
Instruction

Serial API Host Appl. Prg. Guide

Document No.: INS12350

Version: 23

Description: Guideline for developing serial API based host applications

Written By: JFR;JSI;PSH;AES;JKA;JSMILJANIC;JROSEVALL;SSE;GAFARKAS

Date: 2022-12-01

Reviewed By: JFR;JSI;SSE;GAFARKAS

Restrictions: Public

Approved by:

Date CET Initials Name Justification
2022-12-01 15:26:53 JFR Jorgen Franck on behalf of NTJ

This document is the property of Silicon Labs. The data contained herein, in whole or in
part, may not be duplicated, used or disclosed outside the recipient for any purpose. This
restriction does not limit the recipient's right to use information contained in the data if it
is obtained from another source without restriction.

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page ii of v

REVISION RECORD

Doc. Ver. Date By Pages affected Brief description of changes
1 20121026 ABR

AES
JSI
JFR

ALL Initial draft

2 20121109 AES 6.1 Initialization
3 20121130 ABR 6.4.2, 6.6.1 &

6.6.3
Added details to description of exception handling when receiving data frames.

4 20140602 JFR 7.1
5.4.5.1

Added application node information command
Added funcID parameter description

5 20150327 PSH 7.19 Added description of the new NVM backup/restore command
6 20150915 JFR 4.1 Overview of communication interface versions
7 20151015 JFR 7.6 Added description of FUNC_ID_SERIAL_API_SETUP command
8 20160229 JSI 7.2 Added description of

FUNC_ID_SERIAL_API_APPL_NODE_INFORMATION_CMD_CLASSES
8 20170119 PSH 7.4 Updated Node List command with SIS flag
9 20170126 PSH

JSI
7.2 Added End Device Enhanced 232 based SerialAPI initialization list for

FUNC_ID_SERIAL_API_APPL_NODE_INFORMATION_CMD_CLASSES
10 20170203 PSH 7.7

7.16
Updated with new RF powerlevel setup functions in 6.71.01
Added description of the FUNC_ID_SERIAL_API_STARTED command

11 20170215 JFR 4.1.5 Serial API interface version incremented to 7 in 6.71.0x due to introduction of S2
security

12 20170721 JFR 4.1.6 Serial API interface version incremented to 8 in 6.8x.0x due to introduction of
Smart Start.

13 20180205 JSI 7.11 Added ZW_GetMaxPayloadSize description.
14 20180306 BBR All Added Silicon Labs template
15 20181005 KEWAHID 7.10.2 & 7.10.3 Added SERIAL_API_SETUP_CMD_RF_REGION_GET/SET commands
15 20181017 KEWAHID - Removed the section that explained how to backup and restore the RF Region

setting when doing a firmware update. No longer relevant.
15 20181121 PSH 7.7 Changed the description of setting default Tx power.
16 20181204 JSI 7.2 & 7.19 Updated descriptions in connection with SDK 7.00.00 release.
17 20190201 JFR 7.15

7.19
FUNC_ID name corrected.
New ‘Return Values’ added (0x02 & 0x03).

18 20200806 KEWAHID 7.14 & 7.16 Serial API interface version incremented to 9.
Added description of new command to set “Node ID Base Type”, and updated the
“Serial API Started Command” with new Capabilities field.

18 20201104 JOROSEVA 7.20 & 7.21 Added documentation of new commands to get/set Long Range channel.
Added documentation of new command to enable Long Range virtual node IDs.

18 20201216 JESMILJA 7.7
7.4.2
7.22
7.23 & 7.24

Added new chapter Supported SERIAL_API_SETUP_CMD commands
Added documentation for function Get Long Range Nodes
Update link to section “Serial API started Command”
Add description for functions Zw_SendData, ApplicationCommandHandler_Bridge

18 20210108 LAMICCON 7.11 Added documentation of new command for Setting/Getting DCDC Configuration
(FUNC_ID_SET_DCDC_CONFIG and FUNC_ID_GET_DCDC_CONFIG).

19 20210113 LAMICCON 7.9 Added documentation of command for retrieving the Background RSSI levels of
the available channels (FUNC_ID_ZW_GET_BACKGROUND_RSSI).

20 20210125 JFR 7.10.2
7

Added Region US Z-Wave Long Range
Obsoleted Power Manager

21 20210309 JOROSEVA 7.25 & 3 Added command for enabling PTI Zniffer functionality.
22 20220203 SASEOUD 7.4.1 Updates the table of supported chip types
23 20221201 JFR Front Page & All Set to public and fixed typos.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page iii of v

Table of Contents

1 ABBREVIATIONS..1

2 INTRODUCTION ..2

2.1 Purpose..2
2.2 Terms...2

3 OVERVIEW ..3

4 COMMUNICATION INTERFACE ..4

4.1 Communication Interface Versions ...4
4.1.1 Version 1-3 ..4
4.1.2 Version 4 ...4
4.1.3 Version 5 ...4
4.1.4 Version 6 ...4
4.1.5 Version 7 ...5
4.1.6 Version 8 ...5
4.1.7 Version 9 ...5

4.2 Communication Channel Settings ...6
4.2.1 RS-232 Serial Port..6
4.2.2 USB Serial Port ..6

5 FRAME LAYOUT ..7

5.1 ACK Frame ...7
5.2 NAK Frame...7
5.3 CAN Frame...8
5.4 Data Frame ..8

5.4.1 Start of Frame (SOF) ..9
5.4.2 Length..9
5.4.3 Type...9
5.4.4 Serial API Command ID..9
5.4.5 Serial API Command Parameters ..9

5.4.5.1 funcID Parameter ...9
5.4.6 Checksum ..10

6 TRANSMISSION...11

6.1 Initialization...11
6.1.1 With Hard Reset ..11
6.1.2 Without Hard Reset...11

6.2 Frame Timing...11
6.2.1 Data Frame Reception Timeout ..11
6.2.2 Data Frame Delivery Timeout ...11

6.3 Retransmission ..12

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page iv of v

6.4 Exception Handling..12
6.4.1 Unresponsive Z-Wave Module ..12
6.4.2 Persistent CRC Errors...12
6.4.3 Missing Callbacks...12

6.5 Frame Flow..13
6.5.1 Unsolicited Frame Flow...13
6.5.2 Request/Response Frame Flow...15

6.6 State Diagrams ..16
6.6.1 Host Data Frame Reception ..17

6.6.1.1 Counter Maintenance...19
6.6.2 Host Media Access Control ...20
6.6.3 Host Request/Response Session ...22

7 SERIAL API COMMANDS..24

7.1 Application Node Information Command ...24
7.2 Application Node Information Command Classes Command ...24
7.3 Capabilities Command...27
7.4 Node List Command ..28

7.4.1 Get Init Data ..28
7.4.2 Get Long Range Nodes ..29

7.5 Set Timeouts Command ..30
7.6 Set up ZW_SendData Callback Parameters ...30
7.7 Supported SERIAL_API_SETUP_CMD commands ..30
7.8 Configuration of Default Tx Power Level...32

7.8.1 Set Default Tx Power Level..32
7.8.2 Get Default Tx Power Level ...33

7.9 Get the Background RSSI Levels for each channel...35
7.10 Configuration of the RF Region Setting ...36

7.10.1 Configuration Any Time...36
7.10.2 Set RF Region...36
7.10.3 Get RF Region..39

7.11 DCDC Configuration Commands..40
7.11.1 Set DCDC Configuration Command ...40
7.11.2 Get DCDC Configuration Command ..41

7.12 Ready Command ...42
7.13 Get Maximum Payload Size ...43
7.14 Set Node ID Base Type...44
7.15 Ready Command ...45
7.16 Serial API started Command..46
7.17 Softreset Command...48
7.18 Watchdog Commands ...49
7.19 NVM Backup and Restore..50

7.19.1 Backing up NVM ..52
7.19.2 Restoring NVM ..52

7.20 Restrictions on Functions Using Buffers ..53
7.21 Configuration of Z-Wave Long Range channel. ...53

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page v of v

7.21.1 Get active Long Range channel ...53
7.21.2 Set active Long Range channel ..54

7.22 Configuration of Long Range virtual node IDs...54
7.23 ZW_SendData Function...55
7.24 ApplicationCommandHandler_Bridge...55
7.25 Enable PTI Zniffer functionality. ..56

7.25.1 Enable/disable PTI Zniffer ...56
7.25.2 Get Radio PTI state..56

REFERENCES...60

INDEX ..61

Table of Figures
Figure 1. Communication via Serial API ...3
Figure 2. ACK Frame ..7
Figure 3. NAK Frame ..7
Figure 4. CAN Frame..8
Figure 5. Data Frame ...8
Figure 6. Unsolicited Data Frame ..13
Figure 7. Unsolicited Data Frame Followed by Unsolicited Data Frame ...14
Figure 8. Request/Response Data Frames...15
Figure 9. Request/Response Data Frames Followed by Unsolicited Data Frame......................................16
Figure 10. Host Data Frame Reception..17
Figure 11. Counter Maintenance...19
Figure 12. Host Media Access Control ...20
Figure 13. Host Request/Response Session...22

Table of Tables
Table 1. Serial API RS-232 Parameters...6
Table 2. Serial API USB Windows .inf File Structure ..6
Table 3. Data Frame :: Type Values ...9

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 1 of 61

1 ABBREVIATIONS

Abbreviation Explanation
ACK Acknowledgement
AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The AES is

a NIST-standard cryptographic cipher that uses a block length of 128 bits and key
lengths of 128, 192 or 256 bits. Officially replacing the Triple DES method in 2001, AES
uses the Rijndael algorithm developed by Joan Daemen and Vincent Rijmen of
Belgium.

ANZ Australia/New Zealand
API Application Programming Interface
ASIC Application Specific Integrated Circuit
CAN Cancel
DLL Dynamic Link Library
DUT Device Under Test
EU Europe
GNU An organization devoted to the creation and support of Open-Source software
HK Hong Kong
HW Hardware
IN India
ISR Interrupt Service Routines
JP Japan
LRC Longitudinal Redundancy Check
MY Malaysia
NAK Not Acknowledged
NWI Network Wide Inclusion
PA Power Amplifier
POR Power on Reset
PRNG Pseudo-Random Number Generator
PWM Pulse Width Modulator
RF Radio Frequency
RS-232 TIA-232-F Interface Between Data Terminal Equipment and

Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange
RU Russian Federation
SDK Software Developer’s Kit
SIS SUC ID Server
SOF Start of Frame
SPI Serial Peripheral Interface
SUC Static Update Controller
US United States
USB Universal Serial Bus
USB CDC Universal Serial Bus Communications Device Class
WUT Wake Up Timer

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 2 of 61

2 INTRODUCTION

2.1 Purpose

This document describes the host processor application development using the serial API interface.

2.2 Terms

This document describes mandatory and optional aspects of the required compliance of a Z-Wave
product to the Z-Wave standard.

The guidelines outlined in IETF RFC 2119 [1] with respect to key words used to indicate requirement
levels are followed. Essentially, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 3 of 61

3 OVERVIEW

The Serial Applications Programming Interface (Serial API) allows a host to communicate with a Z-Wave
chip. The host may be a PC or a less powerful embedded host CPU, e.g., in a remote control or in a
gateway device. Depending on the chip family, the Serial API may be accessed via RS-232 or USB
physical interfaces.

Sample applications demonstrate how to communicate with a Z-Wave chip via the Serial API.

The following host-based sample applications are available on the SDK:

 Z/IP Gateway – Gateway application using Serial API features of the bridge controller API
 PC Controller – Demonstrates Serial API features of the bridge controller API

Host Z-Wave
chip

Serial API via
RS-232 or USB

Figure 1. Communication via Serial API

The host-based sample applications are described in the respective SDK overview documents.
For details refer to [2] and [4] for 500 and 700 SoCs respectively.

The serial API leverages the Z-Wave Protocol API. The serial API introduces additional messages related
to inter-host communications. Mapping of serial API commands to the Z-Wave Protocol API calls can be
found in [3]. Dedicated serial API commands are presented in section 7. A Z-Wave Alliance document
describing the Serial API commands will also soon be available.

Serial API based applications MUST ensure that the required features are available in the actual Z-Wave
library, using the “Capabilities Command” see 7.1.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 4 of 61

4 COMMUNICATION INTERFACE

The following sections describe the Serial API.

4.1 Communication Interface Versions

4.1.1 Version 1-3

The differences between serial API communication interface versions 1 to 3 is not documented.

4.1.2 Version 4

The SDK 4.23-28 are based on the serial API communication interface version 4. This version introduces
Serial API commands to better support a host application, especially the Serial API Capabilities
Command. The Serial API Capabilities Command determines the Serial API functions that a specific
Serial API Z-Wave Module supports.

4.1.3 Version 5

The SDK 4.51-55, 5.03.00, 6.02.00, 6.11.00-01, and 6.51.00-06 versions are based on the serial API
communication interface version 5. The destNode is appended to end of ApplicationCommandHandler
REQ and promiscuously received frames are returned in a
FUNC_ID_PROMISCUOUS_APPLICATION_COMMAND_HANDLER REQ.

Some of the SDKs introduce new Serial API functions, which can be determined by the Serial API
Capabilities Command.

4.1.4 Version 6

SDK 6.60.00 changes the Serial API communication interface to version 6 due to several extensions of
the serial API [3] to better support installation and maintenance procedures (RSSI feedback, Routing
algorithm feedback, and Network statistics). The interface is backward compatible with version 5,
provided appended parameters in version 6 are ignored.

The ZW_SendData (and variations) callback parameters are changed and extended to include more
information (transmission metrics) about the successful/unsuccessful transmission. The change affects
the Serial API functionality FUNC_ID_ZW_SEND_DATA (and FUNC_ID_SEND_DATA_BRIDGE) because
the transmission metrics are appended to the callback parameter list to ensure that an application,
which ignores the extra data in the callback parameter list can function with no change. A Serial API
functionality FUNC_ID_SERIAL_API_SETUP is implemented to enable or disable appending transmission
metrics in the FUNC_ID_ZW_SEND_DATA callback.

The ApplicationCommandHandler (and ApplicationCommandHandler_Bridge) parameter list is changed
and extended to also include the RSSI value with which the received frame is received. The change
affects the Serial API functionality FUNC_ID_APPLICATION_COMMANDHANDLER (and

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 5 of 61

FUNC_ID_APPLICATION_COMMAND_HANDLER_BRIDGE) because it appends the RSSI value to the
functionality parameter for HOST implementations, which do not ignore the extra data.

In the Z-Wave protocol, the functions ZW_GetLastWorkingRoute and ZW_SetLastWorkingRoute are
obsolete and replaced with ZW_GetPriorityRoute and ZW_SetPriorityRoute respectively.
FUNC_ID_ZW_GET_LAST_WORKING_ROUTE and FUNC_ID_ZW_SET_LAST_WORKING_ROUTE functions
are obsolete and replaced with FUNC_ID_ZW_GET_PRIORITY_ROUTE /
FUNC_ID_ZW_SET_PRIORITY_ROUTE respectively.

End device enhanced-based Serial API targets is extended with two new functionalities to
accommodate for the new protocol functionalities ZW_AssignPriorityReturnRoute and
ZW_AssignPrioritySUCReturnRoute: FUNC_ID_ZW_ASSIGN_PRIORITY_SUC_RETURN_ROUTE and
FUNC_ID_ZW_ASSIGN_PRIORITY_SUC_RETURN_ROUTE.

The new Z-Wave protocol function ZW_ExploreRequestExclusion is implemented in the Serial API with
the funcID FUNC_ID_ZW_EXPLORE_REQUEST_EXCLUSION.

The new protocol functionalities ZW_GetNetworkStats and ZW_ClearNetworkStats is implemented in
the Serial API with the funcIDs FUNC_ID_ZW_GET_NETWORK_STATS and
FUNC_ID_ZW_CLEAR_NETWORK_STATS respectively.

New Serial API functionality (FUNC_ID_NVM_BACKUP_RESTORE) to back up and restore NVM contents
is added to the serial API in all controllers and enhanced end devices.

The FUNC_ID_ZW_REDISCOVERY_NEEDED is obsolete.

SDK 6.70.00 introduces new Serial API functions for End Device Enhanced 232 library-based targets to
enable HOSTs to leverage the new functionality.

4.1.5 Version 7

SDK 6.71.0x changes the Serial API communication interface to version 7, enabling host software to
ensure that this version of the serial API supports S2.

4.1.6 Version 8

SDK 6.80.0x changes the Serial API communication interface to version 8 enabling the host software to
ensure that this version of the serial API supports Smart Start.

4.1.7 Version 9

SDK 7.14.x changer changes the Serial API communication interface to version 9 enabling the host
software to ensure that this version of the serial API supports Z-Wave Long Range.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 6 of 61

4.2 Communication Channel Settings

4.2.1 RS-232 Serial Port

A host communicating to a Serial API library via a serial port MUST use the following settings.

Parameter Value
Baud rate 115200 bits/s

Parity No
Data bits 8
Stop bits 1

Table 1. Serial API RS-232 Parameters

The least significant bit (LSB) b0 of each byte MUST be transmitted first on the physical wire.

4.2.2 USB Serial Port

A host communicating to a Serial API library via a USB connection MUST follow the guidelines for the
USB communications device class (USB CDC). In many cases, Linux® OS distributions and Mac OS
releases will immediately present the Z-Wave chip USB interface as a serial port to applications.

Windows OS releases may need an .inf file structure to present the Z-Wave chip USB interface as a
serial port to applications:

Key Value
[Version] Signature="$Windows NT$"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%manu%
DriverVer=02/17/2010,0.0.3.0

[Manufacturer] %manu%=ZComDev, NTx86, NTamd64
[ZComDev.NTx86] %dev%=ZComInst, USB\VID_0658&PID_0200
[ZComDev.NTamd64] %dev%=ZComInst, USB\VID_0658&PID_0200
[ZComInst] include=mdmcpq.inf

CopyFiles=FakeModemCopyFileSection
AddReg=LowerFilterAddReg,SerialPropPageAddReg

[ZComInst.Services] include = mdmcpq.inf
AddService = usbser, 0x00000002, LowerFilter_Service_Inst

[SerialPropPageAddReg] HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
[Strings] manu = "Silicon Labs"

dev = "UZB"
svc = "UZB"

Table 2. Serial API USB Windows .inf File Structure

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 7 of 61

5 FRAME LAYOUT

The host and the Z-Wave chip (ZW) communicate through a simple protocol, which uses ACK, NAK,
CAN, and Data frame types.

5.1 ACK Frame

The ACK frame indicates that the receiving end has received a valid Data frame.

The host MUST wait for an ACK frame after transmitting a Data frame to the Z-Wave chip.
If transmission errors or race conditions occur, the host may receive other frames or no frames at all.
The host MUST be robust to handle such events. The host SHOULD queue up requests for processing
once the expected ACK frame is received or timed out. The host MUST wait 1500 ms before timing out
waiting for the ACK frame.

A receiving Z-Wave chip MUST return an ACK frame in response to a valid Data frame.

7
(MSB)

6 5 4 3 2 1 0
(LSB)

ACK (0x06)
Figure 2. ACK Frame

5.2 NAK Frame

The NAK frame indicates that the receiving end has received a Data frame with errors.

If a transmitting host or Z-Wave chip receives a NAK frame in response to a Data frame, it MAY
retransmit the Data frame.

7
(MSB)

6 5 4 3 2 1 0
(LSB)

NAK (0x15)
Figure 3. NAK Frame

A transmitting host or Z-Wave chip receiving a NAK frame MUST wait for a while before retransmitting
the Data frame. See section 6.3.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 8 of 61

5.3 CAN Frame

The CAN frame indicates that the receiving end has discarded an otherwise valid Data frame.
The CAN frame is used to resolve race conditions, where both ends send a Data frame and subsequently
expects an ACK frame from the other end.

.7
(MSB)

6 5 4 3 2 1 0
(LSB)

CAN (0x18)
Figure 4. CAN Frame

If a Z-Wave chip expects to receive an ACK frame but receives a Data frame from the host, the Z-Wave
chip SHOULD return a CAN frame. A host which receives a CAN frame MUST consider the Data frame
lost. The host MUST wait for a while before retransmitting the Data frame. See section 6.3.

5.4 Data Frame

Data frame contains the Serial API command including parameters for the command in question.

Each Data frame MUST consist of a Serial API command including parameters for the command
prepended with Start of Frame (SOF), Length and Type fields, and a Checksum byte appended.

A transmitting host or Z-Wave chip may time out waiting for an ACK frame after transmitting a Data
frame. The transmitting end MUST wait for ACK frame for a period. If no ACK frame is received, the
Data frame MAY be retransmitted. See section 6.3.

7
(MSB)

6 5 4 3 2 1 0
(LSB)

SOF (0x01)

Length

Type

Serial API Command ID

 Serial API Command Parameter 1

…

Serial API Command Parameter n

Checksum
Figure 5. Data Frame

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 9 of 61

5.4.1 Start of Frame (SOF)

The Start of Frame (SOF) field is used for synchronization. The SOF field MUST have a value of 0x01.
A host or a Z-Wave chip waiting for new traffic MUST ignore all other byte values except 0x06 (ACK),
0x15 (NAK), 0x18 (CAN), or 0x01 (Data frame). This way, both receivers will flush garbage bytes from
the receive buffer to get back in sync after a connection glitch or a firmware restart in one of the ends.

5.4.2 Length

The Length field MUST report the number of bytes in the Data frame. The value of the Length Field
MUST NOT include the SOF and Checksum fields. A host or a Z-Wave chip receiving a Data frame
SHOULD validate the length field by comparing the number of received bytes and the Length field
(expecting a difference of 2 bytes).

5.4.3 Type

The Type field MUST indicate if the Data frame type is Request or Response.

Value Type Description
0x00 REQ Request.

This type MUST be used for unsolicited messages.
API callback messages MUST use the Request type.

0x01 RES Response.
This type MUST be used for messages that are responses
to Requests.

0x02..0xFF Reserved Reserved values MUST NOT be used.
A receiving end MUST ignore reserved Type values.

Table 3. Data Frame :: Type Values

5.4.4 Serial API Command ID

The Serial API Command ID field MUST carry one of the valid API function codes defined in section 7. A
host or Z-Wave chip MUST report the same Serial API Command ID in a response Data frame (see
section 5.4.3).

5.4.5 Serial API Command Parameters

The Serial API Command Parameters field MAY have a variable number of bytes. The field MUST be at
least one byte long. A receiving end MUST derive the actual number of bytes from the Length field. See
section 5.4.2.

Information carried in the Serial API Command Parameters field MUST comply with the API function
prototype for the Serial API Command ID carried in the Serial API Command ID field. See section 5.4.4.

API function prototypes may be found in section 7.

5.4.5.1 funcID Parameter

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 10 of 61

Some Serial API calls contain a funcID parameter. Any funcID value different than zero is returned in the
callback function making it possible to correlate the callback with the original request. Setting funcID to
zero disables the callback function via serial API.

5.4.6 Checksum

The Checksum field MUST carry a checksum to enable frame integrity checks. The checksum calculation
MUST include the Length, Type, Serial API Command Data, and Serial API Command Parameters fields.

The checksum value MUST be calculated as an 8-bit Longitudinal Redundancy Check (LRC) value. The
RECOMMENDED way to calculate the checksum is to initialize the checksum to 0xFF and then XOR each
of the bytes of the fields mentioned above one at a time to the checksum value.

Checksum = 0xFF Length Type Cmd ID Cmd Parm[1] … Cmd Parm[n]

A Data frame MUST be considered invalid if it is received with an invalid checksum. See section 5.4.6. A
host or Z-Wave chip MUST return a NAK frame in response to an invalid Data frame.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 11 of 61

6 TRANSMISSION

6.1 Initialization

To ensure the host and the Z-Wave module are in sync at application startup, the host should begin an
initialization sequence. The initialization sequence is different depending on whether the host has
access to a module hard reset.

6.1.1 With Hard Reset

1) Close host serial port if it is open.

2) Assert module reset.

3) Open the host serial port at 115200 baud 8N1.

4) Release module reset.

5) Wait 500 ms.

6.1.2 Without Hard Reset

1) Close host serial port if it is open.

2) Open the host serial port at 115200 baud 8N1.

3) Send the NAK.

4) Send Serial API command: FUNC_ID_SERIAL_API_SOFT_RESET.

5) Wait 1.5 s.

This solution is not recommended because it relies on retrieval and execution of the Serial API
command FUNC_ID_SERIAL_API_SOFT_RESET.

6.2 Frame Timing

6.2.1 Data Frame Reception Timeout

A receiving host or Z-Wave chip MUST abort reception of a Data frame if the reception has lasted for
more than 1500 ms after the reception of the SOF byte. A host or Z-Wave chip MUST NOT issue a NAK
frame after aborting the reception of a Data frame.

6.2.2 Data Frame Delivery Timeout

A host or Z-Wave chip MUST wait for an ACK frame after transmitting a Data frame. The receiver may
be waiting for up to 1500 ms for the remains of a corrupted frame (see section 6.2.1). Therefore, the
transmitter MUST wait for at least 1600 ms before deeming the Data frame lost.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 12 of 61

The loss of a Data frame MUST be treated as the reception of a NAK frame. See section 6.3. The
transmitter MAY compensate for the 1600 ms already elapsed when calculating the retransmission
waiting period.

6.3 Retransmission

A transmitter may time out waiting for an ACK frame after transmitting a Data frame or it may receive a
NAK or a CAN frame. In either case, the transmitter SHOULD retransmit the Data frame. A waiting
period MUST be applied before the retransmission.

The waiting period MUST be calculated per the following formula:

Twaiting = 100ms + n*1000ms where n is incremented
at each retransmission.
n=0 is used for the first
waiting period.

A host or Z-Wave chip MUST NOT carry out more than three retransmissions. Note that a host MAY
choose to do a hard reset of the Z-Wave module if it is not able to successfully deliver the frame after
three retransmissions. Flush/reopen the serial port after the three retransmissions.

6.4 Exception Handling

6.4.1 Unresponsive Z-Wave Module

In the unlikely event that the Z-Wave module becomes unresponsive for more than 4 seconds, it is
RECOMMENDED to issue a hard reset of the module. A module may be deemed unresponsive if it has
not responded with any character after three consecutive frame retransmissions, each with a 1600 ms
interval. See section 6.1.

6.4.2 Persistent CRC Errors

If a host application detects an invalid checksum three times in a row when receiving data frames, the
host application SHOULD invoke a hard reset of the device. If a hard reset line is not available, a soft
reset indication SHOULD be issued for the device.

6.4.3 Missing Callbacks

In some situations, a serial API callback may be lost due to an overflow in the UART transmit buffer. This
condition may occur if a lot of unsolicited traffic comes in from the Z-Wave side. For this reason, a Serial
API-based host application SHOULD guard all its callbacks with a timer. The timer values are given in
references [3] for each of the Z-Wave API functions which use callbacks.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 13 of 61

6.5 Frame Flow

The frame flow between a host and a Z-Wave module (ZW) running the Serial API embedded sample
code depends on the API call. There are two classes of communication between a host and a Z-Wave
chip: Unsolicited and Request/Response. Each of the classes is presented below.

6.5.1 Unsolicited Frame Flow

The most basic frame flow is a Request (REQ) Data frame that is acknowledged by an ACK frame.

Figure 6. Unsolicited Data Frame

API call ZW_SetExtIntLevel is an example of the frame flow outlined in the figure above.

Data Frame (REQ)

ACK

ZW Host

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 14 of 61

A variant of the REQ Data frame flow is a request (REQ) Data frame in one direction followed by a
request (REQ) Data frame in the opposite direction. The first Data frame is acknowledged before a Data
frame is transmitted in the opposite direction.

Figure 7. Unsolicited Data Frame Followed by Unsolicited Data Frame

Typically, the REQ Data frame in the opposite direction follows after some time.

The API call ZW_SetDefault is an example of the frame flow outlined in the figure above, where the
second Data frame is carrying a callback message indicating the completion of the operation.

Data Frame (REQ)

ACK

ZW Host

Data Frame (REQ - Callback)

ACK

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 15 of 61

6.5.2 Request/Response Frame Flow

A Request (REQ) Data frame may be followed by a Result (RES) Data frame within a few second interval.
This flow is used for all functions which have a non-void return value. Note that, due to the simple
nature of the simple acknowledge mechanism, only one REQ->RES session is allowed.

Figure 8. Request/Response Data Frames

The API call ZW_GetControllerCapabilities is an example of the frame flow outlined in the figure above,
where the Result Data frame is carrying the requested controller capabilities.

Data Frame (REQ)

ACK

ZW Host

Data Frame (RES)

ACK

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 16 of 61

A variant of the Request/Response Data frame involves an unsolicited Data frame following the
Request/Response Data frame pair. Typically, the REQ Data frame in the opposite direction follows
after some time.

Figure 9. Request/Response Data Frames Followed by Unsolicited Data Frame

The API call ZW_SendSUCID is an example of the frame flow outlined in the figure above, where the
Result Data frame is carrying the requested controller capabilities and the second Data frame is carrying
a callback message indicating the completion of the operation.

If a host application repeatedly receives a reception timeout error indication rather than a valid
response Data frame, the host application SHOULD invoke a hard reset of the device. If a hard reset line
is not available, a soft reset indication SHOULD be issued for the device.

6.6 State Diagrams

This chapter outlines a transmission and reception of Control and Data frames.

Data Frame (REQ)

ACK

ZW Host

Data Frame (RES)

ACK

Data Frame (REQ - Callback)

ACK

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 17 of 61

6.6.1 Host Data Frame Reception

Figure 10. Host Data Frame Reception

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 18 of 61

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 19 of 61

6.6.1.1 Counter Maintenance

Figure 11. Counter Maintenance

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 20 of 61

6.6.2 Host Media Access Control

Figure 12. Host Media Access Control

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 21 of 61

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 22 of 61

6.6.3 Host Request/Response Session

Figure 13. Host Request/Response Session

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 23 of 61

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 24 of 61

7 SERIAL API COMMANDS

Besides the Z-Wave API function calls described in “Z-Wave application programmers’ guide” the Serial
API support a set of additional commands.

7.1 Application Node Information Command

Starting with the Serial API protocol version 4, it is possible to call Serial API Application Node
Information Command to store a new Node Information Frame (NIF). Prior to either starting or joining a
Z-Wave network, the HOST needs to initially set up the Node Information Frame (NIF), which should
define the type of Z-Wave node the Serial API module is supposed to be. To store the NIF in the
protocol NVM area as well as in the application NVM area, the HOST needs to perform the following
steps:

1. HOST->ZW: send SerialAPI_ApplicationNodeInformation() with NIF information.

2. HOST->ZW: send ZW_SetDefault().

Serial API:

HOST->ZW: REQ | 0x03 | deviceOptionsMask | generic | specific | parmLength | nodeParm[]

For more details, see the relevant Application Programming Guide [3].

7.2 Application Node Information Command Classes Command

Starting with SDK 6.71.00, HOSTs connected to Serial API modules based on the End Device Routing or
End Device Enhanced 232 library can set the Command Classes which should be supported in NOT
Included, Insecurely Included, and Securely Included inclusion states. Supported command classes as
set through the Serial API Application Node Information Command Classes Command with the

FUNC_ID_SERIAL_API_APPL_NODE_INFORMATION_CMD_CLASSES Serial API command.

Serial API:

HOST->ZW: REQ | 0x0C | unincluded_parmLength |
unincluded_nodeParm[unincluded_parmLength] | included_unsecure_parmLength |
included_unsecure_nodeParm[included_unsecure_parmLength] |
included_secure_parmLength | included_secure_nodeParm[included_secure_parmLength]

ZW->HOST: RES | 0x0C | status

Status:
0x01: Success

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 25 of 61

SDK 6.71.00 adds Security to the protocol in the End Device Routing and End Device Enhanced 232
libraries resulting in additional setup steps before entering the inclusion process. Prior to joining a Z-
Wave network, the HOST needs to initially set up which Security keyclasses (S0, S2_UNATHENTICATED,
S2_AUTHENTICATED, S2_ACCESS) the node should apply for (if any). Afterwards the Security
Authentication method must be specified. The Node Information Frame (NIF) which should define the
type of Z-Wave node the Serial API module should be defined with regard to Listening, FLiRS, Generic
type, Specific Type. Finally, the supported Command Classes for the various inclusion states should be
set up.

Serial API:

In the Serial API, the Security API functions are reached through the FUNC_ID_ZW_SECURITY_SETUP
(0x9C). Serial API FUNC_ID makes it possible to set the Requested Security Keys and Requested
Authentication method in a End Device Routing/Enhanced 232-based Serial API Node prior to inclusion
(add). The protocol requests the Requested Security Keys and Authentication during S2 inclusion.

Set Security Inclusion Requested Keys
(E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_KEYS):

HOST->ZW: REQ | 0x9C | 5 | registeredSecurityKeysLen(1) | registeredSecurityKeys
ZW->HOST: RES | 0x9C | 5 | retValLen(1) | retVal
- retVal == TRUE => success

Set Security Inclusion Requested Authentication
(E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_AUTHENTICATION):

HOST->ZW: REQ | 0x9C | 6 | registeredSecurityAuthenticationLen(1) | registeredSecurityAuthentication
ZW->HOST: RES | 0x9C | 6 | retValLen(1) | retVal

Or if unsupported

ZW->HOST: RES | 0x9C | 0xFF | retValLen(1) | retVal

- retVal == TRUE => success

HOSTs, which are connected to a Serial API module based on either End Device Enhanced 232 or End
Device Routing libraries should follow the list below for correct module setup prior to joining a Z-Wave
network:

1. HOST->ZW: send SerialAPI_SetSecurityInclusionRequestedKeys

2. HOST->ZW: send SerialAPI_SetSecurityInclusionRequestedAuthentication

3. HOST->ZW: send SerialAPI_ApplicationNodeInformation() with NIF information (listening,
generic, specific)

4. HOST->ZW: send SerialAPI_ApplicationNodeInformationCmdClasses

5. HOST->ZW: send ZW_SetDefault()

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 26 of 61

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 27 of 61

7.3 Capabilities Command

Starting with the Serial API protocol version 4, users can call the Serial API Capabilities Command to
determine which Serial API functions a specific Serial API Z-Wave Module supports with the
FUNC_ID_SERIAL_API_GET_CAPABILITIES Serial API function:

Serial API:

HOST->ZW: REQ | 0x07

ZW->HOST: RES | 0x07 | SERIAL_APPL_VERSION | SERIAL_APPL_REVISION |
SERIALAPI_MANUFACTURER_ID1 | SERIALAPI_MANUFACTURER_ID2 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPE2 |
SERIALAPI_MANUFACTURER_PRODUCT_ID1 |
SERIALAPI_MANUFACTURER_PRODUCT_ID2 | FUNCID_SUPPORTED_BITMASK[]

SERIAL_APPL_VERSION is the Serial API application Version number.

SERIAL_APPL_REVISION is the Serial API application Revision number.

SERIALAPI_MANUFACTURER_ID1 is the Serial API application manufacturer_id (MSB).

SERIALAPI_MANUFACTURER_ID2 is the Serial API application manufacturer_id (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 is the Serial API application
manufacturer product type (MSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPE2 is the Serial API application
manufacturer product type (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID1 is the Serial API application manufacturer
product ID (MSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID2 is the Serial API application manufacturer
product ID (LSB).

FUNCID_SUPPORTED_BITMASK[] is a bitmask where every supported Serial API function
ID has a corresponding bit in the bitmask set to ‘1’. All unsupported Serial API function IDs
have their corresponding bit set to ‘0’. The first byte in bitmask corresponds to FuncIDs 1-8,
where bit 0 corresponds to FuncID 1 and bit 7 corresponds to FuncID 8. The second byte in
bitmask corresponds to FuncIDs 9-16, and so on.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 28 of 61

7.4 Node List Command

7.4.1 Get Init Data

Starting with the Serial API protocol version 4, users can call the Serial API Node List Command to
determine the Serial API protocol version number, Serial API capabilities, nodes currently stored in the
external NVM (only controllers), and a chip used in a specific Serial API Z-Wave Module with the
FUNC_ID_SERIAL_API_GET_INIT_DATA Serial API function:

Serial API:

HOST->ZW: REQ | 0x02

(Controller) ZW->HOST: RES | 0x02 | ver | capabilities | 29 | nodes[29] | chip_type |
chip_version

(End Device) ZW->HOST: RES | 0x02 | ver | capabilities | 0 | chip_type | chip_version

The parameter ‘ver’ is the Serial API application Version number.

The parameter ‘capabilities’ is a byte holding various flags describing the actual mode.

Capabilities flags:
Bit 0: 0 = Controller API; 1 = End device API
Bit 1: 0 = Timer functions not supported; 1 = Timer functions supported.
Bit 2: 0 = Primary Controller; 1 = Secondary Controller
Bit 3: 0 = Not SIS; 1 = Controller is SIS
Bit 4-7: reserved

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 29 of 61

Timer functions supported comprises of TimerStart, TimerRestart, and TimerCancel.

‘29’ or ‘0’ specifies the length of ‘nodes[]’ array

nodes[29] is a node bitmask. The chip used can be determined as follows:

Z-Wave Chip Chip_type Chip_version

ZW0102 0x01 0x02

ZW0201 0x02 0x01

ZW0301 0x03 0x01

ZM0401 0x04 0x01

ZM4102 0x04 0x01

SD3402 0x04 0x01

ZW050x 0x05 0x00

ZGM130S 0x07 0x00

ZG14 0x07 0x00

ZG23 0x08 0x00

ZGM230S 0x08 0x00

7.4.2 Get Long Range Nodes

In Z-Wave Long Range network, function FUNC_ID_SERIAL_API_GET_LR_NODES is used to obtain the
list of Long Range nodes:

HOST->ZW: REQ | 0xDA | BITMASK_OFFSET

ZW->HOST: RES | 0xDA | MORE_NODES | BITMASK_OFFSET | BITMASK_LEN |
BITMASK_ARRAY

MORE_NODES – byte, has value 1 if more nodes is available and the host can request the next chunk of
the nodes bitmask array. Currently it always returns 0 as max supported number of LR nodes can fit in
128 bytes.

BITMASK_OFFSET - 16 bit value. Supported values: 0, 1, 2, 3 that corresponds to offset 0, 128, 256, 384.
If BITMASK_OFFSET is not one of the values mentioned above it will be round down to the nearest
value. Currently values higher than 0 won’t contain any nodes.

BITMASK_LEN – byte, hardcoded to 128 bytes.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 30 of 61

BITMASK_ARRAY is an array of 128 bytes, with least significant bytes first, contains a bitmask of the
available nodes in the network.

If bit N in byte J (J >= 0) is set to 1, then node with ID = BASE + 8*J + N + BITMASK_OFFET, where BASE =
256, exists in network.

7.5 Set Timeouts Command

The timeout in the Serial API (starting with the Serial API version 4) can be set in 10 ms ticks by using
the FUNC_ID_SERIAL_API_SET_TIMEOUTS Serial API function:

Serial API:

HOST->ZW: REQ | 0x06 | RXACKtimeout | RXBYTEtimeout

ZW->HOST: RES | 0x06 | oldRXACKtimeout | oldRXBYTEtimeout

7.6 Set up ZW_SendData Callback Parameters

The callback parameter list extension (starting with the Serial API version 6) can be controlled by using
FUNC_ID_SERIAL_API_SETUP Serial API function:

Serial API:

HOST->ZW: REQ | 0x0B | 0x02 | enableTxStatusReport

ZW->HOST: RES | 0x0B | 0x02 | CmdRes[]

enableTxStatusReport = 0, No extra parameters can be transmitted on callback

enableTxStatusReport = 1, Extra parameters should be transmitted on callback (Default)

Must be called after reset if none Default setting is required.

7.7 Supported SERIAL_API_SETUP_CMD commands

All supported SERIAL_API_SETUP commands can be obtained by using
SERIAL_API_SETUP_CMD_SUPPORTED subcommand of SERIAL_API_SETUP_CMD

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_ SUPPORTED

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 31 of 61

ZW -> Host:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_ SUPPORTED

Supported flags

Supported bitmask 0

Supported bitmask 1

…

Supported bitmask 16
Supported flags

SERIAL_API_SETUP_CMD supported commands besides SERIAL_API_SETUP_CMD_SUPPORTED,
represented as bitmask flag.
Example: SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET |
SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET | …
Includes only commands with values 2^N. Newer commands that don’t have such value are reported in
Supported Bitmask

Supported bitmask

Array of bytes including all supported commands, represented as bitmask of values, with least
significant bytes first.
Example: (1 << SERIAL_API_SETUP_CMD_SUPPORTED) | (1<<
SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET) | (1<<
SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET) | …

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 32 of 61

7.8 Configuration of Default Tx Power Level

By default, the transmit power level is hard coded in the Z-Wave image downloaded to the Z-Wave
chip. However, hardware differences in products may require changing the Tx power. Changing the
default Tx power will require the following steps:

1 Use the SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET command to set the power levels to
desired values.

2 Use the FUNC_ID_SERIAL_API_SOFT_RESET command to restart the Z-Wave module so the new
settings are activated.

7.8.1 Set Default Tx Power Level

The Transmit power can be configured through Serial API (starting with Serial API version 7) by using
FUNC_ID_SERIAL_API_SETUP Serial API function, subfunction
SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET.

The power levels set by this function are first used by the Z-Wave protocol next time the module is
restarted.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET

NormalTxPower

Measured0dBmPower

NormalTxPower

The power level used when transmitting frames at normal power. The power level is in deci dBm, for
example 1 dBm output power will be 10 in NormalTxPower and -2 dBm will be -20 in NormalTxPower.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 33 of 61

Measured0dBmPower

The output power measured from the antenna when NormalTxPower is set to 0 dBm. The power level
is in deci dBm, for example 1d Bm output power will be 10 in Measured0dBmPower and -2 dBm will be
-20 in Measured0dBmPower.

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET

CmdRes

CmdRes

Result of the command

CmdRes = 0 – Power levels was not set.

CmdRes = 1 – Power levels was set.

7.8.2 Get Default Tx Power Level

The Transmit power can be read through the serial API (starting with Serial API version 7) by using
FUNC_ID_SERIAL_API_SETUP Serial API function, subfunction
SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET:

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET

NormalTxPower

Measured0dBmPower

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 34 of 61

NormalTxPower

The power level used when transmitting frames at normal power. The power level is in deci dBm, for
example 1 dBm output power will be 10 in NormalTxPower and -2 dBm will be -20 in NormalTxPower

Measured0dBmPower

The output power measured from the antenna when NormalTxPower is set to 0 dBm. The power level
is in deci dBm, for example 1 dBm output power will be 10 in Measured0dBmPower and -2 dBm will be
-20 in Measured0dBmPower.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 35 of 61

7.9 Get the Background RSSI Levels for each channel

The command FUNC_ID_ZW_GET_BACKGROUND_RSSI returns the Background RSSI level for each valid
channel. The command always returns four RSSI values expressed in dBm (8bit each): only the ones
corresponding to valid channels contain the measured Background RSSI levels, the remaining are set to
0x7F (i.e., 127 dBm). The valid background RSSI levels range from -105 dBm and +30 dBm.

The number of valid channels depends on the region, the device type (controller/end device) and
whether the end device node is included or not. In the following table there is a summary of the
possible configurations. The four Background RSSI levels have assigned an index from 0 to 3 to identify
them.

Region Device Type Included
(for End-devices)

Valid Background RSSI
levels (index)

2-channels
Controller/
End-device

-
0 (100kbps),
1 (9.6kbps),
2 (40kbps)

3-channels
Controller/
End-device

-
0 (100kbps),
1 (100kbps),
2 (100kbps)

Controller -

0 (100kbps),
1 (9.6kbps),
2 (40kbps),

3 (ZW_LR_CHANNEL_A)

End-device No

0 (100kbps),
1 (9.6kbps),
2 (40kbps),

3 (ZW_LR_CHANNEL_A)

4-channels
(US_LR with

ZW_LR_CHANNEL_A
as 4th channel)

End-device Yes
0 (ZW_LR_CHANNEL_A),
1 (ZW_LR_CHANNEL_B)

Controller -

0 (100kbps),
1 (9.6kbps),
2 (40kbps),

3 (ZW_LR_CHANNEL_B)

End-device No

0 (100kbps),
1 (9.6kbps),
2 (40kbps),

3 (ZW_LR_CHANNEL_B)

4-channel
(US_LR with

ZW_LR_CHANNEL_B
as 4th channel)

End-device Yes
0 (ZW_LR_CHANNEL_A),
1 (ZW_LR_CHANNEL_B)

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 36 of 61

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_GET_BACKGROUND_RSSI

ZW -> Host:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_GET_BACKGROUND_RSSI

RSSI[0]

RSSI[1]

RSSI[2]

RSSI[3]

RSSI:

The function returns the Background RSSI levels (8-bit signed values) for the valid channels, 0x7F
otherwise (see Table above).

7.10 Configuration of the RF Region Setting

7.10.1 Configuration Any Time

To change the RF Region setting at any time, use the sequence of commands below:

1 Use the SERIAL_API_SETUP_CMD_RF_REGION_SET command to set the RF Region setting to
the new value.

2 Use the FUNC_ID_SERIAL_API_SOFT_RESET command to restart the Z-Wave module so the new
setting gets activated.

7.10.2 Set RF Region

The RF Region setting can be configured through serial API (starting with the Serial API version 8) by
using FUNC_ID_SERIAL_API_SETUP Serial API function, sub-function
SERIAL_API_SETUP_CMD_RF_REGION_SET.

The RF Region set by this function is first used by the Z-Wave protocol next time the module is
restarted.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 37 of 61

SERIAL_API_SETUP_CMD_RF_REGION_SET

RfRegion

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 38 of 61

RfRegion

The RF Region value to be set.

RF Region Value

Region EU 0x00

Region US 0x01

Region Australia/New Zealand 0x02

Region Hong Kong 0x03

Region Malaysia 0x04

Region India 0x05

Region Israel 0x06

Region Russia 0x07

Region China 0x08

Region US (Z-Wave & Z-Wave Long Range) 0x09

Region Japan 0x20

Region Korea 0x21

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_RF_REGION_SET

CmdRes

CmdRes

Result of the command

CmdRes = 0 – RF Region was not set (invalid value specified or error setting the value in firmware).

CmdRes = 1 – RF Region was successfully set.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 39 of 61

7.10.3 Get RF Region

The RF Region setting can be read through serial API (starting with the Serial API version 8) by using
FUNC_ID_SERIAL_API_SETUP Serial API function, sub-function
SERIAL_API_SETUP_CMD_RF_REGION_GET:

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_RF_REGION_GET

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET

RfRegion

RfRegion

The returned RF Region value

See the SERIAL_API_SETUP_CMD_RF_REGION_SET command (p. 36) for details about the valid RF
Region values.

RfRegion = 0xFE – Error retrieving the RF Region value

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 40 of 61

7.11 DCDC Configuration Commands

The current DCDC configuration can be updated or retrieved using Set DCDC Configuration and Get
DCDC Configuration Commands, respectively.

7.11.1 Set DCDC Configuration Command

The host CPU system can set the DCDC Configuration by using the Serial API function
FUNC_ID_SET_DCDC_CONFIG (0xDF).

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SET_DCDC_CONFIG

DCDC Configuration

DCDC Configuration (8 bit):

Value identifying one of the three possible setups for the DCDC Configuration

DCDC Configuration Value

EDCDCMODE_AUTO 0x00

EDCDCMODE_BYPASS 0x01

EDCDCMODE_DCDC_LOW_NOISE 0x02

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SET_DCDC_CONFIG

CmdRes

CmdRes (8 bit):

Possible results of the command:

CmdRes Value

Set DCDC Configuration not successful 0x00

Set DCDC Configuration successful 0x01

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 41 of 61

7.11.2 Get DCDC Configuration Command

The host CPU system can get the current DCDC Configuration by using the Serial API function
FUNC_ID_GET_DCDC_CONFIG (0xDE).

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_GET_DCDC_CONFIG

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_GET_DCDC_CONFIG

DCDC Configuration

DCDC Configuration (8 bit):

Value identifying one of the three possible setups for the DCDC Configuration:

DCDC Configuration Value

EDCDCMODE_AUTO 0x00

EDCDCMODE_BYPASS 0x01

EDCDCMODE_DCDC_LOW_NOISE 0x02

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 42 of 61

7.12 Ready Command

The Ready Command is used by the host to inform the Z-Wave module that it is ready to receive a
command on the UART.

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_READY

[SerialLinkState]

SerialLinkState (8 bit):

Set the Serial link state between HOST and the Serial API Z-Wave module.

SERIAL_LINK_DETACHED – The Serial link state should be DETACHED, or Serial API stops sending data to
the HOST until either READY is transmitted again in connected state or any valid Serial API command is
received from the HOST.

SERIAL_LINK_CONNECTED – The Serial link state should be CONNECTED, or Serial API sends data to the
HOST when needed.

The Serial API Z-Wave module starts up after reset in the Serial link state DETACHED.

SerialLinkState define Value

SERIAL_LINK_DETACHED 0x00

SERIAL_LINK_CONNECTED 0x01

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 43 of 61

7.13 Get Maximum Payload Size

The maximum supported payload size can be read through serial API (starting with the Serial API
version 7) by using FUNC_ID_SERIAL_API_SETUP Serial API function, sub function
SERIAL_API_SETUP_CMD_TX_GET_MAX_PAYLOAD_SIZE:

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_GET_MAX_PAYLOAD_SIZE

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_TX_GET_MAX_PAYLOAD_SIZE

MaxPayloadSize

MaxPayloadSize

Maximum payload size supported by the Z-Wave protocol.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 44 of 61

7.14 Set Node ID Base Type

Command to set the Base Type of all Serial API Command Node ID fields. Introduced in Serial API
version 9. The Node ID Base Type defines how all Serial API Command Node ID fields should be
interpreted. The setting can be either 8 or 16 bits.

The 8 bits setting is the default (legacy) setting where the Node ID field is 1 byte wide as illustrated in
the command frame below:

| Byte 1 | Byte 2 | Byte3 | Byte 4 | Byte 5 | ...
| SOF | Length | Type | Cmd | NodeID | ...

The 16 bits setting means the Node ID field is 2 bytes wide, with the most significant byte (MSB) first, as
illustrated in the command frame below:

| Byte 1 | Byte 2 | Byte3 | Byte 4 | Byte 5 | Byte 6 | ...
| SOF | Length | Type | Cmd | NodeID MSB | NodeID LSB | ...

Notice: The command is not persistent. Must be re-issued after a reset or power-cycle of the Serial API
Controller. I.e. the Host should subscribe to the Serial API started Command [7.16] to be notified of any
Controller restart and re-issue the command accordingly.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_NODEID_BASETYPE_SET

BaseType

BaseType

The Node ID Base Type value to be set.

BaseType Value

8 bits 0x01

16 bits 0x02

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 45 of 61

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SETUP

SERIAL_API_SETUP_CMD_NODEID_BASETYPE_SET

CmdRes

CmdRes

Result of the command

CmdRes = 0 – Command Error. The Node ID Base Type is set to default value (8 bit).

CmdRes = 1 – Command OK. Requested Node ID Base Type successfully set.

7.15 Ready Command

The Ready Command is used by the host to inform the Z-Wave module that it is ready to receive a
command on the UART.

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_READY

[SerialLinkState]

SerialLinkState (8 bit):

Set the Serial link state between HOST and the Serial API Z-Wave module.

SERIAL_LINK_DETACHED – The Serial link state should be DETACHED, or Serial API stops sending data to
the HOST until either READY is transmitted again in connected state or any valid Serial API command is
received from the HOST.

SERIAL_LINK_CONNECTED – The Serial link state should be CONNECTED, or Serial API sends data to the
HOST when needed.

The Serial API Z-Wave module starts up after reset in the Serial link state DETACHED.

SerialLinkState define Value

SERIAL_LINK_DETACHED 0x00

SERIAL_LINK_CONNECTED 0x01

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 46 of 61

7.16 Serial API started Command

The Serial API will inform the host that is has been started by issuing the
FUNC_ID_SERIAL_API_STARTED command.

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_STARTED

WakeupReason

WatchdogStarted

deviceOptionMask

GenericNodetype

SpecificNodetype

CommandClassLength

CommandClass 1

…

CommandClass x

Capabilities

WakeupReason

The reason for starting up the Z-Wave module.

SerialLinkState define Description Value

ZW_WAKEUP_RESET Module was reset 0x00

ZW_WAKEUP_WUT Module was started by a
wake up timer

0x01

ZW_WAKEUP_SENSOR Module was started because
it received a wakeup beam

0x02

ZW_WAKEUP_WATCHDOG Module was reset by the
watchdog timer

0x03

ZW_WAKEUP_EXT_INT Module was started by
external interrupt

0x04

ZW_WAKEUP_POR Module was reset by loss of
power

0x05

WatchdogStarted

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 47 of 61

0 – Watchdog timer is not started.

1 – Watchdog timer is started and kicked by the Serial API.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 48 of 61

deviceOptionMask

The deviceoptionmask set by the SerialAPI_ApplicationNodeInformation command

GenericNodetype

The generic node typ set by the SerialAPI_ApplicationNodeInformation command

SpecificNodetype

The specific node type set by the SerialAPI_ApplicationNodeInformation command

CommandClassLength

The number of command classes in the Node information frame

CommandClass x

The command class number supported by the node

Capabilities

Bitfield with information of supported Serial API Controller features

Value Description

Bit 0 Controller is Z-Wave Long Range capable

Bit 1 – Bit 7 Unused

7.17 Softreset Command

The host CPU system can make a software reset of the Z-Wave module by using the Softreset
Command.

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SOFT_RESET

Wait 1.5 seconds after reset to ensure that the module is ready for communication again.

Note: USB modules will disconnect - connect when this command is issued, which means that the
module may get a new address on the USB bus. This will make the old file handle to the USB serial
interface invalid.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 49 of 61

7.18 Watchdog Commands

Some PC-based applications cannot guarantee kicking the watchdog before timeout causing the
Watchdog to reset the Z-Wave ASIC unintentionally. The following Watchdog Commands are therefore
available to avoid this:

 Stop Watchdog: Disable Watchdog and stop kick Watchdog in ApplicationPoll

Watchdog handling disabled when powered up and Sleep/FLiRS mode will temporary stop Watchdog.

The host CPU system can start Watchdog functionality by using the Serial API function
FUNC_ID_ZW_WATCHDOG_START:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_START

The host CPU system can stop Watchdog functionality by using the Serial API function
FUNC_ID_ZW_WATCHDOG_STOP:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_STOP

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 50 of 61

7.19 NVM Backup and Restore

The host processor can make a backup or a restore of the Non-Volatile Memory (NVM) in the Z-Wave
chip using the serial API.

NOTE: Only supported by the 500 series systems.

There is one command for doing both backup and restore.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_NVM_BACKUP_RESTORE

Operation

Length

Offset MSB

Offset LSB

Buffer[0]

…

..

Buffer[x]

Operation (8bit):

The operation to be executed:

Operation Value

Open 0x00

Read 0x01

Write 0x02

Close 0x03

Read, Write, and Close operations are only valid after an Open operation has been executed.

Length (8bit):

A desired length of the read/write buffer

Offset (16bit)

An offset in the NVM where the write or read should be done.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 51 of 61

Buffer (8bit*x):

The write buffer containing the data that should be written to NVM when restoring NVM.

ZW -> Host:

7 6 5 4 3 2 1 0

FUNC_ID_NVM_BACKUP_RESTORE

Return Value

Length

Offset MSB

Offset LSB

Buffer[0]

…

..

Buffer[x]

Return Value (8bit):

The result of the requested operation.

Return Value Value

Ok 0x00

Error 0x01

ErrorOperationMismatch
(Error mixing read and write)

0x02

ErrorOperationDisturbed
(Error read operation disturbed by another
write)

0x03

End Of File 0xFF

Length (8bit):

An actual length of the read/write buffer.

Offset (16bit)

An offset in the NVM where the write or read was done.

Buffer (8bit*x):

The read buffer containing the data that was read from NVM when backing up NVM.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 52 of 61

7.19.1 Backing up NVM

The backup and restore function is session-based because the Z-Wave protocol limits the access to the
NVM while the backup and restore is being done. The host application should stop all other activity on
the serial API while the backup is being done.

The correct sequence of commands for initiating a backup is the following:

FUNC_ID_NVM_BACKUP_RESTORE (open)

Returns the backup size.

FUNC_ID_NVM_BACKUP_RESTORE (read, read, .)

Returns EOF if no more data or error if the backup is disturbed by other writes to the NVM.

FUNC_ID_NVM_BACKUP_RESTORE (close)

Returns an error if backup was disturbed by other writes. Ok is returned if the backup was done
without any writes to the NVM.

If an error was returned, discard backed up data and try again.

7.19.2 Restoring NVM

Restoring the NVM in the Z-Wave protocol requires a few more steps than the backup because the host
needs to ensure that all old NVM data is deleted and that the new NVM is taken in use.

The correct sequence of commands for restoring NVM is the following:

FUNC_ID_ZW_SET_DEFAULT

Deletes all old NVM content.

FUNC_ID_NVM_BACKUP_RESTORE (open)

Returns an unused value.

FUNC_ID_NVM_BACKUP_RESTORE (write, write,)

Writes the whole NVM image to the NVM in the Z-Wave module.

FUNC_ID_NVM_BACKUP_RESTORE (close)

Returns an unused value.

FUNC_ID_SERIAL_API_SOFT_RESET

Activates the Z-Wave module with the new NVM image.

Note that while the restore is taking place, the node will not be part of the network so all Z-Wave
communication to the node will fail.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 53 of 61

7.20 Restrictions on Functions Using Buffers

The Serial API is implemented with buffers for queuing requests and responses. This restricts how much
data that can be transferred through MemoryGetBuffer() and MemoryPutBuffer() compared to using
them directly from the Z-Wave API.

The PC application should not try to get or put buffers larger than approximately 80 bytes.

If an application requests too much data through MemoryGetBuffer(), the buffer will be truncated, and
the application will not be notified.

If an application tries to store too much data with MemoryPutBuffer(), the buffer will be truncated
before the data is sent to the Z-Wave module, again without the application being notified.

7.21 Configuration of Z-Wave Long Range channel.

There are 2 rf-channels available for Z-Wave Long Range communication. A controller can only use one
frequency at a time. The host can use the commands below to get and set the active Long Range
channel.

7.21.1 Get active Long Range channel

Command to get the active Long Range rf-channel. Introduced in Serial API version 9.

HOST->ZW:

7 6 5 4 3 2 1 0

FUNC_ID_GET_LR_CHANNEL

ZW->HOST:

7 6 5 4 3 2 1 0

FUNC_ID_GET_LR_CHANNEL

Channel

Channel

The rf-channel that the controller uses for Long Range communication.

Channel Value

ZW_LR_CHANNEL_A 0x01

ZW_LR_CHANNEL_B 0x02

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 54 of 61

7.21.2 Set active Long Range channel

Command to set the active Long Range rf-channel. Introduced in Serial API version 9.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_SET_LR_CHANNEL

Channel

Channel

The rf-channel to be set.

Channel Value

ZW_LR_CHANNEL_A 0x01

ZW_LR_CHANNEL_B 0x02

7.22 Configuration of Long Range virtual node IDs

Four Long Range node IDs are reserved for virtual nodes. IDs: 4002, 4003, 4004 and 4005. By default, all
frames with virtual node IDs are rejected by Z-wave controllers. To accept application level frames with
a virtual node ID, that node ID must be enabled.

Command to enable virtual node IDs. Introduced in Serial API version 9.

Notice: The command is not persistent. Must be re-issued after a reset or power-cycle of the Serial API
Controller. I.e. the Host should subscribe to the Serial API started Command [7.16] to be notified of any
Controller restart and re-issue the command accordingly.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_SET_LR_VIRTUAL_IDS

NodeIdBitmask

NodeIdBitmask

Setting bits to 1 will enable node IDs. Setting bits to 0 will disable.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 55 of 61

NodeIdBitmask bit

Ignored b4-b7

Enable node ID: 4005 b3

Enable node ID: 4004 b2

Enable node ID: 4003 b1

Enable node ID: 4002 b0

7.23 ZW_SendData Function

FUNC_ID_ZW_SEND_DATA:

HOST->ZW: nodeID | dataLength | pData[] | txOptions | funcID

ZW->HOST: RetVal

RetVal == false -> no callback

RetVal == true then callback returns with

ZW->HOST: txStatus | wTransmitTicksMSB | wTransmitTicksLSB | bRepeaters | rssi_values.incoming[0]
| rssi_values.incoming[1] | rssi_values.incoming[2] | rssi_values.incoming[3] | rssi_values.incoming[4] |
bRouteSchemeState | repeater0 | repeater1 | repeater2 | repeater3 | routespeed | bRouteTries |
bLastFailedLink.from | bLastFailedLink.to | bUsedTxpower | bMeasuredNoiseFloor |
bAckDestinationUsedTxPower | bDestinationAckMeasuredRSSI | bDestinationckMeasuredNoiseFloor

Fields

 bUsedTxpower
 bMeasuredNoiseFloor
 bAckDestinationUsedTxPower
 bDestinationAckMeasuredRSSI
 bDestinationckMeasuredNoiseFloor

Are applicable for Z-Wave Long Range Network only. Otherwise they are set to RSSI_NOT_AVAILABLE

7.24 ApplicationCommandHandler_Bridge

Function ApplicationCommandHandler_Bridge is triggered after SerialAPI receives the frame

On Long Range Network:

ZW->HOST: REQ | 0xA8 | rxStatus | destNode | sourceNode | cmdLength | pCmd[] |
multiDestsOffset_NodeMaskLen | multiDestsNodeMask[] | rssiVal | securityKey | bSourceTxPower |
bSourceNoiseFloor

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 56 of 61

Fields:

 bSourceTxPower
 bSourceNoiseFloor

are applicable for Z-Wave Long Range Network only. Otherwise they are set to RSSI_NOT_AVAILABLE

7.25 Enable PTI Zniffer functionality.

It is possible to enable/disable PTI Zniffer functionality for the 700 SoC as a startup option on
SerialAPIControllers. This means that the nodes keep functioning as a normal SerialAPIControllers but in
addition also provide Zniffer info via the Ethernet ports on the BRD4001A boards. PTI uses the ZG14
pins #21 and #20, which correspond to PB13 (FRC_DRAME) and PB12 (FRC_DOUT). Other pin
configurations are not supported currently. PTI functionality is disabled by default.

7.25.1 Enable/disable PTI Zniffer

Please note that a node must be soft reset (7.17) after the command is sent to activate the setting.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_ENABLE_RADIO_PTI

Enable (0x01) / Disable (0x00)

The node answers the host to verify the setting:

ZW -> Host:

7 6 5 4 3 2 1 0

FUNC_ID_ENABLE_RADIO_PTI

OK (0x01) / Failure (0x00)

7.25.2 Get Radio PTI state

To get if the PTI functionality is currently enabled or not.

Host -> ZW:

7 6 5 4 3 2 1 0

FUNC_ID_GET_RADIO_PTI

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 57 of 61

The node answers the host to verify the setting:

ZW -> Host:

7 6 5 4 3 2 1 0

FUNC_ID_GET_RADIO_PTI

Enabled (0x01) / Disabled (0x00)

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 58 of 61

APPENDIX ASERIAL API FILES

The Serial API embedded sample code is provided in the Z-Wave Developer’s Kit until SDK 6.81.0x. Only
binaries are distributed starting with the SDK 7.00.00+. Note that altering the function IDs and frame
formats in the Serial API embedded sample code can result in interoperability problems with the
Z-Wave DLL supplied on the Developer’s Kit as well as commercially available GUI applications. To
determine the current version of the Serial API protocol in the embedded sample code, see the API call
ZW_Version.

The ProductPlus\SerialAPIPlus directory contains sample source code for controller/end device
applications on a Z-Wave module. The application also uses several utility functions described in [2],
depending on the SDK used.

Appendix A.1 Makefiles

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in the command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. See [2] for
additional details depending on SDK used.

Makefile.common_ZW0x0x_supported_functions

This makefile makes a text file showing the supported serial API functions for the given target.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 59 of 61

Appendix A.2 Application

app_version.h

This header file contains defines for the application version.

config_app.h

This header file contains defines for Manufacturer-Specific Command Class and defines for Security
settings.

conhandle.h / conhandle.c

Routines for handling Serial API protocol between PC and Z-Wave module.

eeprom.h / eeprom.c

NVM layout.

make-supported-functions-include.bat

Windows batch script for generating Serial API defines for supported functions based on what exists in
the library.

Prodtest_vars.c

Critical memory variables used for a production test.

serialapi-supported-func-list.txt

Template file for generating SerialAPI defines for supported functions based on what exists in the
library. Enable/disable support of a given Serial API function in serialappl.h header file.

serialappl.h / serialappl.c

This module implements the handling of the Serial API protocol, which involves parsing the frames,
calling the appropriate Z-Wave API library functions, returning results, and so on to the PC.
Enable/disable support of a given Serial API function in serialappl.h header file.

Supported.bat

Batch file called by Makefile.common_ZW0x0x_supported_function to obtain delayed environment
variable expansion when using SET in DOS prompt.

https://www.silabs.com/

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 60 of 61

REFERENCES

[1] IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, http://tools.ietf.org/pdf/rfc2119.pdf
[2] SL, INS13933, Instruction, Z-Wave 500 Series SDK Contents v6.81.0x.
[3] SL, INS13954, Instruction, Z-Wave 500 Series Appl. Prg. Guide v6.8x.0x.SL, INS14259, Instruction, Z-Wave Plus V2

Application Framework SDK7.

https://www.silabs.com/
http://tools.ietf.org/pdf/rfc2119.pdf

INS12350-23 Serial API Host Appl. Prg. Guide 2022-12-01

silabs.com | Building a more connected world. Page 61 of 61

INDEX

F

FUNC_ID_SERIAL_API_APPL_NODE_INFORMATION_CMD_CLASSES ...24
FUNC_ID_SERIAL_API_SETUP30, 31, 32, 33, 36, 38, 39, 43, 44, 45, 53, 54, 56, 57

N

Node Information Frame...24

S

Serial API Application Node Information Command ...24
Serial API Application Node Information Command Classes Command ...24
Serial API buffers ...53
Serial API Capabilities Command...27
Serial API Data frame...8
Serial API frame flow ...13
Serial API Node List Command ..28
Serial API Ready Command..42, 45
Serial API Softreset Command...48
serial API Watchdog Commands..49

F

FUNC_ID_SERIAL_API_GET_CAPABILITIES...27
FUNC_ID_SERIAL_API_GET_INIT_DATA...28
FUNC_ID_SERIAL_API_SET_TIMEOUTS ...30

https://www.silabs.com/

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1	Abbreviations
	2	Introduction
	2.1	Purpose
	2.2	Terms

	3	Overview
	4	Communication Interface
	4.1	Communication Interface Versions
	4.1.1	Version 1-3
	4.1.2	Version 4
	4.1.3	Version 5
	4.1.4	Version 6
	4.1.5	Version 7
	4.1.6	Version 8
	4.1.7	Version 9

	4.2	Communication Channel Settings
	4.2.1	RS-232 Serial Port
	4.2.2	USB Serial Port

	5	Frame Layout
	5.1	ACK Frame
	5.2	NAK Frame
	5.3	CAN Frame
	5.4	Data Frame
	5.4.1	Start of Frame (SOF)
	5.4.2	Length
	5.4.3	Type
	5.4.4	Serial API Command ID
	5.4.5	Serial API Command Parameters
	5.4.5.1	funcID Parameter

	5.4.6	Checksum

	6	Transmission
	6.1	Initialization
	6.1.1	With Hard Reset
	6.1.2	Without Hard Reset

	6.2	Frame Timing
	6.2.1	Data Frame Reception Timeout
	6.2.2	Data Frame Delivery Timeout

	6.3	Retransmission
	6.4	Exception Handling
	6.4.1	Unresponsive Z-Wave Module
	6.4.2	Persistent CRC Errors
	6.4.3	Missing Callbacks

	6.5	Frame Flow
	6.5.1	Unsolicited Frame Flow
	6.5.2	Request/Response Frame Flow

	6.6	State Diagrams
	6.6.1	Host Data Frame Reception
	6.6.1.1	Counter Maintenance

	6.6.2	Host Media Access Control
	6.6.3	Host Request/Response Session

	7	Serial API Commands
	7.1	Application Node Information Command
	7.2	Application Node Information Command Classes Command
	7.3	Capabilities Command
	7.4	Node List Command
	7.4.1	Get Init Data
	7.4.2	Get Long Range Nodes

	7.5	Set Timeouts Command
	7.6	Set up ZW_SendData Callback Parameters
	7.7	Supported SERIAL_API_SETUP_CMD commands
	7.8	Configuration of Default Tx Power Level
	7.8.1	Set Default Tx Power Level
	7.8.2	Get Default Tx Power Level

	7.9	Get the Background RSSI Levels for each channel
	7.10	Configuration of the RF Region Setting
	7.10.1	Configuration Any Time
	7.10.2	Set RF Region
	7.10.3	Get RF Region

	7.11	DCDC Configuration Commands
	7.11.1	Set DCDC Configuration Command
	7.11.2	Get DCDC Configuration Command

	7.12	Ready Command
	7.13	Get Maximum Payload Size
	7.14	Set Node ID Base Type
	7.15	Ready Command
	7.16	Serial API started Command
	7.17	Softreset Command
	7.18	Watchdog Commands
	7.19	NVM Backup and Restore
	7.19.1	Backing up NVM
	7.19.2	Restoring NVM

	7.20	Restrictions on Functions Using Buffers
	7.21	Configuration of Z-Wave Long Range channel.
	7.21.1	Get active Long Range channel
	7.21.2	Set active Long Range channel

	7.22	Configuration of Long Range virtual node IDs
	7.23	ZW_SendData Function
	7.24	ApplicationCommandHandler_Bridge
	7.25	Enable PTI Zniffer functionality.
	7.25.1	Enable/disable PTI Zniffer
	7.25.2	Get Radio PTI state

	References
	Index

