

1 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Labs
2018.04.16

Micrium OS is a flexible, highly configurable collection of software components that
provides a powerful embedded software framework for developers to build their
application on top of. There are few dependencies among the components, so developers
are mostly free to select the software that makes sense for their projects. Within any
particular component, there are numerous parameters that can be adjusted—at either
compile time or run time in many cases—to ensure the most efficient use of resources.

Objectives
After completing this hands-on session, you will be able to:

§ Build and flash your Giant Gecko Kit with Micrium OS Kernel projects

§ Have a solid understanding of how to create Micrium OS Kernel tasks

§ Write interrupt handlers using Micrium OS Kernel’s ISR mechanism

§ Properly use Semaphores and Event Flags in Tasks and ISRs

§ Protect shared resources using Mutexes

§ Pass data through Message Queues

Lab setup
The lab setup requires the following elements:

§ A Giant Gecko GG11 Starter Kit (SLSTK3701A)

Software requirements
Some software tools are needed to complete the lab:

§ Simplicity Studio Version 4 (with the most recent board updates)

2 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 1

Overview
For this lab, you will just import an existing Micrium OS Kernel project and using that project flash your Giant Gecko
Starter Kit. The goal of this lab is to ensure you are able to import a project, compile the project, flash your kit with the
compiled project and then run the project via the debugger. After importing the project you will need to add some code
provided in this lab manual to the Micrium OS Kernel Task to provide the heartbeat LEDs. Once the application is
running on your Giant Gecko Starter Kit you will see a message displayed on the LCD and the LEDs on the board
blinking.

Loading the Project into Simplicity Studio
Start by unzipping the zip file that was provided by your instructor and then open up Simplicity Studio.

Under the file menu in Simplicity Studio, select Import.

Browse to the location of the folder you unzipped. You should see all of the lab files under Detected projects. Select
Micrium-OS-Kernel-Lab-1 and then click Next.

3 silabs.com | Micrium OS Kernel Labs

Under the build configurations you should be able to leave everything at the default. If you do not have a specific version
of a configuration item, attempt to change it to the version you have. If you are unsure or unable to get it to work ask
your instructor for help. Once you’ve set the build configuration click Next.

Click on the Browse button and select the directory where you previously unzipped the provided zip file. Once you load
the directory you should see Micrium-OS-Kernel-Lab-1 showing up under the Projects window. If you do not see any
projects under the Projects window, verify that you have unzipped the provided zip file and are correctly selecting that
directory. Once you’ve verified Micrium-OS-Kernel-Lab-1 is displayed under Projects and the checkbox is checked,
click the Finish button.

4 silabs.com | Micrium OS Kernel Labs

After clicking Finish you will be returned to this screen. Click the Simplicity IDE button in the top right corner. If the
Simplicity IDE button is NOT there, click next to Launcher to add Simplicity IDE.

Adding the Heartbeat Code

Open up the file app.c. This is where you will be adding code for the heartbeat LED. Locate the comment in the code
for Micrium OS Kernel Lab 1: Step 1.

Step 1:
Add the following code inside the while loop. This will toggle the LEDs at an interval of 500ms. Feel free to change the
delay to any value you wish. Be sure to check out the documentation for OSTimeDlyHMSM() to see what the valid
parameters are.

 BSP_LedToggle(0);
 BSP_LedToggle(1);
 OSTimeDlyHMSM(0, 0, 0, 500,

 OS_OPT_TIME_HMSM_STRICT,
 &err);

5 silabs.com | Micrium OS Kernel Labs

Building the Application Code
Once you have added the necessary code to app.c, you can build your project.

Right click on Micrium-OS-Kernel-Lab-1 under the project explorer and click the Build Project option. You can also
access Build Project under the Project menu.

After building the project, you should see a similar output on the Console window. If it reports errors during the build,
check the modifications you’ve made in the code to ensure there are no errors. If you’re still unable to get it to build,
ask your instructor for help.

Flashing your Giant Gecko GG11 (SLSTK3701A) from Simplicity Studio
If you have not already, take your Giant Gecko board out of the kit.

6 silabs.com | Micrium OS Kernel Labs

Connect the USB mini cable as show above. Also ensure that the switch highlighted above is set to AEM. Once you’ve
connected the USB mini cable and set the switch to AEM, plug the USB cable into your computer.

Under the Device tab you should see J-Link Silicon Labs and underneath that, the EFM32GG11 part listed. If you do
not see your board show up, verify your USB connection and that your computer can find the USB device. If it is reported
as an Unknown Device, ensure that you have the most recent updates for Simplicity Studio installed.

Once the board is powered up, click the debug button in Simplicity Studio and select the Micrium-OS-Kernel-Lab-1
GNU ARM debug target.

7 silabs.com | Micrium OS Kernel Labs

After clicking the Debug button and selecting the target, Simplicity Studio will switch you to the Debug window
perspective. After the board is flashed, the application will halt at main as shown above.

Application Status
Once your Giant Gecko kit is flashed with the Micrium OS application, it will run the application when you click Resume
while debugging or it will start automatically when not in debug mode. Upon boot-up, Micrium OS goes through
initializations to start up the kernel. Once it is successfully initialized, the output on the LCD screen should be the same
as below. Also, both LEDs should be toggling at the rate specified in the call to OSTimeDlyHMSM().

Lab 1

Don’t Panic

8 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 2

Overview
Micrium OS Kernel applications are made up of tasks, each of which is simply a C function. Application developers use
Micrium OS Kernel’s task creation routine, OSTaskCreate(), to indicate that a particular function should be treated as
a task. In this lab, you’ll work with OSTaskCreate() as you add a new task to an existing application.

The goal of this lab is to create a task to control a traffic light. The traffic light will operate on a simple time schedule:
10 seconds red, 10 seconds green, 1.5 seconds yellow.

The code for the Traffic Light Task has already been written, your job is to create the task so uC/OS-III schedules the
task to run. You will need to declare a stack, priority and TCB for the task and then create the task.

Loading your project into Simplicity Studio
Load the Lab 2 project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Writing the Task Code

From the project explorer open up app.c. Locate the comments for the lab and follow the steps below.

Step 1:
Add the following defines to the Step 1 comment. This will specify the priority and task size for the Traffic Light task.

#define APP_CFG_TRAFFIC_LIGHT_TASK_PRIO 2u
#define APP_CFG_TRAFFIC_LIGHT_STK_SIZE 512u

Step 2:
Add the following global variables to the Step 2 comment. These variables will be used for the LED Task’s stack and
Task Control Block (TCB)

static CPU_STK TrafficLightTaskStk[APP_CFG_TRAFFIC_LIGHT_STK_SIZE];

static OS_TCB TrafficLightTaskTCB;

9 silabs.com | Micrium OS Kernel Labs

Step 3:
Add the following function declaration to the Step 3 comment. This is the function that will be called by Micrium OS
Kernel when multitasking starts. Once multitasking has started the kernel will begin scheduling tasks to run, including
the newly added LED Task.

static void AppLEDTask (void *p_arg);

Step 4:
In this step you will need to add the OSTaskCreate() call at the Step 4 comment. You will notice that we are creating
the LED Task from the Start Task. It is common for most Micrium OS projects to create one task, start the OS and then
create the other application tasks after the kernel has started.

The code for OSTaskCreate() is not being provided like the previous steps. Instead, you can use AppStartTask’s
OSTaskCreate() call as a reference (be sure to change all of the variables from start to LED!) or you can use
https://doc.micrium.com to look up all of the parameters for OSTaskCreate().

Step 5:
Now that we’ve created the LED Task, we need to add code to the task’s loop to toggle the LED. Copy the following
code into Step 5.

 BSP_LedToggle(1);
 OSTimeDlyHMSM(0, 0, 0, 500,
 OS_OPT_TIME_HMSM_STRICT,
 &err);

Running the Application
After adding code following the steps above, compile and flash the Giant Gecko Starter Kit similar to what was done in
Lab 1.

Once your Giant Gecko kit is flashed with the Micrium OS application, it will run the application when you click Resume
while debugging or it will start automatically when not in debug mode. Upon boot-up, Micrium OS goes through
initializations to start up the kernel. Once it is successfully initialized, you will see an output on the LCD screen similar
to the one below. Also, both LEDs should be toggling at the rate specified in the call to OSTimeDlyHMSM() from the
AppStartTask and AppLEDTask.

Lab 2

Great
Scott!

10 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 3

Overview
The interrupt handlers in a Micrium OS Kernel application somewhat resemble those found in other applications.
However, in general, there are a few differences between interrupt handling in single-threaded applications and kernel-
based code. In this exercise, you’ll get to experience some of these differences as you add an interrupt handler to an
existing Micrium OS Kernel application.

For this lab, the goal is to configure GPIO interrupts to display text to the LCD screen when a button is pressed. You
will take advantage of the Silicon Labs GPIO interrupt driver to handle part of the interrupt, but then you will use your
own separate handler to perform actions during the button press interrupt.

Loading your project into Simplicity Studio
Load the Lab 3 project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Writing Kernel-based Interrupts

From the project explorer open up app.c. Locate the comments for the lab and follow the steps below.

Step 1:
You’ll notice code has been provided to configure the GPIOs for PB0 and PB1. This code is using the Silicon Labs
emdrv library for GPIO interrupts. The provided code initializes the necessary clocks, registers a callback for the GPIO
pins associated with the push buttons, and it configures the interrupts in the GPIO module.

Your task is to enable the GPIO_EVEN_IRQHandler and GPIO_ODD_IRQHandler using the Micrium OS CPU module.
The GPIO_EVEN_IRQHandler and GPIO_ODD_IRQHandler are the two interrupt handlers inside the GPIO interrupt
module that then dispatch to the function specified in the GPIOINT_CallbackRegister() function.

You should first set the interrupt handlers using CPU_IntSrcHandlerSetKA(). For this function, when specifying the
interrupt ID you must add 16 to account for the 16 default ARM interrupts (ex.
CPU_IntSrcHandlerSetKA(GPIO_EVEN_IRQn + 16)). Make calls for both the even and odd interrupt handlers.

After enabling the even and odd interrupt handlers, use the CPU_IntSrcEn() call to enable the even and odd interrupt
handlers. In this call you do not need to add 16 to the interrupt id.

11 silabs.com | Micrium OS Kernel Labs

Step 2:
Inside of our interrupt handler for the button press we need to tell the kernel that we’ve entered an interrupt. Add the
following code to Step 2.

CPU_SR_ALLOC();
CPU_CRITICAL_ENTER();
OSIntEnter();
CPU_CRITICAL_EXIT();

Step 3:
After completing everything we need to do inside of our interrupt handler we need to tell the kernel that we’re now
exiting the interrupt. If we’re not in a nested interrupt, this will trigger the kernel to run the scheduler to see if anything
has changed inside the system. Add the following code to Step 3 to signal to the kernel we’re exiting the interrupt.

OSIntExit();

Running the Application
After adding code following the steps above, compile and flash the Giant Gecko Starter Kit similar to what was done in
the previous labs.

Once your Giant Gecko kit is flashed with the Micrium OS application, use BTN0 to display text on the LCD screen.
After three button presses the screen will not add anymore text. Use BTN1 to clear the LCD screen.

Lab 3

Alright,
alright,
alright.

12 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 4

Overview
Application developers working with a real-time kernel often find it helpful to synchronize the actions of two tasks, or of
a task and an ISR. The semaphore is a kernel primitive through which such synchronization is often accomplished. In
this lab, you’ll use a semaphore to synchronize a task with an ISR.

The goal of this lab is to create an application that has a similar behavior to Lab 3, but instead of using two of the push
buttons only one will be used. Every time a button is pressed, a signal will be sent via a semaphore from the ISR to the
LCD task.

Loading your project into Simplicity Studio
Load the Lab 4 project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Adding Semaphore code to the application

From the project explorer open up app_graphics.c. Locate the comments for the lab and follow the steps below.

Step 1:
Declare a Semaphore object similar to how OS_TCB is declared. The object type you should declare is OS_SEM.

Step 2:
Create the Semaphore using a kernel API call. Remember to check your error codes!

Step 3:
Add a Semaphore Pend. This will cause the LCD to draw the initial screen and then only update when a button is
pressed.

Step 4:
Post a Semaphore from the ISR to signal the button press.

13 silabs.com | Micrium OS Kernel Labs

Running the Application
After adding code following the steps above, compile and flash the Giant Gecko Starter Kit similar to what was done
in the previous labs.

Once your Giant Gecko kit is flashed with the Micrium OS application, use BTN0 to display text on the LCD screen.
After the third press the screen should clear itself and subsequent button presses should then begin to add more text
again.

Lab 4

Alright,
alright,
alright.

14 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 5

Overview
If two tasks in a Micrium OS Kernel application both use a particular resource (such as a global variable or a peripheral
device), the developers of the application must make sure that each of the tasks has exclusive access to that resource.
Oftentimes, developers in this situation turn to a mutual exclusion semaphore, or mutex. This exercise will afford you
the opportunity to work with Micrium OS Kernel’s mutex functions.

The goal of this lab is protect the variable AppCount that is shared between AppCountTask() and
AppGraphicsTask(). The AppCount variable is incremented by a BTN0 press and the value of AppCount is printed
to the LCD screen from AppGraphicsTask().

Loading your Project into Simplicity Studio
Load the Lab 5 project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Using a Mutex to Protect a Count Variable

Open up app_graphics.c from the project explorer. All of the code you’ll be writing for this lab will be in this file.

You will find a variable called AppCount has already declared. This variable is used in the AppGraphics task and will
be needed by a task you create. The code you will need to write for this lab will include:

§ Declare a Mutex object and create the Mutex using the kernel API.

§ In the AppCount Task, before incrementing the AppCount variable, be sure to use a Mutex to protect the variable.

§ In the AppGraphics Task, protect the copy of AppCount to count_local using a Mutex

15 silabs.com | Micrium OS Kernel Labs

Running the Application
After adding code following the steps above, compile and flash the Giant Gecko Starter Kit similar to what was done
in the previous labs.

Once your Giant Gecko kit is flashed with the Micrium OS application, use BTN0 to increment the count variable.

Lab 5

Count: 0

16 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab 6

Overview
Most of the services offered by Micrium OS Kernel fall into one of three primary categories: synchronization (which
includes the semaphore services used in Lab 4), mutual exclusion (the category encompassing the mutex services of
Lab 5) and inter-task communication. In this exercise, you’ll be working with the primitives through which the kernel
facilitates inter-task communication: message queues. Via message queues, tasks can easily share practically any
type of data.

In this lab you will use a message queue to send a single 32-bit value from an interrupt to the graphics task. When
BTN0 is pressed, the message queue should signal to the graphics task to increment the count by 1. When BTN1 is
pressed, the message queue should signal to the graphics task to increment the count by 2.

Loading your project into Simplicity Studio
Load the Lab 6 project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Using a Message Queue to Send Button Press Data

Open up app_graphics.c from the project explorer. All of the code you’ll be writing for this lab will be in this file.

You will find that code to handle the GPIO interrupt has already been declared in AppGPIOCallback() but currently no
action is being taken when the button press occurs. You will also find that in AppGraphics_Task(), the task currently
does not have a delay in it and there is a variable called count local that is passed into the update screen function.
Using a message queue, write code that increments the count variable by one when BTN0 is pressed and by two when
BTN1 is pressed.

17 silabs.com | Micrium OS Kernel Labs

Running the Application
After adding code following the steps above, compile and flash the Giant Gecko Starter Kit similar to what was done
in the previous labs.

Once your Giant Gecko kit is flashed with the Micrium OS application, use BTN0 to increment the count variable by
one and BTN1 to increment the count variable by two.

Lab 6

Count: 0

18 silabs.com | Micrium OS Kernel Labs

Micrium OS Kernel Lab Final Project

Overview
Now that we’ve covered all of the main aspects of Micrium OS Kernel, it is time to put them all together in a more
complicated project.

For this lab, you will use a number of different kernel services to allocate data when a button press is received, store
the current tick value, send the data to a receive task and free it when the other button is pressed. The recommended
kernel services to use will be: Event Flags, Counting Semaphore, Mutex, Memory Allocation and Message Queue.

Loading your project into Simplicity Studio
Load the Final Project from your lab zip file into Simplicity Studio. If you need step-by-step instructions refer to Lab 1
Section 1-2.

Lab Requirements

Open up the file app_send_recv.c. This is where you will be writing all of the code for this lab.

You will find that there are two tasks created for you, AppSendTask and AppRecvTask. The objective of the lab is to
be able to send data from the send task to the receive task. The LCD task has already been created for you, you just
need to ensure you update the AppSendRecv_Stats structure so data is appropriately represented on the screen.

AppSendRecvInit:

§ Initialize all of the kernel objects necessary for the lab before the OSTaskCreate() calls

AppSendTask:

§ Wait for a BTN0 press.

§ Allocate an AppSendRecv_Data_t structure from the Dynamic Memory Pool or wait until a block is free. Do not
queue up the number of button presses while waiting for a memory block, only one button press will be stored while
waiting.

§ Update the AppSendRecv_Stats structure fields: newest_tick, free, in_use and total_allocated. Ensure the structure
is not read by the graphics task while being updated.

§ Send the data structure to the receive task.

19 silabs.com | Micrium OS Kernel Labs

AppRecvTask:

§ Wait for a BTN1 press

§ Check if there is any data to read/free. If no data, wait for the next button press. Otherwise, process the data.

§ Update the AppSendRecv_Stats structure fields: freed_tick, free, in_use and total_freed. Ensure the structure is not
read by the graphics task while being updated.

§ Return the data to the Dynamic Memory Pool

AppSendRecvGetStats:

§ Copy the contents of AppSendRecv_Stats to p_data. Ensure the data does not change while copying.

AppSendRecv_GPIOInterrupt:

§ On BTN0 press, send a signal to SendTask.

§ On BTN1 press, send a signal to RecvTask.

Hints:

§ All of the kernel objects used in the instructor’s solution have been declared under Local Global Variables

§ All kernel objects should be created in AppSendRecvInit() and not in the Send or Recv Task

§ Using Mem_Copy() in AppSendRecvGetStats() is a good way to copy to p_data. Be sure to protect the copy! If
you’re unsure what this means, ask your instructor.

§ A counting semaphore and dynamic memory pool work very nicely together.

20 silabs.com | Micrium OS Kernel Labs

Application Status

Once your Giant Gecko kit is flashed with the Micrium OS application, it will run the application when you click Resume
while debugging or it will start automatically when not in debug mode. Upon boot-up, Micrium OS goes through
initializations to start up the kernel. Once it is successfully initialized, a status page similar to the one below will be
displayed on the LCD screen.

Send Task:
Pressing BTN0 will attempt to allocate a memory struct to store the current tick in. If it’s able to grab one it updates the
In Use/Free values and the Alloc Tick value. If one is not available, the press is stored until memory becomes available.
It does not keep track of how many button presses occur while waiting.

Recv Task:
Pressing BTN1 will attempt to free any messages waiting. If none are available, nothing happens. If there is a message
waiting, the Free Tick is set to the received tick value and In Use/Free are updated.

Totals:
Keeps track of the total number of times memory has been allocated/freed.

Send Task
Alloc Tick: 0
In Use: 0

Recv Task
Free Tick: 0
Free: 5

Totals
Allocated: 0

Freed: 0

21 silabs.com | Micrium OS Kernel Labs

Conclusion
We hope you enjoyed the Micrium OS Kernel Labs.

For more information on Micrium OS please refer to the following link:
https://www.silabs.com/products/development-tools/software/micrium-os

For all of the online documentation for Micrium OS:
https://doc.micrium.com/

For any other questions you may have, feel free to reach out to me:

Mark Mulrooney
E-Mail: mark.mulrooney@silabs.com

Thank you!

