
OpenThread Training
1 7 . 1 2 . 2 0 2 0 – Á R PÁ D N A G Y

1

 Thread

 OpenThread

 OpenThread within GeckoSDK

 Commissioning

 OT – Border Router

 Q&A

Agenda

2

Thread
Background and Concepts

Background

Products to communicate with each other,
cloud services and the customer.

Requirements:
 Secure
 Scalable
 Resilient
 Low Power
 IP-Based

4

Overview

Build on Existing Technologies

 Same PHY as Zigbee (802.15.4)
 Fast time to market

 IETF Link layer standards (6LoWPAN)

 Security / Simplicity

Efficiency

Thread Specification (1.1)

5

Network Overview

Scalable Mesh Network

 Up to 32 routers per network

 Up to 511 end devices per network

 Parent-Child relationship

6

Network Overview

Full Thread Device
 Radio on at all times

 Router multicast address

 3 main types: Router, REED, FED

Minimal Thread Device
 All messages to the parent

 No Router multicast address

 2 main types: MED, SED

7

Self scaling - Upgrade

8

Self scaling – Downgrade

9

Other device roles

Border Router
 Bridge between Thread – nonThread

 Configure external connectivity

Thread Leader
 Manage routers.

 Self elected dynamically.

 Aggregates and distributes network configuration.

Commissioner
 Authenticates joining devices. More later.

10

Addressing Scopes

 IPv6 – ramp it up!
 fe80:0000:0000:0000:0202:b3ff:fe1e:8329
 fe80:0:0:0:202:b3ff:fe1e:8329
 fe80::202:b3ff:fe1e:8329

 Link-Local – Single transmission range
 Prefix fe80::/16 -> fe80:: - fe80:ffff:….

Mesh-local – Addresses in the network
 Prefix fd00::/8 -> fd00:: - fdff:fff….

Global – All reachable addresses

11

RLOC – Routing Locator

 Router ID + Child ID
 Unique /device in mesh (Zigbee Short ID)
 Change based on location

 Interface Identifier (IID)
 0000:00ff:fe00:RLOC16 – ff:fe00:401

 RLOC = MeshLocal + IID
 Ex: MeshLocal Prefix = fd01:4b1d:ee40:1::/64
 Ex: IID : 0000:00ff:fe00:0401
 RLOC: fd01:4b1d:ee40:1::ff:fe00:0401 IPv6 address

12

Unicast address types

13

Desciption Example IID Scope

LLA Identifier for single
hop. fe80::54db:881c:3845:57f4

Based on
802.15.4
Extended
Address

Link-Local

ML-EID /
ULA

Topology independent
unique

fde5:8dba:82e1:1:416:993c:8399:35a
b fd00::/8 prefix

Random after
Commissioning Mesh-Local

RLOC Identify based on
location. fde5:8dba:82e1:1::ff:fe00:1001 0000:00ff:fe00:R

LOC16 Mesh-Local

ALOC Identify via RLOC
lookup fde5:8dba:82e1:1::ff:fe00:fc01 0000:00ff:fe00:f

cXX Mesh-Local

GUA Global identifier
outside Thread

2000::54db:881c:3845:57f4 – prefix
2000::/3

Based on IP
provisioning Global

Network Formation and Discovery

Unique Identifiers – PAN ,XPAN , Network NAME
• 0xBEEF, 0xBEEFCAFEDEADFFFF, silabsThreadNetwork

3 common steps of forming / joining
1. 802.15.4 active scan

2. Beacon Broadcast

3. Repeat on each channel

 Joining a network
 Configure network info from Beacon
 MLE Attach process
 Join as End device

14

Creating a network
1. Select least busy channel

2. Select unused PAN

3. Become Router

4. Elect yourself as leader.

Router selection

Form a ConnectedDomainSet,
Router only path
Distributed algorithm maintains

CDS
Add routers to:
 Increase Path diversity
Maintain redundancy
 Extend connectivity
 Router threshold 16
Remove routers to:
 Reduce routers below max 32.
 Allow routers elsewhere.

15

OpenThread - https://openthread.io/

 Open Source, C++ implementation of Thread

 OS and Platform agnostic

 Thread Certified

 Supported on multiple platforms from different vendors

OpenThread

17

What’s inside?

18

EFR32MG12 EFR32MG21 CC1352 QPG6095NRF528XX

Platform Abstraction Layer (PAL)

OpenThread Stack

S O C

Everything on one processor.
Usually End Devices.

Other variant: Multi – interface.

N C P

Thread runs on SoC.
App layer on Host that can Sleep.

Usually Gateways.

R C P

Thread and App layer on Host.
Low level MAC layer on SoC.

Thread can utilize more resources.

Architecture

19

 Get a POSIX platform (MAC, Linux, Raspberry Pi, VM or Docker)

 Clone the repository
 git clone –recursive https://github.com/openthread/openthread.git

 Setup the environment
 cd openthread
 ./bootstrap

 APIs in /include/openthread
 API Reference information openthread.io/reference.

 Samples in /examples/apps
 Make –f examples/Makefile-efr32mg12

 Binaries generated to /output/<platform>/bin

How it works?

20

https://github.com/openthread/openthread.git
https://openthread.io/reference

 Compile-time constants /src/core/config

 Makefile build switches /examples/common-switches.mk

 Building samples with switches
 Make –f examples/Makefile-efr32mg12 COMMISSIONER=1 JOINER=1

 Platform specific Build options
 /examples/platforms/efr32/src/openthread-core-efr32-config.h

 Determine which sample is built
 ./configure –enable-cli –enable-ftd ….

Configuration

21

OpenThread within GSDK

 Maintainability - SDK versions

 Extendibility - Hardcoded board support, hardcoded part support

 Redundancy - Repeated code across the Abstraction Layer

 Extensibility - Support Silabs features (Power manager, NVM3)

Solution: Integrating OpenThread with our GSDK!

Motivations

23

 Integration with SL tech.
 NVM3
 DMP

 Metadata from UC
 For board specific configuration

 Components
 Used to be plugins.
 Can have requirements
 Generation is automatic / makes sure

requirements are satisfied

 Third party dependencies
 mbedtls

OpenThread and UC

24

 OpenThread GSDK (exact snapshot) OpenThread GitHub

What’s exactly same? Core stack implementation

root_path: util/third_party/openthread/src/core

What’s different? Platform Abstraction Layer (PAL)

protocol/openthread/platform-abstraction/efr32/

Why is it different?
 Needed a PAL that would fit in the GSDK 3.0 system
 Avoid part specific code, clean legacy stuff

OpenThread GSDK Integration (overview)

25

OpenThread GSDK version management

OpenThread Version Updates in GSDK:
 Updated bi-weekly
 Locked in May for the 20Q2
 Every Release has a commit hash to identify the snapshot

Testing

 SQA: CI jobs for testing Supported parts

 PA: Functional tests. Sample apps.

 GRL test harness: For Thread 1.1 certification

Going forward?
 Will be updated regularly
 However, will need to be synced up with the version of ot-

br-posix!

26

Comissioning

Commissioning: On-mesh vs Off-mesh

28

Router

(Joiner Router + Leader + Commissioner)(Joiner)

Router

(Commissioner)(Joiner) (Joiner Router + Leader + Border Router)

Router

Router

Typical flow:

1. Form a network (will need Border
Router capability for Off-mesh case)

2. Configure a commissioner

3. Configure commissioner with allowed
EUIs, Joiner Phrase (+ PSKc external)

4. Start join process

 How does the network learn about a BR /
Commissioner? Network Data TLV!

 Who manages it ? The Leader!

THREAD MESH

THREAD MESH

Off mesh commissioner + Border Router

29

ED

(Border Router)

RouterRouter

(Joiner Router + Leader)(Joiner)

ED

(Border Router)

RouterRouter

(Joiner Router)(Joiner)

Router

(Commissioner)

(Commissioner)

(Leader)

In-Band Commissioning – Message Exchange

30

In-Band Commissioning: Network Analyzer Trace

Silicon Labs Confidential31

Border Router

Characteristics

Border Router:

 Has both 802.15.4 and IP link-layer
interface (WiFi or Ethernet)

 Performs IP routing
 From Thread to Outside
 From Outside to Thread
 Can filter packets
 Participate in external Routing.

 Transparent to end-to-end IP comms

 Should enable the Commissioner.

 May provide optional App Layer services.

Silicon Labs Confidential33

On mesh (Thread network) role

On a Thread Network, a Thread Border Router:

1. Can act as a Thread leader.

2. Can act as an on-mesh commissioner. (Discuss with
Leader)

3. Must serve network data to the external network
prefixes.

4. Should offer a prefix for global address configuration of
Thread devices.

5. Should contact Leader about Thread NWK data
changed.

6. Has to do Thread routing.

(+1). Backbone Router. (Thread 1.2 only)

34

On mesh (Thread network) role

What are the various IPv6 addresses of a Thread node?

Example (using OT commands):

 Network is formed with a mesh-local prefix fdde:ad00:beef::/64

 Border Router offers a global routable prefix fd11:22::/64 with the
following properties: [SLAAC, On-mesh prefix, Default route, Stable,
Preferred]

35

Consequently, every device on the network should have addresses
that look as follows (example):
> ipaddr
fd11:22:0:0:6f6c:3683:774c:f281 global unique address
fdde:ad00:beef:0:0:ff:fe00:1401 rloc16
fdde:ad00:beef:0:d411:3e0e:7c31:83a mesh local address
fe80:0:0:0:98b6:ccbf:4b84:e39e link local address
Done

Off mesh role

Outside a Thread Network, a Thread Border
Router:

1. Must implement IP layer packet forwarding between
the Thread interface and exterior interface

2. Can perform exterior routing, neighbor discovery,
address translation

3. May advertise global IPv6 prefixes, and act as a proxy
for service discovery on behalf of the Thread network

4. Backbone Router – only in Thread 1.2

36

OpenThread Border Router Features

Github repo: https://github.com/openthread/ot-br-posix

Primary source of documentation: https://openthread.io/guides/border-router

OTBR features
1. Thread Border Agent that can support external

commissioning

2. DHCPv6 Prefix Delegation to obtain IPv6 prefixes for a
Thread network

3. NAT64 for connecting to IPv4 networks

4. DNS64 to allow Thread devices to initiate communications
by name to an IPv4-only server

5. Docker support

6. Command line tool to communicate with and manually
configure an attached IEEE 802.15.4 radio co-processor
(RCP)

7. Web UI for configuration and management

8. Additional tools: mDNS publisher, PSKc generator, etc.

37

OTBR is supported and certified
as a Thread component on a
Raspberry Pi 3B host platform
(It can also run in a Docker
container on a Raspberry Pi 3B or
any Linux platform)

Supported RCP boards (20Q2)

https://github.com/openthread/ot-br-posix
https://openthread.io/guides/border-router

 Unix process check: “ps” – “systemctl”

OpenThread Border Router Components

38

Docker / Manual Install

39

 Docker Install
 Advantages of running OTBR in a Docker container:

 Ease of deployment

 Ease of configurability, migration, reproducibility

 Easy recovery from failure

 Easy updates (drop-in / roll-back new containers)

 Long steps in documentation or misconfiguration could negatively impact
user experience.

 The deployed applications / containers can be easily run through test suites
that verify that they operate correctly before promotion as production images
(even if manual install is eventually desired)

 Manual Install
 Some customers might desire more granular control, moving to a

customized process after prototyping with Docker. We would still need to
support them.

 In some cases, containerized solutions are not supported by specialized
network applications (for example, the Thread 1.1 commissioner and test
harness do not support a Docker solution)

 Dev, QA and Support can still understand what is happening under the
hood

Thank You for paying attention! Questions?

	OpenThread Training
	Agenda
	Thread
	Background
	Overview
	Network Overview
	Network Overview
	Self scaling - Upgrade
	Self scaling – Downgrade
	Other device roles
	Addressing Scopes
	RLOC – Routing Locator
	Unicast address types	
	Network Formation and Discovery
	Router selection
	OpenThread - https://openthread.io/
	OpenThread
	What’s inside?
	Architecture
	How it works?
	Configuration
	OpenThread within GSDK
	Motivations
	OpenThread and UC
	OpenThread GSDK Integration (overview)
	OpenThread GSDK version management
	Comissioning
	Commissioning: On-mesh vs Off-mesh
	Off mesh commissioner + Border Router
	In-Band Commissioning – Message Exchange
	In-Band Commissioning: Network Analyzer Trace
	Border Router
	Characteristics
	On mesh (Thread network) role
	On mesh (Thread network) role
	Off mesh role
	OpenThread Border Router Features
	OpenThread Border Router Components
	Docker / Manual Install
	Thank You for paying attention! Questions?

