

silabs.com | Building a more connected world. Rev. 1.0

0

Hands-On Tutorial with OpenThread

This lab procedure walks through the steps to create a Thread

network and an OpenThread Border Router. The first part reviews

how to create an OpenThread project in Simplicity Studio v5. The

second part shows how to create a network with three nodes, and

how to use some basic commands to explore the feature of each

node. The final part introduces how to remove and add a node, and

analyze the status of each node. A demonstration of

commissioning ends this session.

KEY POINTS

• Create OpenThread project for

EFR32MG12

• Create a Thread network

• Add and remove a node and analyze the

network topology change

• Create an OpenThread Border Router

• Use commissioning with Thread

• Use Silicon Labs tools to analyze the net-

work

 EFR32MG12 – Create a Thread network
Prerequisites

silabs.com | Building a more connected world. Rev. 1 | 01

1 Prerequisites

For this lab you will need the following:

• Three EFR32MG12 radio boards - this tutorial assumes BRD4170A, although other EFR32MG12 radio boards would work too

with possible minor adaptation in instructions

• Three Mini-USB Type-B to USB Type-A cable supplied with any Wireless Gecko starter kit

• Simplicity Studio v5

o GNU ARM V7

o Gecko SDK Suite 3.1.0 or later

• (Optional) a serial terminal such as Tera Term

 EFR32MG12 – Create a Thread network
Create an OpenThread Project

silabs.com | Building a more connected world. Rev. 1 | 02

2 Create an OpenThread Project

We want to create three OpenThread projects and then create a network:

✓ child project

✓ router_eligible_1 project

✓ router_eligible_2 project

1. Launch Simplicity Studio from your desktop

2. Connect the 4170A radio board with EFR32MG12 to your PC using the USB cable
3. When the device is connected to your PC, you should see it listed in the Debug Adapters window in Simplicity Studio

4. File >> New >> Silicon Labs Project Wizard

5. If your radio board and WSTK are detected automatically, a new window shows up

6. Make sure you use Gecko SDK 3.1.0 or later and GNU ARM v7.X.X compiler
7. Click on NEXT

4

3

 EFR32MG12 – Create a Thread network
Create an OpenThread Project

silabs.com | Building a more connected world. Rev. 1 | 03

2.1 Minimal Thread Device project

The node child project is created with ot-cli-mtd example. The child is linked with a parent device (leader, router). In a network the child

can act in two different ways:

-As a Sleepy End Device (SED), in the software, we need to wake it up to check if there is a new message

-As a Minimal End Device (MED), its radio device is always on, we do not need to poll to have an update.

In our case, we will use it as a MED.

8. Now, we can tick the thread check box,

9. Select the ot-cli-mtd example only for the first node and click on next. The other two nodes use ot-cli-ftd example

10. Then click on NEXT

7

6

5

 EFR32MG12 – Create a Thread network
Create an OpenThread Project

silabs.com | Building a more connected world. Rev. 1 | 04

11. For ot-cli-mtd, enter the name “child”.

12. Click on FINISH

8

9

11

9

12

10

10

 EFR32MG12 – Create a Thread network
Create an OpenThread Project

silabs.com | Building a more connected world. Rev. 1 | 05

2.2 Full Thread Device Project

The router_eligible_1 project is created with ot-cli-ftd example. The router_eligible_1 will be the leader when the network first forms.

The router_eligible_1 can act as a router, Router Eligible End Device, or Full End Device.

13. Repeat step_4_to_8_Create_an_OpenThread Project to create two projects, name the first one router_eligible_1 and the other

one router_eligible_2

14. Select the ot-cli-ftd example (both projects) and click on NEXT

14

10

 EFR32MG12 – Create a Thread network
Compile and Flash Device Firmware

silabs.com | Building a more connected world. Rev. 1 | 06

3 Compile and Flash Device Firmware

15. Select your child project and click on the hammer to compile your project. Repeat this step for the router_eligible_1 and

router_eligible_2

16. Wait a few minutes until the full project is built. Once it is successfully finished, you can read this message in the Console tab:

15

10

15

10

 EFR32MG12 – Create a Thread network
Node Debug setup

silabs.com | Building a more connected world. Rev. 1 | 07

4 Node Debug setup

4.1 Rename Your Board

17. Rename your device to display each device role

In Debug Adapter review, right-click on your device and select Rename, then a “Rename Device” window opens.

18. For each project, to flash the corresponding .hex file, expand the Binaries folder under your project, right-click on the .hex, and

select Flash to Device…

17

17

 EFR32MG12 – Create a Thread network
Node Debug setup

silabs.com | Building a more connected world. Rev. 1 | 08

19. Select your device in the window and click OK

20. Click on Advanced Settings

21. Advanced settings window opens, click on Full Erase and OK

22. Then on the Flash Programmer window click on Program

23. A Programming Flash window will be opened, the firmware is being flashed.

18

19

 EFR32MG12 – Create a Thread network
Node Debug setup

silabs.com | Building a more connected world. Rev. 1 | 09

22

23

20

21

 EFR32MG12 – Create a Thread network
Node Debug setup

silabs.com | Building a more connected world. Rev. 1 | 010

4.2 Open Console to Communicate with Your Board

24. Open a console for each project in the Debug Adapter window:

Right-click on the device and select Launch Console…

25. Placing the two console windows side by side, as shown in the picture below, can make it easier to switch your active console

window from one node to another. We use serial 1 to communicate with the device.

26. From the top bar menu, click on window and select Preferences >> Network Analyzer >> Decoding >> Stack Versions

24

25

 EFR32MG12 – Create a Thread network
Node Debug setup

silabs.com | Building a more connected world. Rev. 1 | 011

26

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 012

5 Lab1: Create a Thread network

5.1 Create the Network

To create the network, we start with the router_eligible_1. From its console enter the commands lines below:

Router_eligible_1 console

Command-line Expected Response Description
> dataset init new

Done

Create a new network configuration

> dataset commit active

Done

Commit new dataset to the Active Opera-

tional Dataset in non-volatile storage.
> ifconfig up

Done

Enable Thread interface

> thread start

Done

Enable and attach Thread protocol opera-

tion.

Wait about 10 seconds ….
> state

leader Read the current status : offline, disa-

bled, detached, child, router, or

leader
> dataset > dataset

Active Timestamp: 1

Channel: 15

Channel Mask: 0x07fff800

Ext PAN ID: fa8f8d5f1cd2b5e9

Mesh Local Prefix:

fd6e:c30c:24e9:e3d9::/64

Master Key:

97e05cb1f2df6f0d9af3026448f4b834

Network Name: OpenThread-2136

PAN ID: 0x2136

PSKc: 47c8cd2bed340bab86c47929cf0e99db

Security Policy: 0, onrcb

Done

View network configuration

According to the response of the command state and dataset, the leader is created.

5.2 Add a Node to Our Network

To add a node to our network, enter the commands lines below in the child console:

Child console

Command-line Expected Re-

sponse

Description

> dataset channel 15

Done

To decrease latency, the node needs to use the channel used in

the alive network.
> dataset masterkey

97e05cb1f2df6f0d9af3026448f4b834

Done

 Only the Master Key is required for a device to attach to a

Thread network
> dataset commit active

Done

Commit new dataset to the Active Operational Dataset in non-vola-

tile storage.

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 013

> ifconfig up

Done

Enable Thread interface

> thread start

Done
Enable and attach the Thread protocol operation.

Wait about 20 seconds ….
> state

child

Read the current status: offline, disabled, detached, child,

router, or leader

5.3 Explore Deeper in Our Network

After our network is created, we want to check the environment and use the Network Analyzer in Simplicity Studio

1. Enter the security key: Window >> Preferences

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 014

2. In the Debug adapter, right-click on router_eligible_1 and select Start capture, repeat this step for the child.

3. Click on Network Analyzer button to switch the view

The network analyzer opens, feel free to set up your consoles as below to have a panoramic view.

-Highlight a network transaction such as the “MLE Child Update” shown in the example below, and in the “Event Detail” window you can

find the PAN ID of your network. In my example, the PAN ID is 0x2136. Yours may be different.

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 015

You can also rename your device represented in the upper view: right-click on it and choose label, then enter the desired name

5.4 A Quick Look at Our IP Addresses

Router_eligible_1 console

Command line Response Description
> ipaddr

> ipaddr

fd6e:c30c:24e9:e3d9:0:ff:fe00:fc00

fd6e:c30c:24e9:e3d9:0:ff:fe00:f000

fd6e:c30c:24e9:e3d9:fb6d:7770:b132:5823

fe80:0:0:0:a447:e853:7ea5:834

Done

Display the ipv6

Child console

Command line Response Description
> ipaddr > ipaddr

Display the ipv6

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 016

fd6e:c30c:24e9:e3d9:0:ff:fe00:f001

fd6e:c30c:24e9:e3d9:6fa:ecc5:34b1:27c5

fe80:0:0:0:8065:91ee:3cda:32e

Done

5.4.1 Link-Local addresses (LLA)

This address starts with fe80::/16 prefix (for instance fe80:0:0:0:a447:e853:7ea5:834), it is created with the MAC address. It is

not used to communicate between nodes. We can still use them between two nodes if there is only a link, one radio transmission, not
more than one cable to retransmit the message.

5.4.2 Example of building LLA (router_eligible_1):

Mac address:

A647:e853:7ea5:834

Flip the seventh bit A6 = 1010 0110
A4 = 1010 0100

LLA FE80::A447:e853:7ea5:834

5.4.3 Routing Locator Address (RLOC)

fd6e:c30c:24e9:e3d9:0:ff:fe00:f000(Router_eligible_1),this address is created when the device is attached to the net-

work, and is generally not used by applications. The blue part is the mesh prefix. This address changes if the topology changes, in
other words, if you remove/add a device.

5.4.4 Mesh Local Address (ML-EID)

fd6e:c30c:24e9:e3d9:fb6d:7770:b132:5823(Router_eligible_1),this address is independent of the network topology, and is

used to communicate with the other interface in the same thread network.

5.4.5 Anycast (only the leader)

fd6e:c30c:24e9:e3d9:0:ff:fe00:fc00 (router_eligible_1), this is anycast address, it is used to route traffic to a

Thread interface when the RLOC of a destination is not known. An Anycast Locator (ALOC) identifies the location of multiple interfaces
within a Thread partition. The last 16 bits of an ALOC, called the ALOC16, is in the format of 0xfcXX, which represents the type of
ALOC.

To sum up, only the leader has an anycast address, the LLA is built from the MAC address, the ML-EID is created when the network is
up and does not change, the RLOC changes if the topology of the network changes as well. To communicate between the interface of
the same mesh network, we use the ML-EID. To identify an interface we use RLOC. Here is a link to study deeper IPV6 addressing:
https://openthread.io/guides/thread-primer/ipv6-addressing

https://openthread.io/guides/thread-primer/ipv6-addressing

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 017

Nature Communication Description Comments

LLA A-------------------------B

Yes, both direction Point to point

A-------------------------B-------------------------C

A to B yes, both direction

B to C yes, both direction

A to C no, any direction

Only one radio transmission, useful

to discover the neighbor or routing.

RLOC A to B yes, both direction

B to C yes, both direction

A to C yes, any direction

If you change the topology, the ad-

dress change.

ML-EID Any interface of the same mesh net-

work, so here my address which
starts with fd6e:c30c:24e9:e3d9

5.4.6 Zoom in on the “child table” command line

Router_eligible_1 console

Command-line Example of an Expected Response Description
> child table

| ID | RLOC16 | Timeout| Age | LQ In| C_VN|R|S|D|N| Extended MAC |

+-----+--------+--------+-----+------+-----+-+-+-+-+------------------+

| 1 | 0xf001 | 240 | 38 | 3 | 47|1|1|0|0| 826591ee3cda032e |

Done

Attached child info

5.5 Understanding Leader, Router, and Child Roles

We want to add a device and then remove the current leader to understand some of the healing properties of Thread networks.

Launch the console of the router_eligible_2 and repeat command lines in the section Add a Node to Our Network.

router_eligible_2 starts as a child and becomes quickly a router.

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 018

Then we can check the capture in the Network Analyzer view.

The image above shows communication between the leader (router_eligible_1) and the router (router_eligible_2)

5.6 Remove a leader

We want to discover what happens if we remove the current leader. Unplug the router_eligible_1 node, wait three minutes and, from

each remains nodes enter this command: state

Once the router_eligible_1 is removed, the child has a new parent, the router (router_eligible_2) became the new leader, as we can

see, in the child table of router_eligible_2, there is the extended mac address of the child. We can notice some differences for the

child:

-Only the local address did not change

-Its RLOC16 value changed: 0x7c01

5.7 Put router_eligible_1 back

 Plug it back in, open its console and display its state

We need to add it to our network, repeat command lines in the section Add a Node to Our Network.

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 019

The router_eligible_1 became a router; the child did not change and router_eligible_2 is still the leader. We notice that Router_eli-

gible_1 does not have anycast address anymore.

5.8 Communication between Nodes

The ping command enables to send a request and check if the communication works, let’s have a ping between the leader and the

child:

5.8.1 Leader (router_eligible_2) and child ping each other

Router_eligible_2 console (ping local address)

Command line Response Description
> ping ping fe80:0:0:0:8065:91ee:3cda:32e

Done

> 16 bytes from fe80:0:0:0:8065:91ee:3cda:32e: icmp_seq=2

hlim=64 time=11ms

ping fe80:0:0:0:a447:e853:7ea5:834

Send an ICMPv6 Echo

Request

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 020

5.8.2 The child and the router (router_eligible_1) cannot ping each other by their local addresses

child console (ping local address)

Command line Response Description
> ping ping fe80:0:0:0:a447:e853:7ea5:834

Done

Send an ICMPv6 Echo

Request

5.8.3 Leader (router_eligible_2) and the router (router_eligible_1) can ping each other by their local addresses

Child console (ping local address)

Command line Response Description
> ping ping fe80:0:0:0:a447:e853:7ea5:834

Done

>

> 16 bytes from fe80:0:0:0:a447:e853:7ea5:834: icmp_seq=6

hlim=64 time=12m

Send an ICMPv6 Echo

Request

The ping request from the child to leader or leader to the router works with the local IPV6 address since there is only one hop!

Let’s take a look at the network analyzer trace., There is a “Missing packet” which means a message is missing.

The prefix has a 64 bits length, thread uses IPV6 native address. The MSB 64 bits for the network ID and the LSB 64 bits for the ID

device.

 EFR32MG12 – Create a Thread network
Lab1: Create a Thread network

silabs.com | Building a more connected world. Rev. 1 | 021

We added back router_eligible_1, so the topology changed as the RLOC16 of the child too. Once router_eligible_1 is attached to the

network, refresh the console (click on the bin icon) and enter the rloc16 command to see: 0x7C05.

According to the result of the ping response, we can draw our network topology:

Leader

Child

Router
 (old leader)

 EFR32MG12 – Create a Thread network
Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

silabs.com | Building a more connected world. Rev. 1 | 022

6 Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

6.1 Prepare your Raspberry Pi

Once you get the image OT_FAE_Training_2020_Labs.img, you have to burn it on an SD card.

I recommend using this software to flash your SD card balenaEtcher-Setup-1.5.100.

6.2 Prepare 4170A radio board

The OTBR is built with two hardware platforms:

- A host processor hosts the core of OpenThread and the applications, in our case, this is Linux with OpenThread core

- A device controller with the minimal MAC layer: in our case 4170A board with ot-rcp runs on it.

Create an OpenThread project from Simplicity Studio v5 (section_4_to_8_Create_an_OpenThread Project) and choose ot-rcp example,

compile it and flash router_eligible_1.

6.3 Prepare a node device

Use your child, it has already the corresponding firmware.

6.3.1 OpenThread Border Router setup

At this step you should have this configuration:

6.4 Start the OTBR (OpenThread Border Router)

Once your Raspberry Pi boots,

1. The command line below shows if otbr-agent and otbr-web processes are running. The expected result is below.

Raspberry Pi

Radio board with ot-rcp firmware
4170A board with ot-cli-mtd

Laptop with ssh terminal Switch

Ethernet

USB
USB

Ethernet/wifi

 EFR32MG12 – Create a Thread network
Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

silabs.com | Building a more connected world. Rev. 1 | 023

2. Go to ot-br-posix directory: cd ot-br-posix

3. Run the script sudo./startOTBR_Lab2.sh

The table below sums up some command lines to setup the OTBR.

Leader console (startOTBR_Lab2.sh)

Command-line Expected Response Description
> factoryreset

Delete all stored settings, and signal a

platform reset

> thread stop

> Done

 Disable Thread protocol operation and

detach from a Thread network.

> networkname SL-OpenThread

> Done

 Set the Thread Network Name.

 EFR32MG12 – Create a Thread network
Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

silabs.com | Building a more connected world. Rev. 1 | 024

6.4.1 OTBR info

We can enter commands at the Raspberry Pi terminal:

Leader console from Raspberry Pi (sudo ot-ctl)

Command line Response Description
> sudo ot-ctl

>

Enter in thread terminal

To leave the Thread host terminal hit Ctrl+c keys. Now have a look at our network interface.

The ifconfig Linux command line displays the network interface available.

wpan0 interface was added once the script startOTBR_Lab2.sh was executed successfully

 EFR32MG12 – Create a Thread network
Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

silabs.com | Building a more connected world. Rev. 1 | 025

6.4.2 Add a node to our network (out-of-band method)

With the out-of-band method, we know all security information and add the node manually. In the “real world”, we use a user interface via

the web or mobile app to add the node automatically.

At the end of the script, you can read all the necessary data to add an end device.

From the node, console Add a Node to Our Network the node should join the network properly.

Go back to Raspberry Pi Thread host terminal and check if the child is present in the child table:

So, the child was added successfully, let’s ping each other.

6.4.3 Communication between OTBR and the node

The ping command is from the leader ===➔ node

 EFR32MG12 – Create a Thread network
Lab2: OpenThread Border Router (Raspberry Pi 3b/b+)

silabs.com | Building a more connected world. Rev. 1 | 026

Go back to your child console, ping from the node ===➔ leader

Communication through the local address works on both sides.

 EFR32MG12 – Create a Thread network
Demo

silabs.com | Building a more connected world. Rev. 1 | 027

7 Demo

In this demonstration, the user will discover the commissioning with a user interface command line. The commissioner application is

embedded in the Raspberry Pi contrary to the external commissioner, which is a web or mobile application. All steps will be described, I

will show you how to automatize all steps.

We need an OTBR and another node, the software/hardware configuration is the same as the Lab2.

Restart your Raspberry Pi, make sure the node has ot-cli-mtd firmware.

Go to ot-commissioner folder: cd ot-commissioner

Execute the following script: sudo ./scriptCommissionDemo.sh

All-new command lines are described below (all characters between “${}” are script bash variable):

 EFR32MG12 – Create a Thread network
Demo

silabs.com | Building a more connected world. Rev. 1 | 028

Leader console from Raspberry Pi (sudo ot-ctl)

Command-line Expected Response Description
> ot-ctl extpanid dead00beef00cafe

> Done
Set the Thread Extended PAN ID

value.
> ot-ctl pskc -p J01NME ${EXTPANID}

${NETWORKNAME}
> Done

 Generate a hex-encoded PSKc

by using a Passphrase (Commis-

sioner Credential), the extpanid,

and the Network Name with the

PSKc Generator tool on the

OTBR. Make sure to use the

same Extended PAN ID and

Network Name that was used in

the operational dataset:
ot-ctl prefix add 2001:dce:1:ffff::/64 pasor

Add a valid prefix to the Network

Data.

 EFR32MG12 – Create a Thread network
Demo

silabs.com | Building a more connected world. Rev. 1 | 029

In other words, the OTBR and the

node bust have the same network

ID, to be on the same network.
ot-ctl pskc > Done

dbc1dc72993de43bfb2bd5f85

3d3ec63

Display security key

./updatePSKc.sh ${PATH_PSKC} ${PSKC} Replace PSKC in /usr/lo-
cal/etc/commissioner/non-

ccm-config.json and change

the PSKc

We can see our new pskc in /usr/local/etc/commissioner/non-ccm-config.json the command line below can

show quicker the result:

cat /usr/local/etc/commissioner/non-ccm-config.json | grep -i pskc

Now we can start our commissioner application:

Open a new terminal from your Raspberry Pi and enter the followings commands below:

1. commissioner-cli /usr/local/etc/commissioner/non-ccm-config.json
2. start :: 49191
3. active
4. joiner enableall meshcop J01NU5

Leader console from Raspberry Pi (sudo ot-ctl)

Command line Response Description

commissioner-cli /usr/local/etc/commis-

sioner/non-ccm-config.json

A commissioner shell

opens Start the OT Commissioner CLI

with the Non-CCM configuration:

> start :: 49191

[done]
Connect to OTBR

> active

true

[done] Verify that the Commissioner is

active

> joiner enableall meshcop J01NU5

> Done In OT Commissioner, enable
Thread 1.1 MeshCoP joiner for all
Joiners with a password
of J01NU5:

 1

 2

 3

 4

 EFR32MG12 – Create a Thread network
Demo

silabs.com | Building a more connected world. Rev. 1 | 030

7.1.1 Join the network

From the joiner (node device), enter the following commands lines (image below), it should take 2 minutes:

As we can see, at the beginning the device is not in the network.

We do not need to enter channel, masterkey, panid and so on, all steps were automatized in bash script.

In case you have a fail message, repeat joiner start J01NU5 command line.

 EFR32MG12 – Create a Thread network
Communicate with the external world

silabs.com | Building a more connected world. Rev. 1 | 031

8 Communicate with the external world

Previously we added a prefix to communicate locally with IPV6 addresses:

OTBR pings child (ping local address)

Command line Response Description
> ping sudo ot-ctl

> ping fe80:0:0:0:584b:fe7e:55d3:61fd

Done

> 16 bytes from fe80:0:0:0:584b:fe7e:55d3:61fd: icmp_seq=1

hlim=64 time=37ms

Send an ICMPv6 Echo

Reques

child pings OTBR (ping local address)

Command line Response Description
> ping > ping fe80::e01c:c24:102:dc9

Done

>

> 16 bytes from fe80:0:0:0:e01c:c24:102:dc9: icmp_seq=4

hlim=64 time=32ms

Send an ICMPv6 Echo

Reques

In both directions, the local address works, since there is only one hop.

If I want to communicate with my IPV6 eth0 interface, it will not work, the mesh prefix was not created for it. The interface eth0 uses ipv4

address, to communicate between IPV6 and IPV4, we need a translater: NAT64.

Contrary to eth0, wpan0 interface has the mesh prefix

In /etc/tayga.conf, we have the prefix to communicate between IPV4 and IPV6,.

The prefix used in NAT64 is 2001:db8:1:ffff::/96, you can retrieve it with the following command line:

cat /etc/tayga.conf | grep -i prefix.*96$

Do not mix NAT64 prefix with the mesh prefix, the mesh prefix 2001:dce:1:ffff is used to communicate in mesh network and the prefix

NAT64 2001:db8:1:ffff::/96 is used to communicate between IPV4 and IPV6 addresses.

 EFR32MG12 – Create a Thread network
Communicate with the external world

silabs.com | Building a more connected world. Rev. 1 | 032

To ping an IPV4, just use the NAT64 prefix and add the IPV4 address in hex format, here we have 192.168.50.128

Decimal Hexadecimal Prefix::IPV4 Description
192.168.50.128 C0a8:3280

2001:db8:1:ffff::C0a8:3280 Communicate with eth0 interface

Child pings (eth0 interface)

command Response Description
ping

2001:db8:1:ffff::C0a8:3280

> 16 bytes from 2001:db8:1:ffff:0:0:c0a8:3280:

icmp_seq=8 hlim=62 time=42ms

Done

ping eth0 address

Child pings google
ping

2001:db8:1:ffff::808:808

Done

> 16 bytes from 2001:db8:1:ffff:0:0:808:808:

icmp_seq=9 hlim=116 time=50ms

ping google

Here is the result of the external communication of the child and the external world, you can get IPV4 of Google from this link https://fr.wik-

ipedia.org/wiki/Google_Public_DNS

https://fr.wikipedia.org/wiki/Google_Public_DNS
https://fr.wikipedia.org/wiki/Google_Public_DNS

