57:b:-A8

1> 28:1c:24:f5:6b:ba

2> Be:zaa:5:57:h:8
Scanning stopped
connected

remote device name: Mexus

silabs.com | Smart. Connected. Energy-friendly Rev. 0.6 |19

	1 Bluetooth Basics
	2 Start Development
	2.1 Prepare your device
	2.2 Create a new Bluetooth project
	2.3 Add Debug Messages
	2.4 Build and flash your code

	3 Implementing the Server Side
	3.1 The GATT Database
	3.2 Advertising
	3.3 Add a predefined service
	3.4 Add a custom service
	3.5 Generate Database
	3.6 Reading/Writing the Local Database

	4 Implementing the Client Side
	4.1 Scanning
	4.2 Discovering Remote Database
	4.3 Reading/Writing Remote Database

