
Works With 2021

WIR-301: Exploring RTOS Options for Wireless IoT Projects

Overview

A real-time operating system (RTOS), or, to be more specific, a real-time kernel, can help to mitigate the
complexity of a wireless IoT project. Although getting started with a kernel can seem like a challenge to
developers who are accustomed to bare-metal system design, Simplicity Studio makes it easy to get up
and running with a kernel-based project. This lab will walk through the steps both for leveraging
Simplicity Studio’s helpful kernel-based example projects and for adding a kernel to bare-metal
examples.

Pre-requisites

Hardware: You’ll need a Thunderboard Sense 2 to complete this lab. Combining a rich collection of
sensors with a highly capable EFR32 wireless SoC, the Thunderboard is a great way to get started on
your next IoT project. More information on the board is available from the Silicon Labs Web site.

Development Tools: Simplicity Studio is a free, Eclipse-based IDE supporting Silicon Labs’ SoCs and
wireless modules. You’ll need to download and install the latest version of the IDE in order to complete
the steps outlined in this lab procedure. Installation requires a silabs.com account. There is no cost to
set up an account, and you can create yours by clicking here.

The Simplicity Studio installer covers both the IDE and the embedded software—wireless stacks, device
drivers, and, most importantly for this lab, RTOSes—that Silicon Labs provides to support your
development efforts. For the embedded software portion of the install, you’ll be prompted to choose
from Install by connecting device(s) or Install by technology type. Unless you are an advanced user
with previous Silicon Labs experience, you should choose the former and then select the Auto option.
This will automatically install the software supported by your Thunderboard, including the Bluetooth
and Flex (proprietary wireless) SDKs needed by this lab. For more information on the Simplicity Studio
installation process, you can consult the IDE’s documentation.

Mobile App: EFR Connect is Silicon Labs’ easy-to-use mobile app for testing and debugging BLE projects.
You’ll use the app in the first part of this lab. You should take a few minutes to download the app from

either the Apple Store or Google Play before getting started. (Note that the screenshots in this guide
were taken on iOS—the interface may be slightly different on Android.)

Lab Procedure

Part 1: A FreeRTOS-Based Bluetooth Example

1. Establish a USB connection between your laptop and Thunderboard

2. Open Simplicity Studio and click on Launcher in the upper-right-hand corner

3. Beneath Getting Started, click Connected Devices, and, after confirming that your
Thunderboard (Thunderboard Sense 2) appears in the Connected Devices dropdown, click Start

4. On the subsequent Thunderboard Sense 2 page, open the Example Projects & Demos tab

5. In the list of demos and projects appearing in the lower-right-hand corner of the page, scroll to
the Bluetooth SoC Blinky demo (not the identically named example project, which lacks the
blue Demo label) and click Run in order to flash your board with the bootloader that will be
needed by the project you will create in the next steps

6. Now scroll to the Bluetooth – SoC Thermometer FreeRTOS example project and click Create

7. In the dialog that subsequently appears, leave the default options (updating the Project name
according to your preference) and then click Finish

8. In the Simplicity Studio IDE perspective (which should have opened automatically when the
project was created), right-click the project’s name in the Project Explorer in the upper-left-
hand corner of the screen and select Build Project from the menu that subsequently appears

9. After the project has built successfully (with 0 errors and warnings reported in the Console at
the bottom of the screen), right-click the project name again and select Debug As > 1 Silicon
Labs Arm Program

10. With program execution now halted at the first line of main(), click the Resume button to
begin running the code

11. On your phone, open the EFR Connect app

12. In the Browser, find Thermometer Example and click Connect

13. Under Health Thermometer, click More Info

14. Under Temperature Measurement, click Indicate and confirm that updated temperature values
are being periodically displayed in the Temperature Measurement Value (Celsius) field

15. Return to Simplicity Studio and click the Terminate button to stop the debugger

16. In the Simplicity IDE perspective (which should open automatically when the debugger stops),
click just below the arrow next to your project’s name in Project Explorer to expand the list of
source files comprising the project

17. Double-click app_init_freertos.c, which contains the FreeRTOS task that initializes the
temperature sensor used by the example project, to open the file in the editor

18. Insert the below lines of code just after the include statements near the top of
app_init_freertos.c

#include "sl_simple_led_instances.h"

#define APP_LED_TASK_PRIORITY 10u
#define APP_LED_TASK_STACK_SIZE 200

TaskHandle_t led_cb = NULL;

static void vTaskLED(void *pvParameters);

19. Insert the below function call (which will cause the example to create a new LED-blinking task
using the parameters that you defined in the previous step) at the bottom of the existing
function app_init() in app_init_freertos.c

xTaskCreate(vTaskLED,
 "LED Task",
 APP_LED_TASK_STACK_SIZE,
 NULL,
 APP_LED_TASK_PRIORITY,
 &led_cb);

20. Add the below implementation of the LED-blinking task to the bottom of app_init_freertos.c

static void vTaskLED (void *pvParameters)
{

 (void)pvParameters;

 while (1) {
 vTaskDelay(1000);
 sl_led_toggle(&sl_led_led0);
 }

}

21. Save your changes to app_init_freertos.c by selecting File>Save

22. Build the updated example by once again right-clicking the project name and selecting Build
Project

23. Start the debugger via Debug As > 1 Silicon Labs Arm Program, as in step 9, and click the
Resume button to run the code

24. Confirm that the newly created FreeRTOS task is toggling your board’s RG LED with a frequency
of one second and reconnect to the project on your phone with EFR Connect to ensure that the
temperature is still being updated

Part 2: Adding Micrium OS to a Flex (Proprietary Wireless) Example

1. After terminating your most recent debug session, return to the Simplicity Studio Launcher,
scroll to Flex (RAIL) – Empty Example and click Create

2. Update the new project’s name according to your preferences and click Finish

3. In the Simplicity Studio IDE perspective (which should have opened automatically when the
project was created), open the tab corresponding to your new project’s *.slcp file and then click
on Software Components

4. In the list on the left-hand side of the page, expand RTOS > Micrium OS > Kernel and then click
Micrium OS Kernel

5. Click the Install button that should now appear on the right-hand side of the screen

6. Expand the new project’s listing in the Project Explorer and double-click main.c to open this file

7. Insert the following code (which contains definitions and declarations needed by a Micrium OS
task that you will declare in the next few steps) into main.c, just below the file’s existing
#include directives

#include "os.h"
#include "em_gpio.h"

#define APP_LED_TASK_PRIORITY 56u
#define APP_LED_TASK_STACK_SIZE 200u
#define APP_LED_PORT 8u

static CPU_STK AppTaskLED_Stk[APP_LED_TASK_STACK_SIZE];
static OS_TCB AppTaskLED_TCB;

static void AppTaskLED (void *p_arg);

8. Insert the following code into the main.c declaration of main(), just below the call to
sl_system_init()

RTOS_ERR err;

GPIO_PinModeSet(gpioPortD,
 APP_LED_PORT,
 gpioModePushPull,
 0);

OSTaskCreate(&AppTaskLED_TCB,

 "LED Task",
 AppTaskLED,
 (void *)0,
 APP_LED_TASK_PRIORITY,
 AppTaskLED_Stk,
 0,
 APP_LED_TASK_STACK_SIZE,
 1u,
 0u,
 0u,
 OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR |
 OS_OPT_TASK_SAVE_FP,

 &err);

9. Add the below code (which declares a periodic task that will blink your Thunderboard Sense 2’s
RG LED once every second) to the bottom of main.c

static void AppTaskLED (void *p_arg)
{

 RTOS_ERR err;

 (void)p_arg;

 while (1) {
 GPIO_PinOutToggle(gpioPortD, APP_LED_PORT);
 OSTimeDlyHMSM(0, 0, 1, 0, 0, &err);
 }

}

10. Save main.c (File>Save) and build the project by right-clicking its name in Project Explorer and
selecting Build Project

11. To download the project’s code to the board, again right-click the project name and select
Debug As > 1 Silicon Labs Arm Program

12. Run the code by clicking the Resume button

13. Check that the RG LED is toggling once per second on your Thunderboard Sense 2

