7 €I WAVE'

Instruction

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

Document No.: INS13954

Version: 13

Description: -

Written By: JFR;JBU;PSH;JSI;SSE;COLSEN;BBR;JROSEVALL
Date: 2020-04-21

Reviewed By: SSE;JFR;SCBROWNI

Restrictions: Public

Approved by:

Date CET Initials Name Justification
2020-04-21 23:52:20 JFR Jorgen Franck on behalf of NTJ

This document is the property of Silicon Labs. The data contained herein, in whole

or in part, may not be duplicated, used or disclosed outside the recipient for any

purpose. This restriction does not limit the recipient's right to use information) g
contained in the data if it is obtained from another source without restriction. SILICON LABS

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Doc.
Rev

N =

~NOoO o b~w

oo

1"

11
12
13

Date

20160407
20170621

20170714

20170719
20170926

20170927
20171107
20180202
20180306
20180530
20180614

20180717
20180816
20181009
20181222
20190816
20190927

20200416
20200421

By

JFR
PSH

JSI

JFR
JSI

JFR
COLSEN
EFH
BBR
JFR
JSIIJFR

JFR
JFR
JFR
JFR
JOROSEVA
JFR

JFR
SCBROWNI

REVISION RECORD

Pages affected

All
411

3.10.4

7&8
43.1.2,43.14,

4.3.1.8,
4.3.1.11,4.3.1.12,
4.3.2.27,4.3.2.28,
4411,4411.2
4.4.2,

4.21

4.3.1.2
4.3.9
4.11

All

All
4.3.3.2.6

34
4.3.2.29

7

7
4.3.1.13
4.3.171
43.1.8

43.1.13&7
7
All

Brief description of changes

Based on INS13478-5 - Z-Wave 500 Series Appl. Prg. Guide v6.71.01.
Updated to SDK version 6.80.00

Specified that 16KB EEPROM will not work on controller nodes
Removed ZW_UARTO0_zm5202_mode_enable from text

Added information of Smart Start additions to protocol usage of Critical
RAM.

Updated protocol versions etc. & references.

Updated ApplicationInitSW and ApplicationPoll according to SDK 6.80
enhancements.

Added description of the two new Smart Start status updates,

Added description of new functionality
ApplicationNetworkLearnCompleted,

ZW_Power_Management_Init and ZW_NetworkLearnModeStart
Added ADD_NODE_SMART_START description

Added ZW_AddNodeDskToNetwork

Added multicast FLiIRS wakeup functionality to functionality list
Wacthdog is default disabled

Added TimerLong API.

Added detailed description of changing RF transmission power setting
Added Silicon Labs template

Minor clarifications

Added TRANSMIT_COMPLETE_VERIFIED and

Updated S2_TXOPTION_VERIFY_DELIVERY description

Clarified exceptions wrt. updating LWR when receiving a successful
routed/direct request from another node.

Added ZW_NetworkManagementSetMaxInclusionRequestintervals
description.

Updated protocol versions etc.

Updated protocol versions and added serial API version etc.
Clarified how to enable ApplicationRfNotify function.

50Hz was erroneously mentioned twice in bKeepOff formulas.
Corrected description of Serial AP| packet for
UPDATE_STATE_NODE_INFO_SMARTSTART_HOMEID_RECEIVED
Updated ApplicationRfNotify and protocol versions etc.

Updated protocol versions etc.

Review

silabs.com | Building a more connected world.

Page ii of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Table of Contents

1 ABBREVIATIONSo rrrssmr s e s s ssssr e s s s s sms e s ss s e e s ssssamr e e s e s mn e e s anssmnn e e eassamneeesasnneessnssnnnenssnsnee 1
2 INTRODUCGTIONeiiiiisccreresssmrersassssneersssssns e e sassssneeeeassssseeeassssneesassssnnensssssnnnessssssnnenssssssnnessssssnnenes 3
P20t B ¥ {4 oo <7 YU 3
2.2 AUdIENCE aNA Prer@QUISITES .. .uuuiieiei ittt e s s e s e e e e e aeaaaaaeaeeeeeeeeeeeaeennnnnas 3
2.3 Key words to Indicate ReEQUIrEMENT LEVEISocovviiiiiiiieeee et 3
3 Z-WAVE SOFTWARE ARCHITECTUREtiiiiiierrrcecenrs s csne e s s ssss e s e s sns s e s ss s mne s e s smne e s s s ssmnnes 4
3.1 Z-Wave System STartup COUEooiiiiiiiii ettt e e 5
K T = Y= =T o T o T o PR 5
3.3 Z-WaVe ProtOCOI LAYEIScoiiiiiiiiie ittt ettt e ettt e e e s e e e e e e e e e e s annneeeas 5
3.4 Z-Wave RoOULING PHINCIPIESccooiiiiieiie ettt e e s 5
3.5 Z-Wave APPLICAtION LAYETttt e e e e e e e e et e e e e e e e e e e e e e ennnneneeeeeaaaeens 7
3.6 Z-WaVe SOMWAIE TiMIEISeiii ittt e e ettt e e e ettt e e s sase e e e e s snnseeeesanseeeeesnnnneeens 9
3.7 Z-Wave HardWare TIMEISttt et e e e e e e e et e e e e e e e e e e e e e e nnnbeeeees 10
3.8 Z-Wave Hardware INtEITUPESvueeeieiice e e e e e e e e e e e e e e e e e e eeeeeeeeeneennes 10
3.9 INterrupt SErviCe ROULINESuuiiiiiiiiiiee et e e e e e e e et e e e e e e e e e e e eenanreaaeees 11
3.91 T = Lo [T SO PPRPPRRN 11
3.9.2 Calling FUNCHONS frOM ISRuiiiiiiiieii et e et e s sneeee s 11

R Tt O T = AV o T = PP 12
3.10.1 Z-Wave Portable Controller NOAEuueiiiiiiiiiieiieee e 12
3.10.2 Z-Wave Static Controller NOGE..........ccueeiieiieiie e 14
3.10.3 Z-Wave Bridge Controller NOGEcooiiiiiiiiii e 15
3.104 Z-Wave Routing SIave NOE...........cooiiiiiiiii e e 17
3.10.5 Z-Wave Enhanced 232 Slave NOGEeeiiiiiiiieiie e 20
3.10.6 Adding and Removing Nodes to/from the Networkcccccooiiiiiiie i 21
3.10.6.1 Adding @ Node NOMMAIlYueiiiiiiiiiiii e e e e e e e 22
3.10.6.2 Adding a New Controller and Make it the Primary Controller..............ccccooviveeiiieeiiiiiienn, 22
3.10.6.3 SUC ID SEIVET (SIS)....ueiiiieeiiuiiiiieeetite ettt et e e e et e e e e et e e e e e nbee e e e e snbeeeeeennees 22
3.10.7 The Automatic Network Updateeeeiiiiiii i a e 22

4 Z-WAVE APPLICATION INTERFACESc it irccmer s ssssr e s s ssms e e s s ssns s s s snms e s s mne e s ssnnes 23
4.1 APIUSAGE GUIAEIINES ...coooiiiiieiiiiiie ettt e e bt e e e et e e e e e e bbe e e e e anbe e e e e ennees 23
411 Code Space, Data Space and Internal/External NVM...........ocooiiiiiii e, 23
41.2 L0 =Y 0] (Yo o] o S 23
41.3 L@ YTy F= o] o Lo I N e I = PR 23
41.4 [o] gl o F=T g T | 1 o RS 23
4.2 Z-WAVE LIDFAIIES ...ttt ettt et e e e e e e e e e e bttt e e e e e e e e e e e e e nnnreeeees 24
421 Library FUNCHONAIITY ... e e e e 24
4211 Library Functionality without @ SIS ..o 25
4.21.2 Library Functionality with @ SIS ... 26

4.3 Z-Wave COMMON APttt e e e e ettt e e e e sttt e e e e e nbe e e e e e ebbeeeeeenbeeeeeennnees 27
4.3.1 Required Application FUNCHONS..........ooiiiie e 27
4.3.1.1 APPICAtIONINITHW ... e e e 28
4.31.2 APPICAtIONINIESW ... e 29
4.3.1.3 F Y o] o] Toz= 1 1Te] oI =1 1 = | SRR 31
4314 Y o] o] o= 1T o] o | PP 32
4.3.1.5 ApplicationCommandHandler (Not Bridge Controller Library)...........cocccceiiiiieiiiiiiienenns 34
4.3.1.6 ApplicationNodelnformationoooiiimii e ——— 37
431.7 ApplicationSlaveUpdate (only Slave Libraries).........ccccoveviiiiiiiiiiiee e 41
4.3.1.8 ApplicationControllerUpdate (only Controller Libraries)cccccceiviiieiiiiiiieee e 42
4.3.1.9 ApplicationCommandHandler_Bridge (only Bridge Controller Library)ccccuvvneee.. 44
4.3.1.10 ApplicationSlaveNodelnformation (only Bridge Controller Library)cccc.ccceevevvvnnnnenn. 46
4.3.1.11 ApplicationNetworkLearnModeCompleted (only Controller Libraries)...............ccccuvvveneenn. 47

silabs.com | Building a more connected world. Page iii of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.12 ApplicationNetworkLearnModeCompleted (only Slave Libraries)ccccccccceeviinnnnnnnen. 48
4.3.1.13 ApplicatioNRINOLIfYuuvieiiiiiee e e e e e e e e s e 49
4.3.1.14 ApplicationSecureKeysRequested (only Slave Libraries)ccccccvvieiiieeeeeieiicciiiine, 50
4.3.1.15 ApplicationSecureAuthenticationRequested (only Slave Libraries)..........ccccocceeeviiiieennns 51
4.3.1.16 ApplicationSecureCommandsSupported (only Slave Libraries)........cccccccevviieeririiiiennnnns 52
4.3.1.17 ApplicationSecurityEvent (only Slave Libraries)coooueeiiiiiiiiiiiiiiieee e 53
43.2 Z-Wave Basis AP a e e e e e e e e 54
4.3.21 ZW_EXploreRequestiNCIUSIONooiiiiiii e 54
4.3.2.2 ZW_EXploreReqUESIEXCIUSIONooiiiiiee e 55
43.2.3 ZW_GetBackgroUNARSSI.........uoiiiiiiiiie ettt e e e 56
4324 ZW_GetProtOCOISTAtUS ...t a e 58
4325 ZW_GetRaNAOMWOId ...t e e e e e e eaaa e 59
4.3.2.6 AV %= 1 o (o] o ¢ OO 61
4327 ZW_RegisterBackgroundRSSICalIbackcc.uuviiiiiiiieeiiee e 62
43.2.8 Z\W_RFPOWEILEVEISEL ..o e 64
4.3.2.9 Z\W_RFPOWEILEVEIGELcooiiiiiiie e 65
4.3.2.10 ZW_RequestNetWorkUpdateo 66
4.3.2.11 ZW_RFPowerlevelRediSCOVEIYSELoooiiiiiiiiiiiii e 68
4.3.212 ZW_SendNodelnformation 70
4.3.213 ZW_SendTESIFrameooooiiiiiiiiiicce ettt aa e 72
43214 ZW _SEtEXIUNILEVEL......uuuiieiiiiiei e 74
4.3.2.15 ZW_SetPromiscuousMode (only Controller Libraries)ccccoveeeiiiiiiiiiiiiiiee e 75
43216 ZW_SetRFRECEIVEMOUEcco ittt e e e 76
4.3.2.17 ZW_TYPE_LIDIArY ...ttt e e et e e e e nte e e e s et ee e e e e snreeeeeaan 77
S T I T A VY=Y = o) o SRR 78
43219 ZW_VERSION_MAJOR /ZW_VERSION_MINOR /ZW_VERSION_BETAccec...... 79
4.3.2.20 ZW_WatchDOGENGDIEcooiiiiiiiiiiii e e s e e 80
4.3.2.21 ZW_WatchDogDisSablecooiiiiiiiii e 81
4.3.2.22 ZW_WatChDOGKICKciiuriiieeiiiiiie ettt e sttt e e et e e e et e e e s ent e e e e s sbaeeeessnraneaeanns 82
4.3.2.23 ZW _ G TXTIMET . tieeee ettt e e ettt e e e ettt e e e et e e e e e e steeeeesanbaeeeesaastaeeeesansseeeeesnssaneanans 83
4.3.2.24 ZW _ClEArTXTIMELSeeteieeiiiiiee ettt e e e e e e e e e ettt e et e e e e e e e e e e e nesneeeeeaaaaaeeeeaaannnnenneeas 84
4.3.2.25 ZW_GetNEIWOIrKSEALSeeiiiiiiiiiiiiee e 85
43226 ZW_ClearNetWorKSTatsooooiiiiiiiiiieeee e 86
4.3.2.27 ZW_Power_Management INit ... 87
4.3.2.28 ZW_NetworkLearnModeStartuuviiiiiiiiee e 88
4.3.2.29 ZW_NetworkManagementSetMaxinclusionRequestintervalscccccoeeveeiiiiiiiiininneen. 89
4.3.3 Z-Wave TranSPOrt AP ... e a e 90
4.3.31 ZW_SeNADALaoeiiiiiciiiee e e a e 91
4.3.3.2 ZW_SendDataEx (only Slave Libraries) ..o 101
4.3.3.3 Z\W_SendData_Bridge.......c.coiuiiiiiiiiiieee e e e 108
4334 ZW_SendDataMUiveeiiiiiiie e e e e eraaeaaeann 111
4.3.3.5 ZW_SendDataMultiEx (only Slave Libraries)ccoouiiiiiiiiiiei e 113
4.3.3.6 ZW_SendDataMulti_Bridgeeeiioiiiaeiiii e 115
4.3.3.7 ZW_SendDataADOITeiiiiiiiiiee et e e e e e e et e e e e arraeae e e 118
4.3.3.8 ZW_LockRoute (0nly CONLrOIIEIS)eeiieiiiiiiee ettt e e e e seeeee e enes 119
4.3.3.9 ZW_LoCKROULE (ONIY SIAVES)uvvieiiiieiee it 120
4.3.3.10 ZW _SENACONST ... ittt a e e e e e aaa e e e e e e 121
4.3.3.11 ZW_SetListenBeforeTalkThreshold............cocooiiiiiiiiiiiiiiiicec e 122
4.3.3.12 ZW_Transport_CommandClassVersionGetcc.eeeiiiiiiiiiiiiiiiiee e 123
4.3.3.13 ZW_GetDefaultPOWEILEVEIScooiiiiiiiiiiie e 124
4.3.3.14 ZW_SetDefaultPOWErLeVelS..........coo e 125
434 ZWave Firmware Update APl e 126
4341 ZW_FirmwareUpdate NVM_INit...... ..o 127
4342 ZW_FirmwareUpdate NVM_Set NEWIMAGEooo e 128
4.34.3 ZW_FirmwareUpdate NVM_Get NEWIMAGE.............ccoooiiiiiiieiiiee e 129
4344 ZW_FirmwareUpdate NVM_UpdateCRCI6ccoevieiiiiiiiiiiiiieeeeee e 130
4345 ZW_FirmwareUpdate NVM _isValidCRCA6ccoeveeiiiiiiiiiiieeeeeee e 131

silabs.com | Building a more connected world. Page iv of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21
4.3.4.6 ZW_FirmwareUpdate_ NVM_WHItecoeiiieieieecie e 132
4.3.5 Z-Wave NOAE MaSK AP ... 133
4.3.5.1 ZW_NOAEMASKSEIBILcooiiiiiiii e 134
4.3.5.2 Z\W_NOAEMASKCIEAIBILciueeieieiiiiiee et e e e e e s sre e e e e aaes 135
4.3.5.3 Z\W_INOAEMASKCIEATeeeieiiiiiiie et e e e e e 136
4354 ZW_NOAEMASKBILSIN ... e e e e e e 137
4355 A4V N\ [To 111 = T3 1 o o 1= 1 o PSR 138
4.3.6 1 Y RO 139
4.3.6.1 F A A (O 1S T =Y 0=][YRR 139
4.3.6.2 A A (O 1 T 1= USROS 140
4.3.6.3 A A (O 1 T o T SR SORRRR 141
4.3.7 €T (@ /= Tor (o TSRS RP 142
4.3.7.1 | 1 O PSPPSR 142
4.3.7.2 | L PP 143
4.3.7.3 PIN _LOW ottt et e e et e e e et e e e e et e e e e et b e e e e e enabaeeeeeansteeaeeanrees 144
43.7.4 PIN HIGH. ...t e e et e e e e re e e e e e ae e e e eensbeeeeeenres 145
4.3.7.5 PIN_TOGGLE ...ttt e e e e e e e e e e et ee e e e e e e e e e e e eaannnes 146
4.3.7.6 | 1 = PRSP 147
4.3.8 Z-Wave NVM MemOTY AP ...ttt ee e 148
4.3.8.1 Y LY g gTo] Y= | PR 149
4.3.8.2 1Y Lo Y 1= 1 = (= T PSP 150
4.3.8.3 MEMOIYPULBYLE ...ttt e e e e e e e e e e e e nnnes 151
4384 MeEMOIYGEIBUITET e e e e e e e e e e e eeannes 152
4.3.8.5 MeEMOIYPUIBUTET ... e e e e e e e e e e e e e e e e e e e aeannes 153
4.3.8.6 A4 =TT o] o2 01 [11 SRR 154
4.3.8.7 ZW_MEMOIYFIUSI ..t e e e e e 155
4.3.8.8 ZW _NVRGEIVAIUE ...cooeieeeee ettt e e e e e e e s e e e reneeeeeaaee e s 156
4.3.8.9 AL N Y4 2@ 4 =Y o] SRR 157
G TR T O I N Y1V I o = o PSSP 158
43811 NVM_ext_read_long bYe ..o 159
4.3.8.12 NVM_ext write 1oNg Dyte. . ..o 160
4.3.8.13 NVM_ext_read_[0Ng_DUfEr.........eiiiiiiiie et 161
4.3.8.14 NVM_ext_write_IoNg_DUTEIeiiiii e 162
4.3.9 Z-WaVe TIMEE AP ...ttt e e e e e e e e e e e s e eeeeas 163
4.3.9.1 B0 1T £ 1= SR PORSRR 164
4.3.9.2 TIMEIRESIAIT ... e e e e e 165
4.3.9.3 B I =T =T o) PR 166
4394 ZW_TImMErLONGSTartooiiiiiiiee ettt e e e 167
4.3.9.5 ZW_TIimerLongRESIAroooiiiiiee e 168
4.3.9.6 ZW_TImMErLONGCaANCEL......coiiiiiiiiee ettt e e e e 169
4.3.9.7 ZW_TimerLongGetTimeLeft...... .o 170
4.3.10 Power Control AP ...ttt e aannnes 171
4.3.10.1 ZW _SetSIEEPMOUE ...ttt ———————————— 171
4.3.10.2 ZW_SetWULTIMEOULouveiiiiiiii i e e e e e e e e e eee s 174
4.3.11 T I 1 (=T = Lo Y e SR SRP 175
e Tt I Ot B @ o 71 = 1o PP TR SOPP 175
I Tt I A A s o [0 o T TSRS 176
4.3.11.3 ZW_SPI0_€NADIEeeeeieieeeeieee e e 178
o T I A TV Y (T o G o [A RSO 179
T I T A TV Y o (0 o G =] SO 180
4.311.6 ZW _SPI0_ACHVE Qe ...ueiiiiiiiiiii et 181
S T I A TV Y [o)| o =Y S 182
4.311.8 ZW_SPI0_int_enable..... ..o 183
4.3.11.9 ZW_SPIO Nt GEL ..eiiiiiieiiiie et e e e e e e e aanraeaes 184
4.3.11.10 ZW _SPIO Nt ClEAI ..ciii ittt e e e e e e e e e e annraea s 185
Tt I e e A T4 | T o 1 RSP 186
431112 ZW _SPIT_€NADIE.....coi ittt a e anaaee s 187

silabs.com | Building a more connected world. Page v of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

I Tt I O B A T s | T G 1= RS 188
I Tt I e A T s | T ot G =T~ RS 189
4.3.11.15 ZW_SPI1_aCVE_GeT ... i 190
431116 ZW_SPI1_COIl QL ...ttt e e e e e e e e e e e e e ae e 191
431117 ZW_SPI1_iNt_€NADIEoeiiiie et 192
4.3.11.18 ZW _SPIT Nt GeL..ueiiiii i 193
431119 ZW_SPI_ Nt _CIEAI ... et e e e e e 194
4.3.12 ADC INtEIACE APot et e e e et e e e e st e e e e e nntar e e e e arraaaaeanns 195
I Tt 2y B A A 5 @ o1 OSSR 199
4.312.2 ZW_ADC _POWEr _ENADIEcci it 202
4.3.12.3 ZW_ADC_ENADIE.......eoiiiiiiiiii ettt e e a e anaaeee s 203
43124 ZW _ADC _PIN_SEIECE ...uuveeieiiiiiic e 204
4.3.12.5 ZW_ADC _threshold_ mode Set..........uueiiiiiiiiiiiiiiee e 205
43126 ZW_ADC _threshold SEt.......ccooiiiiiiiiiiiiiii e e e e 206
4.312.7 ZW _ADC Nt _BNADIEeeeeeieee et e e a e e e e 207
S Ty 2 T A TV N L @ o R 1= | SO 208
4.312.9 ZW ADC S _fIr8a .. et a e e e ees 209
431210 ZW_ADC reSUIt _get... o i 210
431211 ZW_ADC buffer_enable......... ... 211
4.31212 ZW_ADC _auUtO _ZEI0O SEL....coeiiiiiiiiiccece e 212
4.31213 ZW_ADC resolution SEt.......coiiiiiiiiiieieieee et 213
4.3.13 N I (01 (=Y 7= Tt L RS 214
G T I Tt B = 0 1< 0 111 o o P PP TP RPN 214
G R B (=Y o= o 1[0 o R 214
I Tt 1 T T o3 2 PSR 214
I Tt I R 1 (=T [= (o] o USRS 215
I Tt 1 TR T O o 1= = 11] [T SRP 216
4.3.13.6 ZW_UARTO_init / ZW_UARTA_iNit. ..o e e e 217
4.3.13.7 ZW _UARTO rx_data get/ZW_UART1 rx data_get......ccccooiiiiiiiiieee, 218
4.3.13.8 ZW_UARTO rx_data_wait_get/ZW_UART1 _rx_data_wait get.......cccccccooriiiiiiieen. 219
4.3.13.9 ZW _UARTO tx_active _get/ZW_UART1_tx_active_getccooiiiiiiiieeee 220
4.3.13.10 ZW_UARTO tx _data set/ZW _UART1 tx data set........cccoceeiimmieeeiiiiiiiiiiiiieeee. 221
4.3.13.11 ZW_UARTO_tx_send num/ZW_UART1 tx_send NUmM........cccoooeeeeriiieeiiniiiiiirnenene. 222
4.3.13.12 ZW_UARTO tx_send_str/ZW_UART1 _tx_send Str.........cccoccoiiiiiieiiiiiiiiiiiiiineeee. 223
4.3.13.13 ZW_UARTO_INT_ENABLE / ZW_UART1_INT_ENABLEc.oooiiiiiiieiiee e, 224
4.3.13.14 ZW_UARTO_INT_DISABLE / ZW_UART1_INT_DISABLEcoeiiiiiiiieeeeeeee, 225
4.3.13.15 ZW_UARTO_tx_send_nl/ZW_UART1_tx_send_nl.......cccccouiiiiiiiiiiiiiiiiiee e, 226
4.3.13.16 ZW_UARTO_tx_int_clear/ZW_UART1_tx_int clear........ccccooceciiriiieeereeeeiiceiieeeen, 227
4.3.13.17 ZW_UARTO_rx_int_clear / ZW_UART1_rx_int_clear.........ccccceiiiiiiiiiiniiiee e, 228
4.3.13.18 ZW_UARTO_tx_int_get/ZW_UART1_tx_int_get....ccoorrriiiiii e, 229
431319 ZW_UARTO_rx_int_get/ZW_UART1_rx_int_ getccoovriiiiiiieee e 230
4.3.13.20 ZW_UARTO_rx_enable / ZW_UART1_rx_enablecccooriiiiiiiiieeeeeieeee 231
4.3.13.21 ZW_UARTO_tx_enable / ZW_UART1_tx_enable.........ccccceeviiiiiiiiiiiieeeee e 232
4.3.14 Application HW Timers/PWM Interface APl ...t 233
4.3.14.1 ZW_TIMEROD _INItoiiiiiiiiiiie ettt ettt e e s st e e e st e e e e s e e e e snsaeeaesannneeeens 234
4.3.14.2 ZW_TIMER _INIt ..ottt ettt e sttt e e e st e e e s st e e e aneeeeeesannnaeeens 235
4.3.14.3 ZW_TIMERO_INT_CLEAR /ZW_TIMER1_INT_CLEARcoiiiiiiiiiiieee e 236
43144 ZW_TIMERO_INT_ENABLE / ZW_TIMER1_INT_ENABLEccooiiiiiie e, 237
43145 ZW _TIMERO_ENABLE / ZW_TIMER1T _ENABLE........oottiiiiiiiiieeeee e 238
43146 ZW_TIMERO ext clk /ZW_TIMERT_ext_ClK.....ccccuiiiiiieiiee e 239
43147 ZW _TIMERO _LOWBYTE_SET/ZW _TIMER1 _LOWBYTE_SET...ccccccvviiiiiiiiiieeee. 240
43148 ZW _TIMERO_HIGHBYTE_SET /ZW_TIMER1_HIGHBYTE_SET ...covviiiiiiiiiie. 241
43149 ZW _TIMERO_HIGHBYTE_GET /ZW_TIMER1_HIGHBYTE_GET ..o 242
431410 ZW_TIMERO_LOWBYTE_GET/ZW_TIMER1_LOWBYTE_GETcccoviiiveeeiiieennn 243
431411 ZW_TIMERO_word_get/ ZW_TIMER1_Word_get........cccccveviiiiiiiiiiiiieeeeieee e 244
4.3.14.12 ZW_GPTIMER _INIt .eeiiiiiiiiie ettt e e e e e e e e snnnaeee s 245
4.3.14.13 ZW_GPTIMER _INt_CIEAI ..eeiiiiiiiie ettt e e 246

silabs.com | Building a more connected world. Page vi of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.14 ZW_GPTIMER _INt_gELoiiiiiiiiiie ettt 247
4.3.14.15 ZW_GPTIMER_INt_ENADIEcoiiiiiiiii e 248
4.3.14.16 ZW_GPTIMER _ENADIEooeieiiiiiee ettt seee et e e seaeeens 249
431417 ZW_GPTIMER _PAUSEeoieiiieiiiie et eieeesteeestee e st e stee e st e e sneeeesnteeesneeesnseeeanneeeans 250
4.3.14.18 ZW_GPTIMER _reload_SEt.......cccceiiiiiieiiii et aee e 251
431419 ZW_GPTIMER_reload_get.......ccooiiiiiieiie e 252
4.3.14.20 ZW_GPTIMER _QE1.....eiiiiiiieii ettt e e e e e e e aeeens 253
4.3.14.21 ZW _PWIM_INIT. .ottt ettt e ettt e st e e st e e st e e smbe e e eneeesnbeeeaneeans 254
4.3.14.22 ZW_PWIM_ENADIE.......eiiiiiiieiiie ettt e st be e e neeen 255
4.3.14.23 ZW_PWIM_INT_CIEAIciiiuiiiiiie ittt e 256
4.3.14.24 ZW_PWIM_INT_GEL. oottt 257
4.3.14.25 ZW_PWNM_INT_@N@DIEoiiiiiiiiii e 258
4.3.14.26 ZW_PWM_WaVvefOrm _Sel.......cociiiiiiiiiiiiie ettt e e 259
4.3.14.27 ZW_PWM_WavefOorm _Get.......coi ittt e e e e e e e 260
4.3.15 SECUIEY AP ettt ettt e ettt e sttt e st e e st e e snte e e steeeaneeeanteeeeseeeanneeeenneeeans 261
4.3.15.1 ZW_GetSecurityKeys (Only slave libraries) ... 261
4.3.15.2 ZW_s2_inclusion_init(Only slave lIbraries) ... 262
4.3.15.3 ZW_SetSecurityS2InclusionPublicDSK_CSA(Only slave libraries)........c.ccoccvveeeiiiiineeen. 263
4.3.15.4 ZW_GetSecurityS2PublicDSK(Only slave libraries)..........ccoiveeeiiiiiieeieniieee e 264
4.3.15.5 ZW_SetSecurityS2CriticalNodelD (Only routing slave library)ccccccoeeiiiiiiiiiiinneeen. 264
4.3.15.6 ZW_SetSecuritySONetworkKey (Only enhanced 232 slave library)ccccccveevinnnennn. 266
4316 AES AP e bbbt e e e s ba e e be e e anae e 267
4.3.16.1 ZW_AES _ECD_Set ..o 269
4.3.16.2 ZW_AES_€CD_get ..o 270
4.3.16.3 ZW _AES €NADIEceeieeeeeeiiiee e e e e e e e 271
4.3.16.4 ZW_AES _SWaP_data ...coooueiiiiiiiiiiie e 272
4.3.16.5 ZW_AES _ACHVE _Ge1T ..ooiiiiiiii e 273
4.3.16.6 ZW_AES int_enable_get ... 274
4.3.16.7 ZW _AES Nt Gt oot e e 275
4.3.16.8 ZW_AES Nt ClEAI ..eiiiiiieiie ettt e e aeeens 276
4.3.16.9 ZW_AES_echb/ZW_AES_eCh_dmaccciiiiiii it 277
4.3.17 TRIAC CONIONEIr AP ...ttt ettt et et e e sbe e e s eee e abeeeeneeas 278
43171 ZW_TRIAC NIttt ettt sttt et e e sb e e sabe e e sneeeaas 279
4.3.17.2 ZW_TRIAC_ENADIE ...ttt sttt e 287
4.3.17.3 ZW_TRIAC_dIMIEBVEI_SELcooiiiiiiiiie ittt 288
4.3.17.4 ZW_TRIAC_INt_ENADIE........eiiiiii it 289
4.3.17.5 ZW_TRIAC_INE_GEL ..oiiiiieie ettt et e et e e st e e st e e snee e eneeeeeneeeans 290
4.3.17.6 ZW_TRIAC _INt_CIBAI......iii ettt e s eee e st e e enee e sneeeeenneeeans 291
4.3.18 LED CONIOIEI APottt ettt et et e et te e e en e e ente e e smteeeenneeeanneeeenneeeans 292
43181 ZW_LED Mt oottt e e e e e ee e e enaeeen 293
4.3.18.2 ZW _LED WaVefOrmMs SEL......oooiiiiiiiiiii et 294
4.3.18.3 ZW _LED WaVefOorm_Set.o et 295
4.3.18.4 ZW_LED_data DUSYeoiiiiieiiii ettt 296
4.3.19 INfrared CONTrOIEr APco ettt e e e e s ae e e s snrae e e e s nnnsaeeeas 297
4.3.19.1 Carrier DeteCtOr/GENEIAtOr.c..eiiie ettt e e e e e nnraee s 298
4.3.19.2 Organization of Mark/Space Data in MemOry...........ccceeeiiieeiiiiiiiiieeeee e 298
4.3.19.3 IR TranSMITIEI ...cee it e e 300
4.3.19:4 IR RECEIVET ...ttt ettt st s et s et e nn e s e nnre e 302
4.3.19.5 ZW_IR X NIt oieiiiii ettt e st e e te e e eneeean 305
4.3.19.6 ZW IR X A8 eiiiiiiieiiie et e e e e e eneeeen 307
4.3.19.7 ZW_IR IX_Status_get ..o s 308
4.3.19.8 ZW_IR _I€AIM _INIt ... eeiieeiie ettt e et e e e e e e e e nneens 309
4.3.19.9 ZW IR _1€ArN_dataceeiiiiiiiiiei et e e e e e 311
4.3.19.10 ZW_IR learn_status geto 312
4.3.19.11 ZW IR _StAtUS ClEAI ... 314
4.3.19.12 ZW_IR _dISADIE . ..eiiiiiiieit et 315
4.3.20 Keypad Scanner Controller APooo et e e e 316

silabs.com | Building a more connected world. Page vii of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

I I 0 g B A A S T | PR 319
4.3.20.2 ZW_KS_€NADIE ... e e e a e aeae s 321
4.3.20.3 ZW_KS_PA_ENADIE ...ooeiiiiieee e 322
4.3.21 USB/UART COMMON AP ... ittt ettt et e e stte e e st e e snee e e snteeesnneeesnneeeenneeeans 323
4.3.21.1 ZW _INIESEIIAllf ..o a e aee s 324
4.3.21.2 ZW _FiniShSEriallfooiiiiiiiiieicie et e e s e e s st e e e s ennraeae s 325
4.3.21.3 ZW_SeralChECK.ottt 326
4.3.21.4 ZW_SerialGetBytecooiiiiiiiii e 327
4.3.21.5 ZW_S€HalPUIBYLEooiiiiiiiiiii et e e e 328
4.3.22 L E=] e RS 329
4.3.22.1 ZW_FLASH_code_prog_UNIOCKc.uuiiiiiiiiiiee it e e e e snneeee s 330
4.322.2 ZW _FLASH_code Prog lOCKccuuiiiiiiiiiee ettt 331
4.3.22.3 ZW _FLASH_COdE SECIOr EraSe........uuviiiiiieeeeiiiiiiiiiiiiieee e e e e e e e s et e e e e e e e e e s e rneeees 332
4.3.22.4 ZW _FLASH_COdE PAGE PrOQ ...cocceeierieiiiiieeeeieseiiiiitttteeeaeaeeessassnssnsaneeeaaaeesssssnnsnsseeeeees 333
4.3.22.5 ZW_FLASH_auto_prog_Setc..ooiiiiiiiiiiiiiee et 334
4.3.23 (O] {2 o O PSP PPPRO 335
4.3.23.1 ZW _ChECKCICTB ... ettt e et e e e e et e e et e e e e e e ameeeeeneeeemeeeeanneeens 335
G T2 B ATV O (Y- | (=1 O o 1 SO 336
4.4 Z-Wave Controller APl et e et e et e e e e e e e e e e et e e e e e e e e e e aaaannas 337
441 ZW_AdANOAETONEIWOIK ... e e e e e 337
4411 DMOdE PArameter ... —————————— 337
4412 COMPIEtedFUNC PAraMELET.......u e e e e e e e e e e e e e e e e e eeanaaes 340
4413 completedFunc callback tIMEOULScoooiiiiiii e 343
442 ZW_AdANOAEDSKTONEIWOIKeviiiieiiiiie ettt e e et e e e s snbeeeeeeanes 349
4421 01V [To [T o =T =T .41 (=) PP 349
4422]S T (G o F= T =141 (= PSR 350
4423 completedFUNC ParameEter....... ..o 350
4424 Smart Start Network Wide INCIUSIONuuiiiiiiiieeie e 350
443 Z\W_AreNodesNEIGhDOUTScoouiiiii e 351
444 ZW_ASSIGNREUMNROULE.........coiiiiiie e e e 352
44.5 Z\W_ASSIGNSUCREIUMNROULEeiiiiiiiiiieee et 354
44.6 ZW_AssignPriorityReturnROULE ... 355
447 ZW_AssignPrioritySUCREIUINROULEcoooiiiiiiie it e 357
448 A A 0o a1 1 o] 1= T4 O = oo = TSR 359
4.4.9 ZW_DeleteRetUrNROULEoeeieiee e e e e e e e 361
4410 ZW_DeleteSUCREIUMNROULE ... 362
4.4.11 Z\W_GetControllerCapabilitiescouiuiiiiiiiiiee e e e 363
4412 Z\W_GetNeighbOrCOUNTciiiiiiiiee et e et e e et e e e s sbeeeeeeanes 364
4413 Z\W_GetPriortyROULEooooieiiee e e 365
4414 Z\W_SetPriOrtYROULEcooiiiiiee e e e 366
4415 ZATL €T=110 [oTo [=1 o o) (o T o | | o TSSO 367
4416 ZW_GetROULINGINTO ... e ee e 368
4417 ZW_GEISUCNOUEIDcoeeiiiiiiee ettt ettt e e e st e e e e st e e e s sbteeaeesnstaeeeeesnseeeaeeanns 370
4418 A A 1] =1 T=T |\ o o SRR 371
4419 A A =] o]2 =1 Y3 (o SR SPPPRR 372
4.4.20 ZW_RemOVEFAIEANOGEoooiiiiiiiie ettt e e et e e e e eatae e e e s snnaeeaeeanes 373
4.4.21 ZW_ReplaceFailedNOEoouuiiiiiiiicee e 375
4.4.22 ZW_RemoveNOdEeFrOMNEIWOTKuuiiiiiiiiiiee e e e 377
4.4.22.1 DMOAE PAraMELETeiiiiiiiiiii et e e 378
4.4.22.2 completedFUNC PArameter...... ..o e 379
4.4.22.3 completedFunc callback iMEOULScooiiiiiiiiii e 381
4423 ZW_RemoveNOdeIDFrOMNEWOIK.uuiiiiiiiiee e 386
VS S22 Tt B o117 (o To [o =1 = 1 1= (= SR 386
4.4.23.2 DNOAEID PAr@mMELENeeiiiiiiei it e e e e e e e e e ee s 386
4.4.23.3 completedFUNC Parameter............uuuiuiiiiiiiiiie e 386
4.4.24 ZW_ReplicationReceiveComPIete...........uuuiiiiiiiiiiiiieeeeee e 387
4.4.25 ZW_RePlICAtIONSENG.......euiiiiiiiiie e e e e e e e e e e e 388

silabs.com | Building a more connected world. Page viii of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.4.26 ZW _ReqUESINOAEINTOuuiiiiiiiiie e e e e e e e e e 389
4.4.27 ZW_RequestNodeNeighborUpdate.............oooviieiiiiiiiii e 390
4.4.28 A AT S 1Y o 151U L] | RS 392
4.4.29 A AT S T 1 1= - T SRS 393
4.4.30 ZW_SEtLearnMOTEoooo ittt e e et e e e e e e e e 394
4.4.31 ZW_SEetROULINGINTO ...t e e e e 397
4.4.32 ZW_SetROULINGIMAX ... ittt ettt et e e et e e e e e em e e e see e e amte e e aseeeemaeeeeneeeennes 398
4.4.33 Z\W_SEtSUCNOEID ... ceeieiiiie ettt et ettt e e et e e abe e e emne e e eneeeenees 399
4.5 Z-Wave Static CONLrOlEr APL..........oooiiiiiiiie ettt e e e et e e e s st e e e s snnteeeaessbeneeeeanes 401
451 ZW_CreateNeWPTIMaryCIrl.........c.uiiiiiiiiie et et e e e e e e s steeeaeeanes 401
4.6 Z-Wave Bridge Controller APooi ittt ettt e e e sttt e e e s st e e e s ssntaeeaesanbeneeeeann 403
4.6.1 ZW_SendSlaveNodelnformation...............eeeiiiiii oo 403
4.6.2 ZW_SetSIaveLearnMOAEcooiiiiiiieee e a e e e 405
4.6.3 ZW _ISVIFTUGINOGE ...t e annnreaaeees 408
46.4 ZW_GEtVIrUAINOGESeeieieiie ettt sttt e et e e st e e e nte e e et e e snne e e anneeeenees 409
4.7 Z-Wave Portable Controller AP et e e e e r e e e e e e e e e annnnes 410
471 ATV I = 1 1= 411 (O 10 o | PO 410
4.7.2 ATV (o] =] Lo T =Y [o o S P 411
4.7.3 AT S (o] =] (o] o =Y |5 S 412
4.8 Z-WAVE SIAVE AP ...t e e e e e e e et e e e e e e e e e e e aannes 413
4.8.1 ZW _SetDEfaUIL ... 413
48.2 ZW_SetLearnMOAEuuueiiiiiiii et a e e e e e 413
4.9 Z-Wave Routing and Enhanced 232 SIave APl...........oooiiiiiiiiiiiceeee et 416
4.9.1 p A A C 1= 6510 L0\ [o [= 1 I SR STPPRR 417
49.2 ZW _IsNodeWithinDireCtRANGEcccuuiiiiiiiieie e a e e 418
493 ZW_RediSCOVEIYNEEAEAcooiiiiiiiiiiie e 419
494 ZW_RequestNewRouteDestinationsooiiiiiiiiiiiie e 421
4.9.5 Z\W_ReqUESINOAEINTO ... ee e 422
4.10 Serial Command LiN€ DEDUGJETccci ittt e e s aee e e e ebeeeeeeaaes 423
4.10.1 A AT =Y o TU o | a1 PSP 425
4.10.2 A A =Y oYU o o SRR 426
4.11 RF Settings in App_RFSELUP.Cfil@cciiieiiiieieeee e 426
5 APPLICATION NOTE: SUC/SIS IMPLEMENTATIONcciiiiicrrerirmre e esssmre e s sssmme e ssssmne e sen e 428
5.1 Implementing SUC/SIS Supportin all NOAESccoiiiiiiiiiiiiieeeeee e 428
5.2 SHatiC CONMIOIIBIS ...ttt sa e s e snb e e sabeeenneeas 428
5.2.1 Request for Becoming an SUC Node ID Server (SIS)vviiiiieiieeiieiccciieeeee e 428
5.2.2 Updates from the Primary Controller..............oouiiiiiiiiiii e 428
5.2.3 Assigning SUC Routes to Routing SIaves...........coooiiiiiiiiiiiiiii e 429
524 Receiving Requests for Network Updates............ooviiiiiiiiiiiii e 429
5.3 The Primary CONTrOIErcooi it e e e e s e e e e e 429
5.4 Secondary CONTrOIEISooiiiiiiiee et e b e e e e b e e e e 429
5.4.1 KNowing the SUCISIS ...t 430
54.2 Asking for and Receiving Updateseiiiiiiiii e 430
5.5 INCIUSION CONITOIEIS ..ottt e et e e e e et e e e e et e e e e ennbee e e e e snnteeeeeeneees 430
5.6 ROULING SIAVES ..ottt ettt ettt e e e et e e e e et e e e e e sttt e e e e e staeeeeeanbeeeeeeannteeeeeenrees 431
6 APPLICATION NOTE: CONTROLLER SHIFT IMPLEMENTATION ... 433
7 APPLICATION NOTE: Z-WAVE PROTOCOL VERSIONS ETC........cccccirirrrrrerrrrmee e ssssmee e s 434
8 REFERENGCGES it s e me e s s e e e s s mne e e e e amn e e s e s nnns 436
INDEX ..ot icciteiicceee s see et e e s sssmne e s s e sane e e s e s sme e e s s mne e e s e same e e e e mee e e e ame e e e e amneeeeesmneeeeeanneeesesnneneeesnnnnnnas 437

List of Figures

silabs.com | Building a more connected world. Page ix of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Figure 1. SOftware ArChitECIUIEc..uiiiiiieiieie e e e e e e e e e e e e e e e e e s nanreaeeees 4
Figure 2. Multiple Copies of the Same Set Frame.............ooooiiiiiiiiiii e 8
Figure 3. Multiple Copies of the Same Get/Report Frame...........ccceiiiiiiii e 8
Figure 4. Simultaneous Communication to @ Number of NOdes...........cccciiiiiiiiiiinie e 9
Figure 5. Portable Controller Node ArchiteCture............coooiiiiiiii e 13
Figure 6. Routing Slave Node ArchiteCtUreooo i 17
Figure 7. Enhanced 232 Slave Node ArchiteCture............ocuviiiiiiiiiiiiii e 20
Figure 8. Node Information Frame Structure on Application Level...........ccccooiiiiiii e, 40
Figure 9. Application State Machine for ZW_SendDataccooviiiiiiiie e 98
Figure 10. Threshold Functionality when Threshold Gradient Set to Highccooiiiiiiiiie s 195
Figure 11. Threshold Functionality when Threshold Gradient Set {0 LOW.........ccccoviiiieiiiiiiiiee e 195
Figure 12. Configuration of INPUL PINSeeiiiiiii e e e e e e e e e 196
Figure 13, ADC Code Sample Snippets Using an /O as INPUtccvvviiiiiiiei i 197
Figure 14, ADC Code Sample Snippets Using Battery Monitoring Mode..............ccccciiiiiiiiieee e, 198
Figure 15. Serial WavefOrmttt st e e e s et e e e s anbeeeeeenes 214
o U =T LT S 122 1= (1 o R 214
Figure 17. Principle of Clock Control for Timer0...........cooi i 233
Figure 18. Principle of Clock Control (mode 0-2) for TImerc.oooiiiiiiii e 233
Figure 19. PWM WaVETOIMooo ittt e e e st e e e e s nbeeeeenne 259
Figure 20. Example of ECB Ciphering. Vectors are from FIPS—197. ...ccccccuiiirieeiiiiieee e e nireeee e 268
Figure 21. Half-Bridge A Zero-X SIigNal..........cooiiiiiiiiiiiiiiieiie ettt e annnnnes 283
Figure 22. Example of Half-Bridge B Zero-x Signal...........cc.coiiiiiiiiiiiiie e 283
Figure 23. Example 1 of a Full Bridge Zero-X Signal.........cc.ueeiiiiiiiiiiiiiee e ee e 284
Figure 24. Example 2 of a Full Bridge Zero-X Signal.........cc..eeiiiiiiiiiiiiee e 284
Figure 25. Masked Zero-X SIGNaAlcoouieiiiiiiiee ettt e et e e anbe e e e eae 284
Figure 26. PulseLength and PulseRepLength used in Triac Mode (Resistive Load)cccoevivveeeennns 285
Figure 27 TRIAC Output in FET Trailing Edge Mode (Example with Resistive Load)..........ccccoocveeeernns 286
Figure 28 TRIAC Output in FET Leading Edge Mode (Example with Resistive Load)..............ccoeoeuees 286
Figure 29. External IR HardWaree ittt e e e e e e e e e e e annnnees 297
Figure 30. IR Signal with and WithoUt Carriercc.ueiiiiiiiiii e e e 297
Figure 31. IR Coded Message With Carriercocoiiiiiiiiiiiie et e e e e 298
Figure 32. Carrier WaVEIOIcoo oottt e e e e e e et e e e e e e e e e e e saaaabbaaeeeeaaaeeeeesannnnnnes 298
Figure 33. Mark/Space Data Memory Organizationcceveeeieiiiiiiiiiiiiiee e e e e e e e snnnes 299
Figure 34. Code Example on Use oOf IR TransSmitter...........c..ooiiiiiiiiiiiiiiiie e 302
Figure 35. Code Example on Use Of IR RECEIVET.........coiiiiiiiiiiiiiiie e 304
Figure 36. KeYPad MatriX........cooiiiiiiiieiiieiee ettt ettt e e s eb et e e e s abe e e e e s aabe e e e e s abbeeeeeene 316
FIGUIE 7. SCAN FIOW ...ttt e ettt e e e e sab bt e e e e nb e e e e e e anbbe e e e e anbeeaeenne 316
Figure 38. Example of the API Calls for the KeyPad Scanner...........c.ocoueeiiiiiiiiiiiiiie e 317
Figure 39. Adding a Node to the NEtWOIK...........cooiiiiiiiiii e 345
Figure 40. Smart Start S2 Public Key Derived Inclusion homelDs...........ccccoccviieiiiiiiiiee e 350
Figure 41. Node Information Frame Structure without Command CIassesccccceveeviiiiieeiiiiieeeeens 367
Figure 42. Removing a Node from the NetWOrKc.uuviiiiiiiiiei e 383
Figure 43. Inclusion (Add) of a Node Having an SUC in the Networkccccccooveiiiiiiiiiieiee s 428
Figure 44. Requesting Network Updates from a SUC/SIS in the Networkcccccviiiiieeieeiiiiieccinns 429
Figure 45. Inclusion (Add) of a Node Having a SIS in the Network ... 430
Figure 46. Lost Routing Slave Frame FIOW ... 432
Figure 47. Controller Shift Frame FIOW.........coouuiiiiiiii e 433
List of Tables
Table 1. 200/300/400/500 Series Z-Wave SoCs Hardware Timer Allocation............ccceevciieeeeeiiieeee e, 10
Table 2. 200/300/400/500 Series Z-Wave SoC Application ISR Availabilitycccceeeeeeeiiiiiiiiiiiiieee. 10
Table 3. Library FUNCHONAITY...........ouiiiiiieieiee e s e e e e e e e e e e e e aeaeaeeeeeeenenees 24
Table 4. Library Functionality without @ SIS ... 25
Table 5. Library Functionality With @ SIS ... 26

silabs.com | Building a more connected world. Page x of xi

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Table 6. AppPliCatioNPOIl FIEQUENCYuuuiiiiiieie ettt s s e e e s e e e e e e aaaaaaeaaaaeeeeennenees 32
Table 7, RSSI ENCOTING ...eeiiiiiiiiiii ittt e e e e e e e e e e e e e e e s e e b saeeeeaaaeeeeeasanssrsnenees 56
Table 8. SendData i1 IXOPHIONS.ceiiiiiiii ettt e e e e e e e ee e e e e s s e e e e e nnbtee e e e annaeas 92
Table 9. Use of Transmit Options for Controller Librariescccccviiiiiiiiiiiie e 93
Table 10. tXSTAtUS VAIUESccee et e e r e e e e e e e e e e e e e e e eeaeeeeeasnnsnrneeeees 94
Table 11. Maximum Payload SiZeoooiiiiiii e s 95
Table 12. ZW_SendData : State/Event ProCeSSiNg.......coouuueiiiiiiiii e 99
Table 13. IXSTAtUS VAIUESoooiiie ettt e e e e e e e e e e et e e e e e e e e e e e e e annnenaeeeeeeas 102
Table 14. Maximum PaylOad SIZEeeiiiiiieaiiii et e et e e e e e e e e e e e e neeeeeeeas 102
Table 15. AAANOAE - DMOAE..... ... et e e e e e e e s eee s 337
Table 16. AddNode :: completedFunc :: learnNodelnfo............ccccoiiiiiiiiiie e 340
Table 17. AddNode :: completedFunc :: learnNodelnfo.bStatuscccccoeooiiiiiiiiiiie e 341
Table 18. AddNode : State/Event proCeSSING — Tuuiiiiiiiieei e e e e e 346
Table 19. AddNode : State/EVent ProCESSING — 2......uviiiiiiiie ettt e e e e e e e s eee s 347
Table 20. AddNode : State/Event ProCeSSING — 3.....eeii i 348
Table 21. ADANOAEDSK 11 DIMOE............oiiiiiiiiiiee e e et e e e e e e e e enaaeas 349
Table 22. RemOvENOdE 11 DIMOUEeeiiiiiieee et e e e e e e e e e e e e e e e e e e e annnenneeeeeeas 378
Table 23. RemoveNode :: completedFunc :: learnNodelnfo...........c.ooiiiiiiie i 379
Table 24. RemoveNode :: completedFunc :: learnNodelnfo.bStatus ... 380
Table 25. RemoveNode : State/Event processing - .. .o 384
Table 26. RemoveNode : State/EVent ProCeSSING = 2........ucieeiiiiiiieeiiiiiee e eieee e esieee e sreee e snree e e e e nneeas 385
Table 27. App_RFSetup.c Module Definitions for 500 Series Z-Wave SoC...........ccccceeeeeeiiiiecciiiiieeee.. 426
Table 28, Z-Wave Protocol Version for a Given Software Developer’s Kit Version..............ccccccvvvveee.... 435

silabs.com | Building a more connected world. Page xi of xi

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

1 ABBREVIATIONS

Abbreviation

Explanation

ACK

Acknowledge

AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The AES is a
NIST-standard cryptographic cipher that uses a block length of 128 bits and key lengths
of 128, 192 or 256 bits. Officially replacing the Triple DES method in 2001, AES uses
the Rijndael algorithm developed by Joan Daemen and Vincent Rijmen of Belgium.

ANZ Australia/New Zealand

AODV Ad hoc On-Demand Distance Vector (AODV) Routing.

API Application Programming Interface

APR Application Priority Route

ASIC Application-Specific Integrated Circuit

CR Carriage Return, move the position of the cursor to the first position on the same line.

DLL Dynamic Link Library

DUT Device Under Test

ECB Electronic CookBook (block cipher mode)

ERTT Enhanced Reliability Test tool

EU Europe

FET Field-Effect Transistor

FLIRS Frequently Listening Routing Slave. Communication to a FLiRS node can be
established by a wakeup beam.

GNU An organization devoted to the creation and support of Open Source software

HK Hong Kong

HW Hardware

IGBT Insulated Gate Bipolar Transistor

IL Israel

IN India

IR InfraRed

ISR Interrupt Service Routines

JP Japan

KR South Korea

LF Line Feed, Move cursor to the next line

LRC Longitudinal Redundancy Check

LS Less significant

LWR Last Working Route

MS Most significant

MTP Many Times Programmable memory

MY Malaysia

NAK Not Acknowledged

NLWR Next to Last Working Route

NVM Non-Volatile Memory

NVR Non-Volatile Read memory (cannot write)

NWI Network Wide Inclusion (add node out of direct range)

NWE Network Wide Exclusion (remove node out of direct range)

OTA Over The Air (e.g., making a firmware update wireless)

oTW Over The Wire (e.g., making a firmware update via the serial API interface)

PA Power Amplifier

POR Power On Reset

PRBS Pseudo-Random Binary Sequence

PRNG Pseudo-Random Number Generator

PWM Pulse Width Modulator

RF Radio Frequency

RFRNG Radio Frequency Random Number Generator

silabs.com | Building a more connected world.

Page 1 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

RU Russian Federation

SDK Software Developer’s Kit
SFR Special Function Registers
SIS SUC ID Server

SoC System-on-Chip

SOF Start Of Frame

SPI Serial Peripheral Interface
SUC Static Update Controller
UPnP Universal Plug and Play
us United States

WUT Wake Up Timer

XML eXtensible Markup Language

silabs.com | Building a more connected world. Page 2 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

2 INTRODUCTION

21 Purpose

The Application Programming Guide gives guidance for developing Z-Wave application programs, which
use the Z-Wave application programming interface (API) to access the Z-Wave Protocol services and
500 Series SoC resources. For host processor application development using the serial API, refer also to

(21
For details about working in the 500 Series environment, refer to [14].

The document is also an API reference guide for programmers.

2.2 Audience and Prerequisites

The audience is Z-Wave partners and Silicon Labs involved in application development. The application
programmer should be familiar with the PK51 Keil Development Tool Kit for 8051 micro controllers.

2.3 Key words to Indicate Requirement Levels

The guidelines outlined in IETF RFC 2119 “Key words for use in RFCs to Indicate Requirement Levels”
[17] apply:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC 2119.

silabs.com | Building a more connected world. Page 3 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3 Z-WAVE SOFTWARE ARCHITECTURE

Z-Wave software relies on polling of functions, command complete callback function calls, and delayed
function calls.

The software is split into two groups of program modules: Z-Wave basis software and Application
software. The Z-Wave basis software includes system startup code, low-level poll function, main poll
loop, Z-Wave protocol layers, and memory and timer service functions. From the Z-Wave basis point of
view the Application software include application hardware and software initialization functions,
application state machine (called from the Z-Wave main poll loop), command complete callback
functions, and a received command handler function. In addition to that, the application software can
include hardware drivers.

Application state Comnleted id
machine Completed k
callback p
SW Init Received
command
handler

Application modules

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
function [— !
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Timer
Z-Wave Application layer

i i
I I
i i
I |
I I
i I
| i
I I
i I
| i
I I
i I
| i
I I
I I

i
} |
! Mainloop !
I |
I I
i i

I
: 3 ‘
} Low-level poll }
I I
i I
| i
I I
I I
i i
I |
I I
i i
I I
I I
i i
| |
I I
i I
| i
I I
i I
| i
I I
I I
i i
|]

Z-Wave protocol layers

o
=

Figure 1. Software Architecture

silabs.com | Building a more connected world. Page 4 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3.1 Z-Wave System Startup Code

The Z-Wave modules include the system startup function (main). The Z-Wave system startup function
first initializes the Z-Wave hardware and then calls the application hardware initialization function
ApplicationlnitHW. Then initializing the Z-Wave software (including the software timer used by the timer
module), initializes the NVM if necessary and finally calling the application software initialization function
ApplicationInitSW. Execution then proceeds in the Z-Wave main loop.

Notice: Initialization of the external NVM is now handled internally by the Z-Wave protocol library. The
protocol will now delete and initialize the NVM on bootup if a 16 bit validation field in the NVM is not
correct Therefore the NVM initialization file extern_epp.hex is now obsoleted.

3.2 Z-Wave Main Loop

The Z-Wave main loop will call the list of Z-Wave protocol functions, including the ApplicationPoll
function and the ApplicationCommandHandler function (if a frame was received) in round robin order.
The functions must therefore be designed to return to the caller as fast as possible to allow the MCU to
do other tasks. Busy loops are not allowed. This will make it possible to receive Z-Wave data, transfer
data via the UART and check user-activated buttons, etc. “simultaneously”. In order not to disrupt the
radio communication and the protocol, no application function must execute code for more than 5ms
without returning.

For production testing the application can be forced into the ApplicationTestPoll function instead of the
ApplicationPoll function.

3.3 Z-Wave Protocol Layers

When transmission of data to another node is requested, the Z-Wave protocol layer adds a frame header
and a checksum to the data before transmission. The protocol layer also handles frame retransmissions,
as well as routing of frames through “repeater” nodes to Z-Wave nodes that are not within direct RF
communication reach. When the frame transmission is completed, an application-specified transmit
complete callback function is called. The transmission complete callback function includes a parameter
that indicates the transmission result. The transmission complete callback function indicate also when
the next frame can be send to avoid overwriting the transmit queue.

The Z-Wave frame receiver module (within the MAC layer) can include more than one frame receive
buffer, so the upper layers can interpret one frame while the next frame is received.

3.4 Z-Wave Routing Principles

The Z-Wave protocol use source routing, which is a technique whereby the sender of a frame specifies
the exact route the frame must take to reach the destination node. Source routing assumes that the
sender knows the topology of the network, and can therefore determine a route having a minimum
number of hops. The Z-Wave protocol supports up to four repeaters between sender and destination
node. Routing can also be used to reach FLiRS destination nodes. Source routing allows implementation
of a leightweight protocol by avoiding distributed topologies in all repeaters. Nodes containing the
topology can also assign routes to a topology-less node enabling it to communicate with a number of
destination nodes using routes.

In case sender fails to reach destination node using routes an explorer mechanism can be launched on
demand to discover a working route to the destination node in question. The explorer mechanism builds

silabs.com | Building a more connected world. Page 5 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

on AODV routing with adjustments for source routing and memory footprint. Explorer frames implement
managed multi-hop broadcast forwarding and returns a working route to sender as result. The application
payload piggybacks on explorer frame to reduce latency.

The routing algorithm in controllers store information about successful attempts to reach a destination
node avoiding repetition of previously failed attempts. The last successful route used between sender
and destination node are stored in NVM and is called Last Working Route(LWR). The LWR list comprises
of 232 destination nodes having up to two routes each, called the LWR and the Next to Last Working
Route (NLWR). A LWR/NLWR can contain either a direct or a routed route. Updating LWR and NLWR
happens in the following situations (if new route != current LWR):

e When receiving a successful explorer frame route, new route becomes LWR and old LWR becomes
NLWR.

e When receiving a successful routed/direct request from another node, new route becomes LWR and
old LWR becomes NLWR. However, there are two exceptions where the new route does not become
LWR. The LWR and NLWR stays unchanged when a speed modified frame (lower speed) or 9.6kbps
direct frame are received successfully.

e When receiving a successful acknowledge for a transmitted explorer frame, new route becomes
LWR and old LWR becomes NLWR.

e When receiving a successful acknowledge for a transmitted NLWR, NLWR becomes LWR.

e When receiving a successful acknowledge for a transmitted routed/direct frame, new route becomes
LWR and old LWR becomes NLWR.

Incase a LWR/NLWR fails the LWR and NLWR are updated as follows:

e IfaLWR fails; itis ‘exiled’ to become the NLWR and the current NLWR (if present) is tried as the
next route.
e Ifa NLWR fails it is removed.

The Application can, instead of having both the LWR and the NLWR entries for a destination node,
overload the LWR with an Application Priority Route (APR), which then upgrades the NLWR to LWR
status as the protocol now is down to one dynamic LWR for the destination node in question. The APR
will after being set always be tried prior to any possible present LWR. The APR can only be removed by
the Application. If destination node has an APR defined the updating of the LWR happens in the
following situations (if new route '= APR AND new route != LWR)

e When receiving a successful explorer frame route, new route becomes LWR.

e When receiving a successful routed/direct request from another node, new route becomes LWR.

e When receiving a successful acknowledge for a transmitted explorer frame, new route becomes
LWR.

e When receiving a successful acknowledge for a transmitted routed/direct frame, new route becomes
LWR.

e Incase LWR fails it is removed.

The routing algorithm in slaves store information about successful attempts to reach a destination node
in response routes after the following principles:

e When receiving a successful explorer frame route, new route becomes a new Response Route.

e When receiving a successful routed/direct request from another node, new route becomes a new
Response Route.

e When receiving a successful acknowledge for a transmitted explorer frame, new route becomes a
new Response Route.

e When receiving a successful acknowledge for a transmitted routed/direct frame, new route becomes
a new Response Route.

e Incase Response Route fails it is removed.

silabs.com | Building a more connected world. Page 6 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

However, the response routes only contains up to two routes to different destination nodes. A response
route for a new destination node overwrites the oldest of the two buffered response routes. A new
response route for an existing destination overwrites the old response route for that specific destination.

The routing attempts depend on the Z-Wave library and transmit options used in the node, for details
refer to section 3.10.

The source routing algorithm does not alter the topology due to failed attempts or store any statistics
regarding link quality.

3.5 Z-Wave Application Layer

The application layer provides the interface to the communications environment which is used by the
application process. The application software is located in the hardware initialization function
ApplicationlnitHW, software initialization function ApplicationlnitSW, application state machine (called
from the Z-Wave main poll loop) ApplicationPoll, command complete callback functions, and a receive
command handler function ApplicationCommandHandler.

The application implements communication on application level with other nodes in the network. On
application level, a framework is defined of Device and Command Classes to obtain interoperability
between Z-Wave enabled products from different vendors. For details of the Z-Wave Plus Framework
refer to [4]-[5] and [7]-[12]. For details of the old Z-Wave Framework but still interoperable refer to [6].
The basic structure of these commands provides the capability to set parameters in a node and to
request parameters from a node responding with a report containing the requested parameters. The
Device and Command Classes are defined in the header file ZW_classcmd.h.

Wireless communication is by nature unreliable because a well-defined coverage area simply does not
exist since propagation characteristics are dynamic and unpredictable. The Z-Wave protocol minimizes
these "noise and distortion" problems by using a transmission mechanisms of the frame there include
two re-transmissions to ensure reliable communication. In addition are single casts acknowledged by the
receiving node so the application is notified about how the transmission went. No precautions can
unfortunately prevent that multiple copies of the same frame are passed to the application. Therefore is it
very important to implement a robust state machine on application level there can handle multiple copies
of the same frame. Below are shown a couple of examples how this can happen:

silabs.com | Building a more connected world. Page 7 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Random
backoff

Node A

\

Node A

Set Cmd

 »

. SR

v A

Figure 2. Multiple Copies of the Same Set Frame

o Ret

e
. B

o Rt
=

4 v

Figure 3. Multiple Copies of the Same Get/Report Frame

Node B

Time

Node B

Time

The Z-Wave protocol is designed to have low latency on the expense of handling simultaneously
communication to a number of nodes in the Z-Wave network. To obtain this is the number of random

silabs.com | Building a more connected world.

Page 8 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

backoff values limited to 4 (0, 1, 2, and 3). The figure below shows how simultaneous communication to
even a small number of nodes easily can block the communication completely.

Node A Nodes within direct range

Get Cmd as Broadcast

100% of the nodes responds

|

25% of the nodes responds (RB=0)

T

25% of the nodes responds (RB=1)

T

25% of the nodes responds (RB=2) I

T

25% of the nodes responds (RB=3) I

1

Time

v v
Figure 4. Simultaneous Communication to a Number of Nodes
Avoid simultaneous request to a number of nodes in a Z-Wave network in case the nodes in question

respond on the application level.

3.6 Z-Wave Software Timers

The Z-Wave timer module is designed to handle a limited number of simultaneous active software timers.
The Z-Wave basis software reserves some of these timers for protocol timeouts.

A delayed function call is initiated by a TimerStart API call to the timer module, which saves the function
address, sets up the timeout value and returns a timer-handle. The timer-handle can be used to cancel
the timeout action e.g., an action completed before the time runs out.

The timer can also be used for frequent inspection of special hardware e.g., a keypad. Specifying the
time settings to 50 ms and repeating forever will call the timer call-back function every 50 msec.

silabs.com | Building a more connected world. Page 9 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

3.7 Z-Wave Hardware Timers

The 200/300/400/500 Series Z-Wave SoCs have a number of hardware timers/counters. Some are
reserved by the protocol and others are free to be used by the application as shown in the table below:

Table 1. 200/300/400/500 Series Z-Wave SoCs Hardware Timer Allocation

the application

the application

200 Series 300 Series 400 Series 500 Series
TIMERO Protocol Protocol Available for Available for
system clock system clock the application | the application
TIMER1 Available for Available for Used by the Available for
the application | the application | protocol the application
GPTIMER Available for Available for Available for Available for

the application

the application

The TIMERO and TIMER1 are standard 8051 timers/counters.

3.8 Z-Wave Hardware Interrupts

Application interrupt service routines (ISR) must use 8051 register bank 0. However, do not use USING 0

attribute when declaring ISR’s. The Z-Wave protocol uses 8051 register bank 1 for protocol ISR’s, see
table below regarding application ISR availability:

Table 2. 200/300/400/500 Series Z-Wave SoC Application ISR Availability

200 Series 300 Series 400 Series 500 Series

INUM_INT1 INUM_INT1 INUM_INTO INUM_INTO

INUM_TIMER1 INUM_TIMER1 INUM_TIMERO INUM_INT1
INUM_SERIAL INUM_SERIAL INUM_SERIALO INUM_TIMERO
INUM_SPI INUM_SPI INUM_SPIO INUM_SERIALO

INUM_TRIAC INUM_TRIAC INUM_TRIAC INUM_SPIO

INUM_GP_TIMER INUM_GP_TIMER INUM_GP_TIMER INUM_TRIAC
INUM_ADC INUM_ADC INUM_ADC INUM_GP_TIMER
INUM_USB INUM_ADC
INUM_IR INUM_USB
INUM_IR

The duration of an application interrupt routine must be below 80us.

Refer to ZW020x.h, ZW030x.h, ZW040x.h and ZWO050x.h header files with respect to ISR definitions. For

an example, refer to UART ISR in serial APl sample application.

silabs.com | Building a more connected world.

Page 10 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3.9 Interrupt Service Routines

When using interrupt service routines from one of the hardware interfaces such as ADC, GP timer or
UART, one should be aware of certain issues as described in the following sections.

3.9.1 SFR Pages

The 500 Series Z-Wave SoC uses multiple pages of 8051 SFR registers. The page selection is set using
SFRPAGE. Consequently the SFRPAGE must be preserved when calling an Interrupt Service Routine
(ISR) in your code. In order to do this the intrinsic functions _push_() and _pop_() must be called.
Function _push_() must be called when the ISR starts, and _pop_() just before returning from the ISR.

For example, the ISR of the ADC should be look as follow:
#include <INTRINS.H>

void ADC int (void) interrupt INUM ADC

{
push(SFRPAGE) *;

call api’s
pop(SFRPAGE) ;
}

3.9.2 Calling Functions from ISR

The 8051 core of the 500 Series Z-Wave SoC has no register-to-register move. Therefore, the compiler
generates register to memory moves instead. Since the compiler knows the register bank, the physical
address of a register in a register bank can be calculated. For example, when the compiler calculates the
address of register R2 in register bank 0, the address is 0x02. If the register bank selected is not really 0,
then the function overwrites this register. This might result in unpredictable behavior of the program.

This technique of accessing a register using its absolute address is called absolute register addressing.

In the Z-Wave system the system timer and RF interrupt use register bank 1. The default register bank
used for non-interrupt code is register bank 0. Therefore, if a function is called from an ISR it might be
looking in the wrong place for its register values.

To solve this problem, one of these solutions can be used:

1. Use the C51’s REGISTERBANK directive to specify that a certain function uses the same
register bank as the ISR that calls the function. Hence, no code is generated in the function to
switch the register bank. For example:

#pragma registerbank (1)
void foo (void)

{

}

2. Use the NOAREGS directive to specify that the compiler should not use absolute register
addressing. This make the function register bank independent so that it may be called from any
function that uses a different register bank than the default.

"The _push_and _pop_ functions are intrinsic functions and the header file INTRINS.H. Therefore, INTRINS.H should be included
in order to be able to use them.

silabs.com | Building a more connected world. Page 11 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3.10 Z-Wave Nodes

From a protocol point of view, there are five types of Z-Wave nodes: Portable Controller nodes, Static
Controller nodes, Bridge Controller nodes, Routing Slave nodes, and Enhanced 232 Slave nodes. All
controller based nodes stores information about other nodes in the Z-Wave network. The node
information includes the nodes each of the nodes can communicate with (routing information). The
Installation node will present itself as a Controller node, which includes extra functionality to help a
professional installer setup, configure, and troubleshoot a Z-Wave network. The bridge controller node
stores information about the nodes in the Z-Wave network and in addition is it possible to generate up to
128 Virtual Slave nodes.

3.10.1 Z-Wave Portable Controller Node

The software components of a Z-Wave portable controller are split into the controller application and the
Z-Wave-Controller basis software, which includes the Z-Wave protocol layers and control of the various
data stored into the NVM.

Portable controller nodes include an external NVM in which the non-volatile application data area can be
placed. The Z-Wave basis software has reserved the first area of the external NVM.

silabs.com | Building a more connected world. Page 12 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Controller
Application

HW Init
Controller API

T
Memory API
Basis API Timer API

4

Z-Wave protocol

o
=

RTC API
Appl. data
Timer RTC
External Z-Wave
EEPROM Controller
Z-Wave data T

7777777777777 Transport API

EEPROM/Flash

Figure 5. Portable Controller Node Architecture

The Portable Controller node has a unique home ID number assigned, which is stored in the Z-Wave
basis area of the external NVM. Care must be taken, when reprogramming the external NVM, that

different controller nodes do not get the same home ID number.

When new Slave nodes are registered to the Z-Wave network, the Controller node assigns the home ID

and a unique node ID to the Slave node. The Slave node stores the home ID and node ID.

When a controller is primary, it will send any networks changes to the SUC node in the network.

Controllers can request network topology updates from the SUC node.

The routing attempts done by a portable controller to reach the destination node are as follows:

silabs.com | Building a more connected world.

Page 13 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

e If APR, LWR and NLWR all are non-existing and TRANSMIT_OPTION_ACK set. Try direct with
retries.

e If APR exist and TRANSMIT_OPTION_ACK set. Try direct without retries. In case it fails, try the
APR. If APR fails then try LWR if it exist and if it also fails then remove the LWR.

e If APR do not exist, LWR exist and TRANSMIT_OPTION_ACK set. Try direct without retries. In
case it fails, try the LWR. In case the LWR also fails, ‘exile’ it to become NLWR and try old
NLWR if it exist. if the NLWR also fails, remove it.

e If APR do not exist, LWR do not exist, NLWR exist and TRANSMIT_OPTION_ACK set. Try
direct without retries. In case it fails, try the NLWR. In case the NLWR also fails remove it.

e |f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then calculate
up to two routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e |If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_NO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

When developing application software, the header file “ZW_controller_api.h” also include the other
Z-Wave API header files e.g., ZW_timer_api.h.

The following define must be set when compiling the application: ZW_CONTROLLER.

The application must be linked with ZW_CONTROLLER_PORTABLE_ZW=S.LIB
(* = 050X for 500 Series Z-Wave modules, etc).

3.10.2 Z-Wave Static Controller Node

The software components of a Z-Wave static controller node are split into a Static Controller application
and the Z-Wave Static Controller basis software, which includes the Z-Wave protocol layers and control
of the various data stored into the NVM.

The difference between the static controller and the controller described in chapter 3.10.1 is that the
static controller cannot be powered down, that is it cannot be used for battery-operated devices. The
static controller has the ability to look for neighbors when requested by a controller. This ability makes it
possible for a primary controller to assign static routes from a routing slave to a static controller.

The Static Controller can be set as a SUC node, so it can sends network topology updates to any
requesting secondary controller. A secondary static controller not functioning as SUC can also request
network Topology updates.

The routing attempts done by a static controller to reach the destination node are as follows:

silabs.com | Building a more connected world. Page 14 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

e If APR, LWR and NLWR all are non-existing and TRANSMIT_OPTION_ACK set. Try direct when
neighbors with retries.

o If APR exist and TRANSMIT_OPTION_ACK set. Try the APR. If APR fails then try LWR if it exist
and if it also fails then remove the LWR and try direct if neighbor.

e If APR do not exist, LWR exist and TRANSMIT_OPTION_ACK set. Try the LWR. In case the
LWR fails, ‘exile’ it to become NLWR and try old NLWR if it exist. if the NLWR also fails, remove
it and try direct if neighbor.

e If APR do not exist, LWR do not exist, NLWR exist and TRANSMIT_OPTION_ACK set. Try the
NLWR. In case the NLWR fails remove it and try direct if neighbor.

e |f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then calculate
up to two routing attempts per entry/repeater node. If enough routes exist try a settable
maximum number of tries.

o If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_NO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

When developing application software, the header file “ZW_controller_static_api.h” also includes the
other Z-Wave API header files e.g., ZW_timer_api.h.

The following define is being included compiling the application: ZW_CONTROLLER_STATIC.

The application must be linked with ZW_CONTROLLER_STATIC_ZW=S.LIB
(* = 050X for 500 Series Z-Wave modules, and so on).

3.10.3 Z-Wave Bridge Controller Node

The software components of a Z-Wave Bridge Controller node are split into a Bridge Controller
application and the Z-Wave Bridge Controller basis software, which includes the Z-Wave protocol layer.

The Bridge Controller is essential a Z-Wave Static Controller node, which incorporates extra functionality
that can be used to implement controllers, targeted for bridging between the Z-Wave network and others
network (ex. UPnP).

The Bridge application interface is an extended Static Controller application interface, which besides the
Static Controller application interface functionality gives the application the possibility to manage Virtual
Slave nodes. Virtual Slave nodes is a routing slave node without repeater and assign return route
functionality, which physically resides in the Bridge Controller. This makes it possible for other Z-Wave
nodes to address up to 128 Slave nodes that can be bridged to some functionality or to devices, which
resides on a foreign Network type.

The routing attempts done by a bridge controller to reach the destination node are as follows:

silabs.com | Building a more connected world. Page 15 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

e If APR, LWR and NLWR all are non-existing and TRANSMIT_OPTION_ACK set. Try direct when
neighbors with retries.

o If APR exist and TRANSMIT_OPTION_ACK set. Try the APR. If APR fails then try LWR if it exist
and if it also fails then remove the LWR and try direct if neighbor.

e If APR do not exist, LWR exist and TRANSMIT_OPTION_ACK set. Try the LWR. In case the
LWR fails, ‘exile’ it to become NLWR and try old NLWR if it exist. if the NLWR also fails, remove
it and try direct if neighbor.

e If APR do not exist, LWR do not exist, NLWR exist and TRANSMIT_OPTION_ACK set. Try the
NLWR. In case the NLWR fails remove it and try direct if neighbor.

e |f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then calculate
up to two routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e |If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

When developing application software the header file “ZW_controller_bridge_api.h” also include the other
Z-Wave API header files.

The following define is being included compiling the application: ZW_CONTROLLER_BRIDGE.

The application must be linked with ZW_CONTROLLER_BRIDGE_ZW=S.LIB
(* = 050X for 500 Series Z-Wave modules, etc).

silabs.com | Building a more connected world. Page 16 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3.10.4 Z-Wave Routing Slave Node

The software components of a Z-Wave routing slave node are split into a Slave application and the
Z-Wave-Slave basis software, which includes the Z-Wave protocol layers.

Slave
Application

Slave API
J/ Basis API

Timer API

Memory API

Timer

Z-Wave
Appl. data Slave

*

Transport API|

Z-Wave data
Data Flash Area

Z-Wave protocol

RF Hardware

(]
@ Z-Wave Slave

Figure 6. Routing Slave Node Architecture

The routing slave is capable of initiating communication. Examples of a routing slave could be a wall
control or temperature sensor. If a user activates the wall control, the routing slave sends an “on”
command to a lamp (slave).

The routing slave does not have a complete routing table. Frames are sent to destinations configured
during association. The association is performed via a controller. If routing is needed for reaching the
destinations, it is also up to the controller to calculate the routes.

Routing slave nodes have an area of 256 bytes MTP (Many Times Programmable memory) for storing
data. The Z-Wave basis software reserves the first part of this area, and application data uses the
remaning part.

The home ID is set to a randomly generated value and node ID is zero. When registering a slave node to
a Z-Wave network the slave node receive home and node ID from the networks primary controller node.
These IDs are stored in the Z-Wave basis data area in the flash.

silabs.com | Building a more connected world. Page 17 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

The routing slave can send unsolicited and non-routed broadcasts, singlecasts, and multicasts.
Singlecasts can also be routed. Further, it can respond with a routed singlecast (response route) in case
another node has requested this by sending a routed singlecast to it. A received multicast or broadcast
results in a response route without routing.

A temperature sensor based on a routing slave may be battery operated. To improve battery lifetime, the
application may bring the node into sleep mode most of the time. Using the wake-up timer (WUT), the
application may wake up once per second, measure the temperature and go back to sleep. In case the
measurement exceeded some threshold, a command (e.g., “start heating”) may be sent to a heating
device before going back to sleep.

The routing attempts done by a routing slave to reach the destination node are as follows:

e If TRANSMIT_OPTION_ACK is set and destination is available in response routes, try response
route.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try return
routes if any exists for specified destination.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try direct.

e |f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set, issue an explore
frame as last resort.

The return routes comprises of up to five destinations having up to 4 routes each. Return routes can
contain a no repeater route (direct) up to a full 4 repeater route.

The return routes are tried in the order of priority, highest first. The priority of the return routes are
dynamically updated when return routes either succeed or fails.

The Application can set a Priority Return Route, which always will have the highest priority and therefor
always be tried as the first return route and can only be removed by the Application. The priority return
route will when set use one of the available 4 route entries.

New routes/direct are qualified for return route insertion by checking if the destination exist and
route/direct do not exist. In that event the new route/direct entry will be placed either in a free route or the
one having lowest priority.

silabs.com | Building a more connected world. Page 18 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

A number of limitations are unfortunately necessary with respect to Security S2 due to lack of external
NVM:

o All key classes supported but only one can be active after inclusion (add).

e Slave routing based devices will when entering Sleep mode save the “Most Recently Used”
(MRU) S2 SPAN entry in critical RAM. The MRU S2 SPAN entry are restored on power up if a
valid S2 SPAN entry resides in critical RAM.

e S2 Public-Private key pair resides in Protocol part of NVR and written to NVR at production.
Refer to [22] for details.

e Cannot send S2 multicast but do support S2 multicast receive.

The table below show the NVM memory budget of the full routing slave with S0/S2 functionality included
is as follows:

Functionality Bytes
1 Home ID, Node ID, magic bytes and SUC return routes. 25
2 | Return routes: 5 destinations having 4 full hop routes each 105

5 destinations x (1 destination byte + 4 x (4 hop bytes + 1 aux. byte))

3 | Keyclass byte — Which security keyclass is active — Only ONE keyclass can be 1
active at any time, can be either S0, S2 (3 keyclasses)

4 | S0/S2 Network key 16

5 | Critical SPAN nodelD — Identifies the SPAN, which is saved in Critical RAM 1

when going into Sleepmode and reloaded on wakeup from Sleepmode — This
means that no resync (S2) is needed for the Critical SPAN nodelD after wakeup
from Sleepmode. If equal to ZERO the MRU SPAN entry will be stored/restored.

The routing slave NVM is placed in the MTP (Total of 255 Bytes) resulting in 107 Bytes available for the
application.

No SPAN/MPAN are saved in NVM, which for a FLIRS node would mean that the node needs to sync
every time it wakes up in case it want to communicate with another node. But to minimize the resync
after Sleepmode we do save ONE SPAN in Critical RAM (retention RAM).

The Critical RAM is 128 Bytes retention memory — Currently 32 Bytes are allocated for Application and
96 bytes are allocated for protocol. The table below shows the protocol Critical RAM requirement for a
Routing Slave with one SPAN entry.

Functionality Bytes

1 | Protocol usage: phyRfData, ResponseRoutes, FLIRS, NodelD, HomelD etc. 51
2 | 182 SPAN 39
3 | Smart Start-specific variables 6

silabs.com | Building a more connected world. Page 19 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

The ECDH keypair for routing slaves is stored in the NVR [22] and must be generated and pre-
programmed during production. The updated NVR layout must be used when producing a SDK 6.8x
based routing slaves. The routing slave cannot detect if the keypair is missing.

When developing application software, the header file “ZW_slave_routing_api.h” also includes the other
Z-Wave API header files e.g., ZW_timer_api.h.

The following define will be generated by the headerfile, if it does not already exist when when compiling
the application: ZW_SLAVE.

The application must be linked with ZW_SLAVE_ROUTING_ZW=S.LIB
(* = 050X for 500 Series Z-Wave modules, efc).

3.10.5 Z-Wave Enhanced 232 Slave Node

The Z-Wave enhanced 232 slave has the same basic functionality as a Z-Wave routing slave node, but
offers return route assignment of up to 232 destination nodes instead of 5.

Slave
Application

HW Init

Slave API

Basis API
——
Timer API RTC API

Timer RTC

[Appl. data - Z-Wave
Slave

Mainloop

_>I

External Transport API
EEPROM

T
I
|
I
I
I
]
I
I
I
I
1
N
é\
s
< ___

Z-Wave protocol

[)
=

EEPROM

Figure 7. Enhanced 232 Slave Node Architecture

silabs.com | Building a more connected world. Page 20 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Enhanced 232 slave nodes have an external NVM and a WUT. The Z-Wave basis software reserves the
first area of the external NVM: The last area of the NVM is reserved for the application data.

The routing attempts done by an enhanced 232 slave to reach the destination node are as follows:

e If TRANSMIT_OPTION_ACK is set and destination is available in response routes, try response
route.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try return
routes if any exists for specified destination.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try direct.

e [f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set, issue an explore
frame as last resort.

The return route comprises of up to 232 destinations having up to four routes each. Return routes can
contain a no repeater route (direct) up to a full 4 repeater route.

The return routes are tried in the order of priority, highest first. The priority of the return routes are
dynamically updated when return routes either succeed or fails.

The Application can set a Priority Return Route, which always will have the highest priority and therefor
always be tried as the first return route and can only be removed by the Application. The priority return
route will when set use one of the available 4 route entries.

New routes/direct are qualified for return route insertion by checking if the destination exist and
route/direct do not exist. In that event the new route/direct entry will be placed either in a free route or the
one having lowest priority.

When developing application software, the header file “ZW_slave_32_api.h” also includes the other
Z-Wave API header files e.g., ZW_timer_api.h.

The following define will be generated by the headerfile, if it does not already exist when compiling the
application: ZW_SLAVE and ZW_SLAVE_32.

The application must be linked with ZW_SLAVE_ENHANCED_232_ZW=S.LIB
(* = 050X for 500 Series Z-Wave modules, etc).

3.10.6 Adding and Removing Nodes to/from the Network

Its only controllers that can add new nodes to the Z-Wave network, and reset them again is the primary
or inclusion controller. The home ID of the Primary Z-Wave Controller identifies a Z-Wave network.

Information about the result of a learn process is passed to the callback function in a variable with the
following structure:

typedef struct LEARN INFO
{

BYTE bStatus; /* Status of learn mode */
BYTE bSource; /* Node id of the node that send node info */
BYTE *pCmd; /* Pointer to Application Node information */
BYTE bLen; /* Node info length */

} LEARN_ INFO;

When adding nodes to the network the controller have a number of choices of how to add, and what
nodes to add to the network.

silabs.com | Building a more connected world. Page 21 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

3.10.6.1 Adding a Node Normally

The normal way to add a node to the network is to use ZW_AddNodeToNetwork() function on the
primary controller, and use the function ZW_SetLearnMode() on the node that should be included into
the network.

3.10.6.2 Adding a New Controller and Make it the Primary Controller

A primary controller can add a controller to the network and in the same process give the role as primary
controller to the new controller. This is done by using the ZW_ControllerChange() on the primary
controller, and use the function ZW_SetLearnMode() on the controller that should be included into the
network. Note that the original primary controller will become a secondary controller when the inclusion
(add) is finished.

3.10.6.3 SUC ID Server (SIS)

Previously Z-Wave offered a Static Update Controller (SUC) functionality that could be enabled in a static
controller. This functionality can no longer be enabled alone but is now an intregrated part of the SUC ID
Server (SIS). The SIS becomes the primary controller in the network because it always has the latest
update of the network topology and capability to include/exclude nodes in the network. When including a
controller to the network it becomes an inclusion controller because it has the capability to
include/exclude nodes in the network via the SIS. The inclusion controller's network topology is dated
from last time a node was included or it requested a network update from the SIS. The SUC and the SIS
functionality can not be spilt and will always be avalible on the same controller

3.10.7 The Automatic Network Update

A Z-Wave network consists of slaves, a primary controller and secondary controllers. New nodes can
only be added and removed to/from the network by using the primary controller. This could cause
secondary controllers and routing slaves to misbehave, if for instance a preferred repeater node is
removed. Without automatic network updating a new replication (copy) has to be made from the primary
controller to all secondary controllers and routing slaves should also be manually updated with the
changes. In networks with several controller and routing slave nodes, this process will be cumbersome.

To automate this process, an automatic network update scheme has been introduced to the Z-Wave
protocol. To use this scheme a static controller must be available in the network. This static controller is
dedicated to hold a copy of the network topology and the latest changes that have occurred to the
network. The static controller used in the Automatic update scheme is called the SUC ID Server (SIS).

Each time a node is added, deleted or a routing change occurs, the inclusion controller will send the
node information to the SIS. Other controllers can then ask the SIS if any updates are pending. The SIS
will then in turn respond with any changes since last time this controller asked for updates. In the
controller requesting an update, ApplicationControllerUpdate will be called to notify the application that
a new node has been added or removed in the network.

The SIS holds up to 64 changes of the network. If a node requests an update after more than 64
changes occurred, then it will get a complete copy (see ZW_RequestNetWorkUpdate).

Routing slaves have the ability to request updates for its known destination nodes. If any changes have
occurred to the network, the SIS will send updated route information for the destination nodes to the
Routing slave that requested the update. The Routing slave application will be notified when the process
is done, but will not get information about any changes to its routes.

If an inclusion controller sends a new node’s node information and its routes to the SIS while it is
updating another controller, the updating process will be aborted to process the new nodes information.

silabs.com | Building a more connected world. Page 22 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4 Z-WAVE APPLICATION INTERFACES

The Z-Wave basis software consists of a number of different modules. Time critical functions are written
in assembler while the other Z-Wave modules are written in C. The Z-Wave API consists of a number of
C functions which give the application programmer direct access to the Z-Wave functionality.

4.1 APl Usage Guidelines
The following guidelines should be followed when making a Z-Wave application.

4.1.1 Code Space, Data Space and Internal/External NVM

One code bank of 32KB memory in flash is allocated for application development. The data SRAM
avalible for the application is 4KB.

To enable full utilization of the 500 series with respect to future protocol features and OTA firmware
update results in the following recommendations for external NVM:

Minimum requirements when selecting external NVM for devices without OTA firmware update support:
e 32KB — Required for slave and controller devices
Minimum requirements when selecting external NVM for devices without OTA firmware update support:

e 128KB — Required for slave devices
256KB — Required for controller devices

Initialization of the external NVM is completely handled by the Z-Wave protocol and for details about data
layout in external NVM refer to [14]. For selection of external NVM refer also to [21].

4.1.2 Buffer Protection

Some API calls has one parameter that is a pointer to a buffer in the application SRAM area and another
parameter that is a pointer to a callback function. When using these API functions in Z-Wave, it is
important that the application does not change the contents of the buffer before the last callback from the
API function has been issued. If the content of the buffer is changed before that callback, the Z-Wave
protocol might perform the function on invalid data.

4.1.3 Overlapping API Calls

In general, it should be avoided to call an API function before the previously started API function is
finished and has called the callback function for the last time. Due to the limited resources available for
the API not all combinations of API calls will work, some API calls will use the same state machine or the
same buffers so if multiple functions is started one or both of the functions might fail.

41.4 Error Handling

For purpose of robustness, an application implementation may choose to guard callback API calls whith
a timer. In this guide, a timeout value for each API call, which uses a callback, is given. In some functions
it is necessarry to to execute some commands in order to recover from a timeout exception. Recovery
handling is described for each operation.

silabs.com | Building a more connected world. Page 23 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.2 Z-Wave Libraries

4.2.1 Library Functionality

Each of the API's provided in the Developer’s Kit contains a subset of the full Z-Wave functionality; the
table below shows what kind of functionality the API’s support independent of the network configuration:

Table 3. Library Functionality
Routing |[Enhanced |Portable [Static Bridge

Slave 2232 Slave [Controller [Controller (Controller

Basic Functionality

Singlecast (non-secure) X X X X X
Multicast (non-secure) X X X X X
Broadcast (non-secure) X X X X X
Controller replication (copy) - - X X X
Promiscuous mode - - X X X
Random number generator X X X X X
Able to act as NWI center - - X X X
/Able to be included via the NWI mechanism X X X X X
Able to issue an explorer frame X X X X X
IAble to forward an explorer frame X X - X X
SO0 Security (singlecast) X X - - -
S2 Security (singlecase and multicast) X X - - -
Send multicast wakeup to FLIRS nodes X X

Memory Location
NVM data located in internal MTP X - - - _

NVM data located in external FLASH/EEPROM - X X X X
Firmware update with automatic NVM data conversion - X X X X
Network Management

Network router (repeater) X! X! - X! X!
IAssign routes to routing slave - - X X X
Routing slave functionality X X - - -
IAccess to routing table - - X - -
Maintain virtual slave nodes - - - - X2
Able to be a FLIRS node X X - - -
Able to beam when repeater X X - X X
Able to create route containing beam X3 X3 X X X

' Only if “always listening”
2 Only when secondary controller
3 Only when return routes are assigned by a controller capable of creating routes containing beam

silabs.com | Building a more connected world. Page 24 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

4211

Library Functionality without a SIS

Some of the API’s functionality provided on the Developer’s Kit depends on the network configuration.
The table below shows what kind of functionality the API's support without a SIS in the Z-Wave network:

Table 4. Library Functionality without a SIS

Routing Enhanced Portable Static Bridge
Slave 232 Slave | Controller | Controller | Controller

Network Management

Controller replication (copy) - - X X X
Controller shift - - X! X! X!
Create new primary controller - - - - -
Request network updates - - - - -
Request rediscovery of a node, - - X1 X1 X1
Remove failing nodes - - X1 X1 X1
Replace failing nodes - - X! X1 X1
Provide routing table info - - X X X

" Only when primary controller

silabs.com | Building a more connected world.

Page 25 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.21.2 Library Functionality with a SIS

Some of the API’s functionality provided on the Developer’s Kit depends on the network configuration.
The table below shows what kind of functionality the API's support with a SUC ID Server (SIS) in the
Z-Wave network:

Table 5. Library Functionality with a SIS
Routing Slave|Enhanced 232| Portable Static Bridge
Slave Controller Controller Controller

Network Management
Controller replication (copy) - - X X X
Controller shift - - - - -
Create new primary controller - - - - -

Request network updates X X X X X
Request rediscovery of a node, - - X1 X1 X1
Remove failing nodes - - X1 X1 X1
Replace failing nodes - - X1 X1 X1
Set static ctrl. to SIS - - X2 X2 X2
\Work as SIS - - - X X
\Work as inclusion controller X X X
“I'm lost” — provide help X3 X3 X3 X4 X
Provide routing table info - - X X X

Note that the ability to provide help for “I'm lost” requests is limited to forwarding the request to the SIS.
Only the portable controller configured as SIS can actually do the updating of the device.

" Only when primary/inclusion controller

2 Only when primary controller

3 Only if “always listening”

4 The library without repeater functionality cannot provide help or forward help requests.

silabs.com | Building a more connected world. Page 26 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3 Z-Wave Common API

This section describes interface functions that are implemented within all Z-Wave nodes. The first
subsection defines functions that must be implemented within the application modules, while the second
subsection defines the functions that are implemented within the Z-Wave basis library.

Functions that does not complete the requested action before returning to the application (e.g.
ZW_SEND_DATA) have a callback function pointer as one of the entry parameters. Unless explicitly
specified this function pointer can be set to NULL (no action to take on completion).

A serial APl implementation provide an interface to the major part of interface functions via a serial port.

The SDK contains a serial API application [18], which enables a host processor to control the interface
functions via a serial port.

4.3.1 Required Application Functions

The Z-Wave library requires the functions mentioned here implemented within the Application layer.

silabs.com | Building a more connected world. Page 27 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.1 ApplicationlnitHW
-

BYTE ApplicationInitHW(BYTE bWakeupReason)
ApplicationInitHW is used to initialize hardware used by the application. The Z-Wave hardware
initialization function set all application 10 pins to input mode. The ApplicationlnitHW function MUST be
called by the Z-Wave main function during system startup. At this point of time the Z-Wave timer system
is not started so waiting on hardware to get ready SHOULD be done by MCU busy loops.
Defined in: ZW _basis_api.h
Return value:
BYTE TRUE Application hardware initialized
FALSE Application hardware initialization failed.
Protocol enters test mode and Calls
ApplicationTestPoll
Parameters:
bWakeupReason IN Wakeup flags:
ZW_WAKEUP_RESET Woken up by reset or external interrupt
ZW_WAKEUP_WUT Woken up by the WUT timer
ZW_WAKEUP_SENSOR Woken up by a wakeup beam
ZW_WAKEUP_WATCHDOG Reset because of a watchdog timeout
ZW_WAKEUP_EXT _INT Woken up by external interrupt
ZW_WAKEUP_POR Reset by Power on reset circuit

Serial API (Not supported)

silabs.com | Building a more connected world. Page 28 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.2 ApplicationlnitSW
(-

BYTE ApplicationInitSW(ZW_NVM_STATUS bNvmStatus)

ApplicationInitSW is used to initialize memory used by the application and driver software before the Z-
Wave protocol is started.

ApplicationInitSW return value is used to make the protocol determine if the node should go into Power
Down mode and if so; when and which Power Down mode the protocol should use. The application can
request power down through the return value in ApplicationPoll

ApplicationInitSW MUST be called from the Z-Wave main function during system startup. Notice that
watchdog is disabled by default.

Defined in: ZW _basis_api.h
Return value:

BYTE APPLICATION_NODEINFO_LISTENING Application is a listening
always ON node and
Application should always
return
E_APPLICATION_STATE_A
CTIVE in the
ApplicationPoll return value.

APPLICATION_NODEINFO_NOT_LISTENING Application is a none
listening node. When
Application indicates
E_APPLICATION_STATE_R
EADY_FOR_POWERDOWN
in the ApplicationPoll return
value the protocol will set the
module in WUT powerdown
mode according to
ZW_Power_Management_|
nit settings (See 4.3.2.27)

APPLICATION_FREQ_LISTENING_MODE_250 Application is a 250ms FLIiRS

ms node. When Application
indicates
E_APPLICATION_STATE_R
EADY_FOR_POWERDOWN
in the ApplicationPoll return
value the protocol will set the
module in 250ms FLiRS
mode.

APPLICATION_FREQ_LISTENING_MODE_1000 Application is a 1000ms

ms FLiRS node. When
Application indicates
E_APPLICATION_STATE_R
EADY_FOR_POWERDOWN
in the ApplicationPoll return
value the protocol will set the
module in 1000ms FLIRS

silabs.com | Building a more connected world. Page 29 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

mode.
Parameters:
ZW_NVM_STATUS Status of NVM initialization during power-up
bNvmStatus IN
ZW_NVM_INITIALIZED NVM was empty or invalid

during startup and has now
been initialized as first time
startup.

ZW_NVM_VALID NVM is valid, that is in
normal running condition.

ZW_NVM_UPDATED NVM has been updated to
match the layout of a newly
installed firmware. NVM is
therefore ready for normal
operation.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 30 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.3 ApplicationTestPoll
(- -

void ApplicationTestPoll(void)

The ApplicationTestPoll function is the entry point from the Z-Wave basis software to the application
software when the production test mode is enabled in the protocol. This will happen when
ApplicationlnitHW returns FALSE. The ApplicationTestPoll function will be called indefinitely until the
device is reset. The device must be reset and ApplicationlnitHW must return TRUE in order to exit this
mode. When ApplicationTestPoll is called the protocol will acknowledge frames sent to home ID equal
to 0x00000000 and node ID as follows.

Device Node ID
Slave 0x00
Controllers before Dev. Kit v3.40 OxEF
Controllers from Dev. Kit v3.40 or later 0x01

The following API calls are only available in production test mode:
1. ZW_Eepromlnit is used to initialize the external NVM. Remember to initialize controllers with a
unique home ID that typically can be transferred via the UART on the production line.
2. ZW_SendConst is used to validate RF communication. Remember to enable RF communication
when testing products based on a portable controller, routing slave or enhanced 232 slave.

Defined in: Z\W_basis_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 31 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.4 ApplicationPoll
-

E_APPLICATION_STATE ApplicationPoll(E_PROTOCOL_STATE bProtocolState)

The ApplicationPoll function is the entry point from the Z-Wave basis software to the application
software modules. The ApplicationPoll function is called from the Z-Wave main loop when no low-level
time critical actions are active. In order not to disrupt the radio communication and the protocol, the
application code MUST return within 2ms measured from the call of ApplicationPoll.

To determine the ApplicationPoll frequency (see table below) is a LED Dimmer application modified to be
able to measure how often ApplicationPoll is called via an output pin. The minimum value is measured
when the module is idle, i.e., no RF communication, no push button activation etc. The maximum value is
measured when the ERTT application at the same time sends Basic Set Commands (value equal 0) as
fast as possible to the LED Dimmer (DUT).

Table 6. ApplicationPoll Frequency

ZW0201 ZW0301 400 Series 500 Series
LED Dimmer LED Dimm,er LED Dimmer LED Dimmer
Minimum 7.2 us 7.2 us 80 us 80 us
Maximum 2.4 ms 2.4 ms 180 us 180 us

The above mentioned output pin mapped to the ApplicationPoll SHOULD also be used during application
testing to ensure that the application code never runs for more than 2ms even in worst-case scenarios;
setting the pin high when entering and low when leaving the ApplicationPoll function.

The ApplicationPoll function return value is used for requesting power down mode, the application can
specify if it is ready for power down or if it needs to be running.

Defined in:
ZW _basis_api.h

Return value:

E_APPLICATION_STATE E_APPLICATION_STATE_ACTIVE Application active - not

ready for sleep/powerdown

E_APPLICATION_STATE_READY_FOR
_POWERDOWN

Application is ready to
System Powerdown and
protocol will set module in
Power down according to
value Application returned
at the ApplicationlnitSW()
call (See 4.3.1.2)

silabs.com | Building a more connected world. Page 32 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Parameters:

E_PROTOCOL_STATE Current protocol state
bProtocolState IN

E_PROTOCOL_STATE_ACTIVE Protocol active - not ready for
sytem shutdown

E_PROTOCOL_STATE_SHUTDOWN_ Protocol power down pending
PENDING - protocol making ready for
system shutdown

E_PROTOCOL_STATE_READY_FOR_ Protocol going in powerdown

SHUTDOWN - now ready for system
shutdown

Serial API (Not supported)

silabs.com | Building a more connected world. Page 33 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.5 ApplicationCommandHandler (Not Bridge Controller Library)

void ApplicationCommandHandler(ZW_APPLICATION_TX_BUFFER *pCmd,
BYTE cmdLength,
RECEIVE_OPTIONS_TYPE *“rxopt)

The Z-Wave protocol will call the ApplicationCommandHandler function when an application command
or request has been received from another node. The receive buffer is released when returning from this
function. The type of frame used by the request can be determined (single cast, mulitcast or broadcast
frame). This is used to avoid flooding the network by responding on a multicast or broadcast. In order not
to disrupt the radio communication and the protocol, no application function must execute code for more
than 5ms without returning.

Except for the Bridge Controller library, this function MUST be implemented by the Application layer.

NOTE: For Controllers the rxopt->securityKey is ALWAYS SECURITY_KEY_NONE.

silabs.com | Building a more connected world. Page 34 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21
Defined in: ZW _basis_api.h
Parameters:

rxopt->rxStatus IN

rxopt->destNode IN

rxopt->sourceNode
IN

rxopt->rxRSSIVal IN

Received frame status flags

RECEIVE_STATUS _ROUTED_BUSY
XXXXXXX 1

RECEIVE_STATUS LOW_POWER
XXXXXX1X

RECEIVE_STATUS _TYPE_SINGLE
XXxx00xx

RECEIVE_STATUS_TYPE_BROAD
XxXxx01xx

RECEIVE_STATUS _TYPE_MULTI
XXXX10XX

RECEIVE_STATUS TYPE_EXPLORE
XXX 10xXXX

RECEIVE_STATUS_FOREIGN_FRAME

X TXXXXXX

RECEIVE_STATUS_FOREIGN_HOMEID

1 XXXXXXX

Command destination Node 1D

Command sender Node ID

RSSI measurement of the received frame

Refer to ZW_transport_ APl.h
header file

A response route is locked by the
application

Received at low output power
level

Received a single cast frame

Received a broadcast frame

Received a multicast frame

Received an explore frame

The received frame is not
addressed to this node (Only valid
in promiscuous mode)

The received frame is received
from a foreign HomelD. Only
Controllers in Smart Start
AddNode mode can receive this
status.

Only valid in promiscuous mode
and for singlecast frames.

This is a signed 8-bit value.

Values from
RSSI_RESERVED START to
124 are reserved.

All values below
RSSI_RESERVED_START are
received power in dBms.

RSSI_NOT_AVAILABLE - RSSI
measurement not available

RSSI_ MAX_POWER_SATURAT
ED - Receiver saturated. RSSI too

silabs.com | Building a more connected world.

Page 35 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

rxopt->securityKey
IN

pCmd IN

cmdLength IN

Serial API:

Security key frame was decrypted with.

SECURITY_KEY_NONE

SECURITY_KEY_S2_UNAUTHENTICAT
ED

SECURITY_KEY_S2 _AUTHENTICATED
SECURITY_KEY_S2 ACCESS
SECURITY_KEY_S0

Payload from the received frame.

Number of Command class bytes.

high to measure precisely
RSSI_BELOW_SENSITIVITY -

No signal detected. The RSSI is
too low to measure precisely.

Refer to ZW_security_api.h
header file.

Nonsecure transmission — no
decryption done.

S2 Unauthenticated key

S2 Authenticated key
S2 Access key
Security Scheme 0 key

The command class is the very
first byte.

ZW->HOST: REQ | 0x04 | rxStatus | sourceNode | cmdLength | pCmd[] | rxRSSIVal | securityKey

When a foreign frame is received in promiscuous mode:
ZW->HOST: REQ | 0xD1 | rxStatus | sourceNode | cmdLength | pCmd[] | destNode |
multiNodeMaskLen [| multiNodeMask[multiNodeMaskLen]] | rxRSSIVal

The destNode parameter is only valid for singlecast frames.

If multiNodeMaskLen is ZERO the next parameter in SerialAPI frame is rssiVal.

silabs.com | Building a more connected world.

Page 36 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.6 ApplicationNodelnformation
[

void ApplicationNodelnformation(BYTE *deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE **nodeParm,
BYTE *parmLength)

The Z-Wave Application Layer MUST use the ApplicationNodelnformation function to generate the
Node Information frame and to save information about node capabilities. All Z-Wave application-related
fields of the Node Information structure MUST be initialized by this function. For a description of the
Generic Device Classes, Specific Device Classes, and Command Classes refer to [4]-[5] and [7]-[12].
The deviceOptionsMask is a Bit mask where Listening and Optional functionality flags MUST be set or
cleared accordingly to the nodes capabilities.

The listening option in the deviceOptionsMask (APPLICATION_NODEINFO_LISTENING) indicates a
continuously powered node ready to receive frames. A listening node assists as repeater in the network.

The non-listening option in the deviceOptionsMask (APPLICATION_NODEINFO_NOT_LISTENING)
indicates a battery-operated node that power off RF reception when idle (prolongs battery lifetime)..

The optional functionality option in the deviceOptionsMask
(APPLICATION_NODEINFO_OPTIONAL_FUNCTIONALITY) indicates that this node supports other
command classes than the mandatory classes for the selected generic and specific device class.

Examples:
To set a device as Listening with Optional Functionality:

*deviceOptionsMask = APPLICATION NODEINFO LISTENING |
APPLICATION NODEINFO OPTIONAL FUNCTIONALITY;

To set a device as not listening and with no Optional functionality support:
*deviceOptionsMask = APPLICATION NODEINFO NOT LISTENING;

Note for Controllers: Because controller libraries store some basic information about themselves from
ApplicationNodelnformation in nonvolatile memory. ApplicationNodelnformation should be set to the
correct values before Application return from ApplicationInitHW(), for applications where this cannot be
done. The Application must call ZW_SetDefault() after updating ApplicationNodelnformation in order
to force the Z-Wave library to store the correct values.

A way to verify if ApplicationNodelnformation is stored by the protocol is to call
ZW_GetNodeProtocolinfo to verify that Generic and specific nodetype are correct. If they differ from
what is expected, the Application should Set the ApplicationNodelnformation to the correct values and
call ZW_SetDefault() to force the protocol to update its information.

silabs.com | Building a more connected world. Page 37 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Defined in: ZW _basis_api.h
Parameters:

deviceOptionsMask

ouT
APPLICATION_NODEINFO_LISTENING
APPLICATION_NODEINFO_NOT_LISTENING
APPLICATION_NODEINFO_
OPTIONAL_FUNCTIONALITY
APPLICATION_FREQ_LISTENING_MODE_250ms
APPLICATION_FREQ_LISTENING_MODE_1000ms

nodeType OUT Pointer to structure with the Device Class:

(*nodeType).generic

(*nodeType).specific

Bitmask with options

In case this node is
always listening (typically
AC powered nodes) and
stationary.

In case this node is non-
listening (typically battery
powered nodes).

If the node supports other
command classes than
the ones mandatory for
this nodes Generic and
Specific Device Class

This option bit should be
set if the node should act
as a Frequently Listening
Routing Slave with a
wakeup interval of 250ms.
This option is only
available on Routing
Slaves. This option is not
available on 3-channel
systems (the JP
frequency).

This option bit should be
set if the node should act
as a Frequently Listening
Routing Slave with a
wakeup interval of 250ms.
This option is only
available on Routing
Slaves.

The Generic Device Class
[5]. Do not enter zero in
this field.

The Specific Device Class

[5].

silabs.com | Building a more connected world.

Page 38 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

nodeParm OUT Command Class buffer pointer. Command Classes [12]
supported by the device
itself and optional
Command Classes the
device can control in
other devices.

parmLength OUT Number of Command Class bytes.
Serial API:
HOST->ZW: REQ | 0x03 | deviceOptionsMask | generic | specific | parmLength | nodeParm[]

The ApplicationNodelnformation is replaced by Serial API_ApplicationNodelnformation. Used to
set information that will be used in subsequent calls to ZW_SendNodelnformation. Replaces the
functionality provided by the ApplicationNodelnformation() callback function.

void SerialAPI_ApplicationNodelnformation(BYTE deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE *nodeParm,
BYTE parmLength)

The define APPL_NODEPARM_MAX in serialappl.h must be modified accordingly to the number of
command classes to be notified. Prior to either start or join a Z-Wave network the HOST needs to
initially setup the Node Information Frame (NIF) which should define the type of Z-Wave node the
SerialAPI module is supposed to be. For the NIF to be stored in the protocol NVM area as well as in the
application NVM area the HOST need to perform the following steps:

1. HOST->ZW: send SerialAPI_ApplicationNodelnformation() with NIF information

2. HOST->ZW: send ZW_SetDefault()

silabs.com | Building a more connected world. Page 39 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

The figure below lists the Node Information Frame structure on application level. The Z-Wave Protocol
creates this frame via ApplicationNodelnformation. The Node Information Frame structure when
transmitted by RF does not include the Basic byte descriptor field. The Basic byte descriptor field on
application level is deducted from the Capability and Security byte descriptor fields.

Byte descriptor \ bit number 7 6 5 4 3 2 1 0

Capability rl;:zt;_ Z-Wave Protocol-Specific Part

Security Opt. Z-Wave Protocol-Specific Part

Func.
Reserved Z-Wave Protocol-Specific Part
Basic Basic Device Class (Z-Wave Protocol-Specific Part)
Generic Generic Device Class
Specific Specific Device Class

Nodelnfo[0]

Command Class 1

Nodelnfo[n-1]

Command Class n

Figure 8. Node Information Frame Structure on Application Level

WARNING: Must use deviceOptionsMask parameter and associated defines to initialize Node
Information Frame with respect to listening, non-listening and optional functionality options.

silabs.com | Building a more connected world.

Page 40 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.7 ApplicationSlaveUpdate (only Slave Libraries)

void ApplicationSlaveUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)
The Z-Wave protocol MAY notify a slave application by calling ApplicationSlaveUpdate when a Node
Information Frame has been received. The Z-Wave protocol MAY refrain from calling the function if the
protocol is currently expecting node information.
All slave libraries requires this function implemented by the application.
Defined in: ZW_slave_api.h
Parameters:

bStatus IN The status, value could be one of the following:

UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its Node Info while
the Z-Wave protocol is idle.

bNodelD IN The updated node’s node ID (1..232).

pCmd IN Pointer of the updated node’s node info.
bLen IN The length of the pCmd parameter.
Serial API:

ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses]]

silabs.com | Building a more connected world. Page 41 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.8 ApplicationControllerUpdate (only Controller Libraries)

void ApplicationControllerUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)

A controller application MAY use the information provided by ApplicationControllerUpdate to update
local data structures or to control smart start inclusion.

The Z-Wave protocol MUST notify a controller application by calling ApplicationControllerUpdate when
a new node has been added or deleted from the controller through the network management features.

The Z-Wave protocol MUST call ApplicationControllerUpdate in response to ZW_RequestNodelnfo
being called by the controller application. The Z-Wave protocol MAY notify a controller application by
calling ApplicationControllerUpdate when a Node Information Frame has been received. The Z-Wave
protocol MAY refrain from calling the function if the protocol is currently expecting a Node Information
frame.

ApplicationControllerUpdate MUST be called in a controller node operating as SIS each time a node is
added or deleted by the primary controller. ApplicationControllerUpdate MUST be called in a controller
node operating as SIS each time a node is added/deleted by an inclusion controller.

A controller application MAY send a ZW_RequestNetWorkUpdate command to a SIS or SIS node. In
response, the SIS MUST return update information for each node change since the last update handled
by the requesting controller node. The application of the requesting controller node MAY receive multiple
calls to ApplicationControllerUpdate in response to ZW_RequestNetWorkUpdate.

The Z-Wave protocol MUST NOT call ApplicationControllerUpdate in a controller node acting as
primary controller or inclusion controller when a node is added or deleted.

Any controller application MUST implement this function.

Defined in: ZW _controller_api.h

Parameters:
bStatus The status of the update process, value could
IN be one of the following:
UPDATE_STATE_NEW_ID_ASSIGNED A new node has been added to the
network
UPDATE_STATE_DELETE_DONE A node has been deleted from the
network
UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its node info either

unsolicited or as a response to a
ZW_RequestNodelnfo call

UPDATE_STATE_SUC_ID The SIS node Id was updated

UPDATE_STATE_NODE_INFO_SMARTSTART_HOMEID A Smart Start inclusion request has been

_RECEIVED received. Only Controllers in Smart Start
AddNode mode can receive this status.

silabs.com | Building a more connected world. Page 42 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

UPDATE_STATE_INCLUDED_NODE_INFO_RECEIVED A Smart Included Node Information
Frame has been received. Only
Controllers in Smart Start AddNode
mode can receive this status.

bNodelD The updated node’s node ID (1..232).
IN

pCmd IN Pointer of the updated node’s node info. If bStatus equals
UPDATE_STATE_NODE_INFO_SMARTSTART_H

OMEID_RECEIVED the pCmd points to a
buffer containing the Smart Start DSK
derived Homeld of the Smart Start node
wanting to be included, followed by the
node’s node info.

If bStatus equals
UPDATE_STATE_INCLUDED_NODE_INFO_REC

EIVED the pCmd points to a buffer
containing rxStatus (see 4.3.1.9) and the
Smart Start DSK derived HomelD of an
already included Smart Start node. If
INIF received are from a foreign Network
rxStatus will have
RECEIVE_STATUS_FOREIGN_HOMEID set.

bLen IN The length of the pCmd parameter.
Serial API:
ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses]|]

ApplicationControllerUpdate via the Serial API also have the possibility for receiving the status
UPDATE_STATE_NODE_INFO_REQ_FAILED, which means that a node did not acknowledge a
ZW_RequestNodelnfo call.

ZW->HOST: REQ | 0x49 | 0x85 | bNodelD | bLen | dskID[4] | ccLen | basic | generic | specific | cmdclasses[ccLen]

If Controller has been put into Smart Start mode by calling ZW_AddNodeToNetwork with
ADD_NODE_SMART_START, the controller will when a Smart Start inclusion request are received use
ApplicationControllerUpdate with
UPDATE_STATE_NODE_INFO_SMARTSTART_HOMEID_RECEIVED (0x85) to inform the
Application that a Smart Start node with the specified caracteristics requests for Inclusion.

ZW->HOST: REQ | 0x49 | 0x86 | bNodelD | bLen | rxStatus | dskiD[4]

If Controller has been put into Smart Start mode by calling ZW_AddNodeToNetwork with
ADD_NODE_SMART_START, the controller will when a Smart Start Included Node Information Frame (INIF)
are received use ApplicationControllerUpdate with
UPDATE_STATE_INCLUDED_NODE_INFO_RECEIVED (0x86) to inform the Application that a Smart
Start node with the specified caracteristics has been powered up.

silabs.com | Building a more connected world. Page 43 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.9 ApplicationCommandHandler_Bridge (only Bridge Controller Library)

void ApplicationCommandHandler_Bridge(ZW_MULTI_DEST muilti,
ZW_APPLICATION_TX_BUFFER *pCmd,

BYTE cmdLength,

RECEIVE_OPTIONS_TYPE *rxopt)

The Z-Wave protocol MUST call the ApplicationCommandHandler_Bridge function when an
application command has been received from another node to the Bridge Controller or an existing virtual
slave node. The Z-Wave protocol MUST NOT reuse the receive buffer until the application has exited

this function.

A bridge controller application MUST implement this function.
Defined in: ZW _controller_bridge api.h
Parameters:

rxopt->rxStatus Frame header info:
IN

RECEIVE_STATUS ROUTED_BUSY
XXXXXXX 1

RECEIVE_STATUS LOW_POWER
XXXXXXTX

RECEIVE_STATUS TYPE_SINGLE
Xxxx00xx

RECEIVE_STATUS _TYPE_BROAD
XXXX01xX

RECEIVE_STATUS TYPE_MULTI
XxxX10xx

RECEIVE_STATUS TYPE_EXPLORE
XXX TXXXX

RECEIVE_STATUS FOREIGN_FRAME
X TXXXXXX

RECEIVE_STATUS FOREIGN_HOMEID
TXXXXXXX

A response route is locked by the
application

Received at low output power level

Received a single cast frame

Received a broadcast frame

Received a multicast frame

Received an explore frame

The received frame is not
addressed to this node (Only valid
in promiscuous mode) but are
addressed to another node
belonging to same HomelD as
current node.

The received frame is received from
a foreign HomelD. Only Controllers
in Smart Start AddNode mode can
receive this status.

silabs.com | Building a more connected world.

Page 44 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

rxopt->destNode = Command receiving Node ID. Either Bridge

IN Controller Node ID, virtual slave Node ID or
if in promiscuous mode Node ID on node
belonging to same HomelD as current node.

If received frame is a multicast frame then
destNode is not valid and multi points to a
multicast structure containing the destination

nodes.

rxopt- Command sender Node ID.

>sourceNode IN

rxopt->rxRSSIVal RSSI measurement of the received frame This is a signed 8-bit value.

IN
Values from
RSSI_RESERVED_START to 124
are reserved.
All values below
RSSI_RESERVED_START are
received power in dBms.
RSSI_NOT_AVAILABLE - RSSI
measurement not available
RSSI_MAX_POWER_SATURATED
- Receiver saturated. RSSI too high
to measure precisely
RSSI_BELOW_SENSITIVITY - No
signal detected. The RSSI is too
low to measure precisely.

pCmd IN Payload from the received frame. The

command class is the very first byte.
cmdLength IN Number of Command class bytes.
Serial API:

ZW->HOST: REQ | 0xA8 | rxStatus | destNodelD | srcNodelD | cmdLength | pCmd[] |
multiDestsOffset_NodeMaskLen | multiDestsNodeMask | rxRSSIVal

When a foreign frame is received in promiscuous mode:
ZW->HOST: REQ | 0xD1 | rxStatus | sourceNode | cmdLength | pCmd[] | destNode |
multiNodeMaskLen [| multiNodeMask[multiNodeMaskLen]] | rxRSSIVal

The destNode parameter is only valid for singlecast frames.

If multiNodeMaskLen is ZERO the next parameter in SerialAPI frame is rxRSSIVal.

silabs.com | Building a more connected world. Page 45 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.10 ApplicationSlaveNodelnformation (only Bridge Controller Library)

void ApplicationSlaveNodelnformation(BYTE destNode,
BYTE *listening,
APPL_NODE_TYPE *nodeType,
BYTE **nodeParm,
BYTE *parmLength)

Request Application Virtual Slave Node information. The Z-Wave protocol layer calls
ApplicationSlaveNodelnformation just before transmitting a "Node Information” frame.

The Z-Wave Bridge Controller library requires this function implemented by the application.

Defined in: ZW __controller_bridge_api.h

Parameters:
destNode IN Which Virtual Node do we want the node
information from.
listening OUT TRUE if this node is always listening and
not moving.
nodeType OUT Pointer to structure with the Device Class:
(*nodeType).generic The Generic Device Class [5].
Do not enter zero in this field.
(*nodeType).specific The Specific Device Class [5].
nodeParm OUT Command Class buffer pointer. Command Classes [12]
supported by the device itself
and optional Command
Classes the device can control
in other devices.
parmLength OUT Number of Command Class bytes.
Serial API:

The ApplicationSlaveNodelnformation is replaced by
SerialAPI_ApplicationSlaveNodelnformation. Used to set node information for all Virtual Slave
Nodes in the embedded module this node information will then be used in all subsequent calls to
ZW_SendSlaveNodelnformation regardless if using different destNode value as only one Virtual Slave
Node node information are kept in RAM at a time. Replaces the functionality provided by the
ApplicationSlaveNodelnformation() callback function.

void SerialAPI_ApplicationSlaveNodelnformation(BYTE destNode,
BYTE listening,
APPL_NODE_TYPE * nodeType,
BYTE *nodeParm,
BYTE parmLength)

HOST->ZW: REQ | 0xAOQ | destNode | listening | genericType | specificType | parmLength | nodeParm([]

silabs.com | Building a more connected world. Page 46 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.11 ApplicationNetworkLearnModeCompleted (only Controller Libraries)
- - - -~]

void ApplicationNetworkLearnModeCompleted(LEARN_INFO *glearnNodelnfo)

Called when node have started inclusion/exclusion through ZW_NetworkLearnModeStart and node has
been included, excluded or learnmode either failed or timed out.

A controller application MUST implement this function.

*learnNodelnfo.bStatus Status of learn mode:
IN
LEARN_MODE_STARTED The learn process has been started

LEARN_MODE_DONE The learn process is complete and the
controller is now included into the network

LEARN_MODE_FAILED The learn process failed.

*learnNodelnfo.bSource Valid values:
IN

0 Node has been Excluded

1-232 node has been Included and has been
assigned this nodelD

APPLICATION_NETWORK Smart Start secure inclusion failed
_LEARN_MODE_COMPLE
TED_FAILED

APPLICATION_NETWORK A nodelD has been assigned do not go into
_LEARN_MODE_COMPLE sleepmode — Inclusion NOT done
TED_SMART_START_IN_

PROGRESS

APPLICATION_NETWORK LearnMode process timeout
_LEARN_MODE_COMPLE inclusion/exclusion did not start

TED_TIMEOUT
*learnNodelnfo.pReserv Reserved
ed IN
*learnNodelnfo.bReserv Length of Reserved
edLen IN
Serial API:

The ZW_NetworkLearnModeStart functionality is reached through the Serial API functionality
FUNC _ID ZW_SET LEARN_MODE and the ApplicationNetworkLearnModeCompleted results is
transmitted to HOST as a FUNC_ID_ZW_SET_LEARN_MODE request.

ZW->HOST: REQ | 0x50 | funclID | bStatus | bSource | bReservedLen | bReserved[bReservedLen]

silabs.com | Building a more connected world. Page 47 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.12 ApplicationNetworkLearnModeCompleted (only Slave Libraries)

void ApplicationNetworkLearnModeCompleted(BYTE bNodelD)

Called when node have started inclusion/exclusion through ZW_NetworkLearnModeStart and node has
been included, excluded or learnmode either failed or timed out.

A slave application MUST implement this function.
bNodelD IN Valid values:
0 Node has been Excluded

1-232 node has been Included and has been
assigned this nodelD

APPLICATION_NETWORK LEARN_ Smart Start secure inclusion failed
MODE_COMPLETED_FAILED

APPLICATION_NETWORK_LEARN_ A nodelD has been assigned do not go into
MODE_COMPLETED_SMART_STAR sleepmode — Inclusion NOT done
T_IN_PROGRESS

APPLICATION_NETWORK_LEARN_ LearnMode process timeout
MODE_COMPLETED_TIMEOUT inclusion/exclusion did not start

Serial API:

The ZW_NetworkLearnModeStart functionality is reached through the Serial API functionality
FUNC _ID ZW_SET LEARN_MODE and the ApplicationNetworkLearnModeCompleted results is
transmitted to HOST as a FUNC_ID_ZW_SET_LEARN_MODE request.

ZW->HOST: REQ | 0x50 | funcID | bNodelD

silabs.com | Building a more connected world. Page 48 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.13 ApplicationRfNotify
-

void ApplicationRfNotify (BYTE rfState)

This function is used to inform the application about the current state of the radio enabling control of an
external power amplifier (PA). The Z-Wave protocol will call the ApplicationRfNotify function when the
radio changes state as follows:

From Tx to Rx

From Rx to Tx

From power down to Rx

From power down to Tx

When internal Tx PA is powered up
When internal Tx PA is powered down

This enables the application to control an external PA using the appropriate number of I/O pins. For
details, refer to [19].

The ApplicationRfNotify function MUST be defined in the application even if not being used for
controlling an external PA. Remember to includer header file config_lib.h in application to enable
function.

Defined in: ZW _basis_api.h

Parameters:
rfState IN The current mode of the radio. Refer to ZW_transport_APIl.h header file
ZW_RF_TX_MODE The radio is in Tx mode. Previous mode
is either Rx or power down
ZW_RF_RX_MODE The radio is in Rx mode. Previous mode
is either Tx or power down
ZW_RF_PA _ON The radio is in Tx mode and the PA is
powered on
ZW_RF_PA OFF The radio is in Tx mode and the PA is
powered off
Serial API:

Not implemented

silabs.com | Building a more connected world. Page 49 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.14 ApplicationSecureKeysRequested (only Slave Libraries)

BYTE ApplicationSecureKeysRequested(void);

This function lets the application select which Security network keys are requested during inclusion (add)
to a Security 2 capable controller. The including controller may grant all or a subset of the requested
keys.

This function is only required in slave_routing and slave_enhanced_232 based applications.

Defined in: ZW_security_api.h

Return value:

BYTE Bitmask of requested keys. The possible values are Refer to ZW_security APl.h header
file

SECURITY_KEY_S2_UNAUTHENTICATED_BIT Request the unauthenticated key.

SECURITY_KEY_S2 AUTHENTICATED BIT Request the authenticated key.
SECURITY_KEY_S2 ACCESS BIT Request the Access Control key.
SECURITY_KEY_SO0 BIT Request the Security scheme 0 key

for backwards compatibility.
Serial API:

Not implemented.

The Requested Security keys can either be set through the Serial API
FUNC_ID_ZW_SECURITY_SETUP function
E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_KEYS (See 4.3.15.1) or
at compile-time through the config_app.h file for SerialAPIPlus. See the
REQUESTED_SECURITY_KEYS define.

silabs.com | Building a more connected world. Page 50 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.15 ApplicationSecureAuthenticationRequested (only Slave Libraries)

BYTE ApplicationSecureAuthenticationRequested(void);

This function lets the application select which Security network authentication are requested during
inclusion (add) to a Security 2 capable controller.

This function is only required in slave_routing and slave_enhanced_232 based applications.

Defined in: ZW _security_api.h

Return value:

BYTE S2 Inclusion Authentication method. The possible Refer to ZW_security_API.h header
values are file
SECURITY_AUTHENTICATION_SSA Request Server Side Authentication.
SECURITY_AUTHENTICATION_CSA Request Client Side Authentication.

Serial API:

Not implemented.

The Requested Authentication can either be set through the Serial API
FUNC_ID_ZW_SECURITY_SETUP function
E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_AUTHENTICATION (See
4.3.15.1) or at compile-time through the config_app.h file for SerialAPIPlus. See the
REQUESTED_SECURITY_AUTHENTICATION define.

silabs.com | Building a more connected world. Page 51 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.16 ApplicationSecureCommandsSupported (only Slave Libraries)

void
ApplicationSecureCommandsSupported(
enum SECURITY_KEY eKey,
BYTE **pCmdClasses,
BYTE *pLength);

The application uses this function to notify the protocol of the command classes it supports using each
security key.
This function is only required in slave_routing and slave_enhanced 232 based applications.

Defined in: ZW _security_api.h

Parameters:

eKey IN The security key to report on.
pCmdClasses OUT Cmd classes supported using eKey
pLength OUT Length of pCmdClasses

Serial API:

This SerialAPI call replaces the functionality provided by the
ApplicationSecureCommandsSupported() callback function. Must be set prior to inclusion (add). Will
be cached in NVM of the Serial APl embedded node and needs to be set only once.

The define APPL_NODEPARM_MAX in serialappl.h must be modified accordingly to the number of
command classes to be notified.

HOST->ZW: REQ | 0x0C
| unincluded_pLength | unincluded_nodeParm[]
| included_unsecure_p | included_unsecure_nodeParm[]
| pLength | pCmdClasses

Note: unincluded_nodeParm is sent to ApplicationNodelnformation when the node is not included
and when the node is unsecurely included. included_unsecure_nodeParm is being sent to
ApplicationNodelnformation when the node is securely included. pLength and pCmdClasses is sent
to ApplicationSecureCommandsSupported.

silabs.com | Building a more connected world. Page 52 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1.17 ApplicationSecurityEvent (only Slave Libraries)

void

ApplicationSecurityEvent(
s_application_security_event_data_t *securityEvent

);

The protocol uses this function to notify the application of security events.
This function is only required in slave_routing and slave_enhanced_232 based applications.

Defined in: ZW_security_api.h

Parameters:

s_application_security_event data tIN securityEvent->event Security Event
descriptor
securityEvent->eventDatalLength

securityEvent->eventData
SecurityEvent can contain following events:
event = E_APPLICATION_SECURITY_EVENT_S2_INCLUSION_REQUEST_DSK_CSA
(eventDataLength = 0). This event occurs when node is in LearnMode and the S2 Inclusion (add)
requires the CSA DSK (a fragment of the including Controller DSK) to finish. The application should
then deliver the CSA DSK by calling ZW_SetSecurityS2InclusionPublicDSK_CSA (See 4.3.15.3)
accordingly.

Serial API:

ZW->HOST: 0x9D | event | evenDatalength | eventData[eventDatalLength]

silabs.com | Building a more connected world. Page 53 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2 Z-Wave Basis API

This section defines functions that are implemented in all Z-Wave nodes.

4.3.2.1 ZW_ExploreRequestinclusion
- - -]

BYTE ZW_ExploreRequestinclusion()

An application MAY use this function to initiate a Network-Wide Inclusion process. In response to the
call, the Z-Wave protocol MUST send out an explorer frame requesting inclusion (add) into a network.

The application MUST enable Learn Mode (refer to 4.4.30 for controllers or 4.8.2 for slaves) with the
parameter ZW_SET_LEARN_MODE_NWI before calling this function.

A controller in Network-Wide Inclusion mode MAY accept the inclusion request. In that case, the
application requesting inclusion MUST get notified through the callback function specified when calling
the ZW_SetlLearnMode() function. Once a callback is received from ZW_SetLearnMode() saying that the
inclusion process has started, the application MUST NOT make further calls to this function.
NOTE: An application SHOULD NOT call this function more than once every 4 seconds.

Defined in: Z\W_basis_api.h

Return value:

BYTE TRUE Inclusion request queued for transmission

FALSE Node is not in learn mode
Serial API
HOST->ZW: REQ | 0x5E

ZW->HOST: RES | Ox5E | retVal

silabs.com | Building a more connected world. Page 54 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.2 ZW_ExploreRequestExclusion
[== -

BYTE ZW_ExploreRequestExclusion()
An application MAY use this function to initiate a Network-Wide Exclusion process. In response to the
call, the Z-Wave protocol MUST send out an explorer frame requesting exclusion (remove) out of a
network.
The application MUST enable Learn Mode (refer to 4.4.30 for controllers or 4.8.2 for slaves) with the
parameter ZW_SET_LEARN_MODE_NWE before calling this function and thereby enabling the node to
be excluded routed.
A controller in Network-Wide Exclusion mode MAY accept the exclusion request. In that case, the
application requesting exclusion MUST get notified through the callback function specified when calling
the ZW_SetlLearnMode() function. Once a callback is received from ZW_SetLearnMode() saying that the
exclusion process has started, the application MUST NOT make further calls to this function.
NOTE: Only an excluding controller on the same HomelD as the excludee can do a routed exclusion.
NOTE: An application SHOULD NOT call this function more than once every 4 seconds.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE Exclusion (remove) request queued for transmission

FALSE Node is not in learn mode
Serial API
HOST->ZW: REQ | Ox5F

ZW->HOST: RES | OX5F | retVal

silabs.com | Building a more connected world. Page 55 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.3 ZW_GetBackgroundRSSI
- - - -]

Void ZW_GetBackgroundRSSI(RSSI_LEVELS *rssi_levels)

This function returns the most recent background RSSI levels detected. The RSSI is only measured
when the radio is in receive mode.

Defined in: ZW _basis_api.h
Return value:

RSSI_LEVELS* Returns a pointer to a struct containing
the rssi levels for each channel in dBms.

The rssi levels struct is defined as
typedef struct {
signed char rssi dBm[NUM CHANNELS];
} RSSI LEVELS;
Each value in the rssi_dBm contains an RSSI value encoded according to Table 7.
NUM_CHANNELS is 2 or 3 depending on the geographic region of the product.

The rssi level in a single channel is contained in a BYTE encoded as a signed integer:

Table 7, RSSI Encoding

Bit pattern Value (signed) Meaning

Ox7F 127 RSSI_NOT_AVAILABLE.
Returned by ZW_GetBackgroundRSSI if the node has not yet
had time to sample the rssi since powerup.

Returned by ZW_SendData for unused hops or from pre 6.60
repeaters that does not support appending rssi to the routed

frame.
Ox7E 126 RSSI_MAX_POWER_SATURATED
0x7D 125 RSSI_BELOW_SENSITIVITY.
No signal detected.
Reserved
OxEO -32 -32 dBm
OxDF -33 -33dBm

silabs.com | Building a more connected world. Page 56 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21
0xA2 -94 -94 dBm
O0xA1 -95 Reserved
Reserved
0x80 -128 Reserved

Notes: The rssi level is defined as the RSSI measured at the antenna when no Z-Wave traffic is present.
The dynamic range of rssi measurements on a 500-series Z-Wave chip is from -94 dBm to -32 dBm. The
precision of the measurement is +/- 2 dBm. The returned values assume a path loss of ~7 dBm from chip
input to antenna. This corresponds to a typical SAW filter and antenna. For maximum accuracy, these
readings should be calibrated with RF measurements performed on a final product including the final

antenna design.
Serial API
HOST->ZW: REQ | 0x3B

ZW->HOST: RES | 0x3B | Ch0 | Ch1

for 2-channel systems OR

ZW->HOST: RES | 0x3B | Ch0 | Ch1 | Ch2 for 3-channel systems

silabs.com | Building a more connected world.

Page 57 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.4 ZW_GetProtocolStatus
- - -]

BYTE ZW_GetProtocolStatus(void)
Macro: ZW_GET_PROTOCOL_STATUS()
The application MAY request the status of the protocol by calling this function.
In response to this function, the Z-Wave protocol MUST return a bitmask reporting the current status of
the protocol.
Defined in: ZW _basis_api.h

Return value:

BYTE Returns the protocol status as one of the
following:

Zero Protocol is idle.
ZW_PROTOCOL_STATUS_ROUTING Protocol is analyzing the routing table.
ZW_PROTOCOL_STATUS_SUC SIS sends pending updates.

Serial API

HOST->ZW: REQ | OxBF

ZW->HOST: RES | OxBF | retVal

silabs.com | Building a more connected world. Page 58 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.5 ZW_GetRandomWord
[-

BYTE ZW_GetRandomWord(BYTE *randomWord)

Macro: ZW_GET_RANDOM_WORD(randomWord)

An application SHOULD NOT use this function during normal operation as the radio communication is
disabled during function execution. The function MAY however be used for algorithms depending on true
randomness, e.g., as a seed generator for Pseudo-Random Number Generator (PRNG) functions used

for security encryption. Instead, the function ZW_Random SHOULD be used (refer to 4.3.2.6).

This function returns a random word using the 500 series built-in hardware random number generator
based on (internal) RF noise (RFRNG).

Defined in: ZW _basis_api.h
Return value:
BOOL TRUE If possible to generate random number.

FALSE If not possible — will happen if RF is busy
at the time of the function call.

Parameters:

randomWord OUT Pointer to word variable, which
should receive the random word.

silabs.com | Building a more connected world. Page 59 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Serial API

The Serial API function 0x1C makes use of the ZW_GetRandomWord to generate a specified number
of random bytes:

e Call ZW_GetRandomWord until enough random bytes generated or ZW_GetRandomWord
returns FALSE.

e Return result to HOST.
HOST -> ZW: REQ | 0x1C | [noRandomBytes]
noRandomBytes Number of random bytes needed. Optional if not
present or equal ZERO then 2 random bytes are
returned Range 1...32 random bytes are

supported.

ZW -> HOST: RES | 0x1C | randomGenerationSuccess | noRandomBytesGenerated |
noRandomGenerated[noRandomBytesGenerated]

randomGenerationSuccess TRUE if random bytes could be generated
FALSE if no random bytes could be generated
noRandomBytesGenerated Number of random numbers generated

noRandomBytesGenerated]] Array of generated random bytes

silabs.com | Building a more connected world. Page 60 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.6 ZW_Random
[-

BYTE ZW_Random(void)
Macro: ZW_RANDOM()
This function implements a simple pseudo-random number generator that generates a sequence of
numbers, the elements of which are approximately independent of each other. The same sequence of
pseudo-random numbers will be repeated in case the module is power cycled.
An application MAY use this function for implementing random behavior, e.g., when multiple nodes
respond to a multicast message. The Z-Wave protocol MAY also use this function for random backoff,
etc.
Due to its simple nature, an application MUST NOT use this function for obtaining random values for
security key calculation and encryption.

Defined in: Z\W_basis_api.h

Return value:

BYTE Random number (0 — OxFF)

Serial API

HOST->ZW: REQ | 0x1D

ZW->HOST: RES | 0x1D | rndNo

silabs.com | Building a more connected world. Page 61 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.7 ZW_RegisterBackgroundRSSICallback
- - - - - -]

void ZW_RegisterBackgroundRSSICallback(
VOID_CALLBACKFUNC(cbFun)(RSSI_LEVELS *))

Z\W_RegisterBackgroundRSSICallback registers a callback function that is called whenever new
background RSSI measurements for all channel are ready.

The callback function is invoked with a pointer argument to a structure containing the RSSI values per
channel.

Defined in: ZW _basis_api.h
Parameters:

cbFun IN Function pointer to the callback
function. The callback function must
accept a RSSI_LEVELS pointer as its
first and only argument.

The callback function must accept a pointer argument to a RSSI_LEVELS structure containing the RSSI
values per channel. The RSSI_LEVELS structure is defined as:

typedef struct {
signed char rssi dBm[NUM CHANNELS];
} RSSI LEVELS;

NUM_CHANNELS has a value of 2 or 3 depending on geographical region.

The RSSI values in rssi_dBm are signed byte values with the largest positive values having
special meanings. On a 500-series Z-Wave chip, RSSI values between -94 dBm and -32
dBm are returned. RSSI_MAX_POWER_SATURATED is returned if the received background
noise exceeds -32 dBm. RSSI_BELOW_SENSITIVITY is returned if the received noise
power is below -94 dBm. The precision of the reading is +/- 2 dBms.

The frequency of callbacks is typically around 100 Hz. But it depends on many factors,
including how much work is performed in ApplicationPoll and how many interrupts are
generated. Customers with specific requirements on the sampling frequency is adviced to
validate their customized firmware.

A note on loss calibration

(The power levels returned are power levels at the antenna. A path loss of approx. 7 dBms
from antenna to chip RF input is assumed to account for SAW filter loss, antenna loss,
temperature variations and other factors. For precise readings, it is important to calibrate
the measurement to the antenna design of the finished product.

silabs.com | Building a more connected world. Page 62 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Example use
#include <ZW basis api.h>
void ZCB_rssi level callback(RSSI_LEVELS *noise);

code const void (code * ZCB rssi level callback p) (RSSI_LEVELS*) =
&ZCB_rssi level callback;

/* ZCB rssi level callback ==================
* Callback func for rssi level detection

* *

KK e e e
*/
void /* RET Nothing */

ZCB rssi level callback(

RSSI LEVELS *rssi) /* IN RSSI levels pointer */

{

/* Do something with rssi values...*/

ZW_DEBUG_SEND NUM (noise->rssi dBm[0])
ZW_DEBUG_SEND NUM(noise->rssi dBm[1])
#ifdef ZW 3CH SYSTEM
ZW_DEBUG_SEND NUM (noise->rssi dBm[2]) ;
#endif
}

’
I

/* ApplicationInitSW

*x Initialization of the Application Software
* *

KK e e —— ——————— ——_—_——_—_———_———_——E—_—_—E—E—_—_E—E—E—_—E—E—E—E—E—E—E—E—E——————
*/

BYTE /*RET TRUE */

ApplicationInitSW(void) /*IN Nothing */

{

/* Other initialization code here... */

ZW_RegisterBackgroundRSSICallback (ZCB rssi level callback);
}

Serial API:

Not available via SerialAPI. See the ZW_GetBackgroundRSSI() function instead.

silabs.com | Building a more connected world. Page 63 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.8 ZW_RFPowerlLevelSet
- - - - |

BYTE ZW_RFPowerLevelSet(BYTE powerLevel)

Macro: ZW_RF_POWERLEVEL_SET(POWERLEVEL)

An application MAY use this function to set the power level used for RF transmission. The actual RF
power is dependent on the settings for transmit power level in App_RFSetup.a51. If this value is changed
from the default library value the resulting power levels might differ from the intended values. The

returned value is however always the actual one used.

NOTE: This function should only be used in an install/test link situation and the power level
should always be set back to normal Power when the testing is done.

Defined in: ZW _basis_api.h
Parameters:

powerLevel IN Powerlevel to use in RF
transmission, valid values:

normalPower Max power possible
minus1dB Normal power - 1dB (mapped to minus2dB")
minus2dB Normal power - 2dB
minus3dB Normal power - 3dB (mapped to minus4dB)
minus4dB Normal power - 4dB
minus5dB Normal power - 5dB (mapped to minus6dB)
minus6dB Normal power - 6dB
minus7dB Normal power - 7dB (mapped to minus8dB)
minus8dB Normal power - 8dB
minus9dB Normal power - 9dB (mapped to minus10dB)
Return value:
BYTE The powerlevel set.

Serial API (Serial API protocol version 4):
HOST->ZW: REQ | 0x17 | powerLevel

ZW->HOST: RES | 0x17 | retVal

1500 Series support only -2dB power level steps

silabs.com | Building a more connected world. Page 64 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.9 ZW_RFPowerlLevelGet
- - - -]

BYTE ZW_RFPowerLevelGet(void)

Macro: ZW_RF_POWERLEVEL_GET()

Get the current power level used in RF transmitting.

NOTE: This function should only be used in an install/test link situation.
Defined in: ZW_basis_api.h
Return value:

BYTE The power level currently in effect during
RF transmissions.

Serial API
HOST->ZW: REQ | 0xBA

ZW->HOST: RES | 0xBA | powerlevel

silabs.com | Building a more connected world. Page 65 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.210 ZW_RequestNetWorkUpdate
[- -

BYTE ZW_RequestNetWorkUpdate (VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus,
TX_STATUS_TYPE* txStatusReport))

Macro: ZW_REQUEST_NETWORK_UPDATE (func)

This API call is used to request a network update from a SUC/SIS controller. Any changes are reported
to the application by calling the ApplicationControllerUpdate).

All controllers MAY use this call if there is a SUC/SIS in the network. Secondary controllers MUST NOT
use this call if there is no SUC/SIS in the network.

All types of routing slaves MAY use this call if there is a SUC/SIS in the network. Routing Slaves MUST
NOT use this call if there is no SUC/SIS in the network. In case the Routing Slave has called
ZW_RequestNewRouteDestinations prior to ZW_RequestNetWorkUpdate, then Return Routes for the
destinations specified by the application in ZW_RequestNewRouteDestinations will be updated along
with the SUC Return Route.
Checking if a SUC/SIS is known by the node is done using the API call ZW_GetSUCNodelD.
NOTE: The SUC/SIS can only handle one network update process at a time. If another request is made
during a network update process then the latest requesting node receives a ZW_SUC_UPDATE_WAIT
status.
WARNING: This API call will generate a lot of network activity that will use bandwidth and stress the
SUC/SIS in the network. Therefore, network updates SHOULD be requested as seldom as possible and
never more often that once every hour from a controller.

Defined in: ZW__controller_api.h and ZW_slave_routing_api.h

Return value:

BYTE TRUE If the updating process is started.

FALSE If the requesting controller is the SUC
node or the SUC node is unknown.

Parameters:

completedFunc Transmit complete call back.
IN

silabs.com | Building a more connected world. Page 66 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Callback function Parameters:
txStatus IN Status of command:
ZW_SUC_UPDATE_DONE

ZW_SUC_UPDATE_ABORT

ZW_SUC_UPDATE_WAIT
ZW_SUC_UPDATE_DISABLED

ZW_SUC_UPDATE_OVERFLOW

txStatusReport (see ZW_SendData)
IN

Serial API:

HOST->ZW: REQ | 0x53 | funcID

The update process succeeded.

The update process aborted because of
an error.

The SUC node is busy.
The SUC functionality is disabled.

The controller requested an update after
more than 64 changes have occurred in
the network. The update information is
then out of date in respect to that
controller. In this situation the controller
have to make a replication (copy) before
trying to request any new network
updates.

Notice: funclD is used to correlate callback with original request. Callback is disabled by setting funclD

equal to zero in original request.
ZW->HOST: RES | 0x53 | retVal

ZW->HOST: REQ | 0x53 | funclID | txStatus

silabs.com | Building a more connected world.

Page 67 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.211 ZW_RFPowerlevelRediscoverySet
- - - - - - - - - -]

void ZW_RFPowerlevelRediscoverySet(BYTE bNewPower)
Macro: ZW_RF_POWERLEVEL_REDISCOVERY_SET(bNewPower)
This function MAY be used to set the power level locally in the node when finding neighbors.
The default power level used for rediscovery is normal power minus 6dB. The default power level
SHOULD be used. The call to ZW_RFPowerlevelRediscoverySet MAY be omitted if the default power
level is to be used.
Itis NOT RECOMMENDED to use other power levels. Increased power levels may cause weak RF links
to be included in the routing table. Weak RF links can increase latency in the network due to retries to
get through. Further reduced power levels may cause nodes with good link properties to not be
discovered. This may lead to increased latency due to additional hops to the destination.
A call to this function affects the power level used for all future neighbor discovery operations.
The function can be called from Applicationlnit or during runtime from ApplicationPoll or Application-
CommandHandler.

Defined in: ZW _basis_api.h

Parameters:

bNewPower IN Powerlevel to use when doing
neighbor discovery, valid values:

normalPower Max power possible

minus1dB Normal power - 1dB (mapped to minus2dB*)
minus2dB Normal power - 2dB

minus3dB Normal power - 3dB (mapped to minus4dB)
minus4dB Normal power - 4dB

minus5dB Normal power - 5dB (mapped to minus6dB)
minus6dB Normal power - 6dB

minus7dB Normal power - 7dB (mapped to minus8dB)
minus8dB Normal power - 8dB

minus9dB Normal power - 9dB (mapped to minus10dB)

Serial API:

1400 Series support only -2dB power level steps

silabs.com | Building a more connected world. Page 68 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

HOST->ZW: REQ | Ox1E | powerLevel

silabs.com | Building a more connected world. Page 69 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.212 ZW_SendNodelnformation
[=

BYTE ZW_SendNodelnformation(BYTE destNode,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))
Macro: ZW_SEND_NODE_INFO(node,option,func)
Create and transmit a “Node Information” frame. The Z-Wave transport layer builds a frame, request
application node information (see ApplicationNodelnformation) and queue the “Node Information”
frame for transmission. The completed call back function (completedFunc) is called when the
transmission is complete.
The Node Information Frame is a protocol frame and will therefore not be directly available to the
application on the receiver. The API call ZW_SetLearnMode() can be used to instruct the protocol to
pass the Node Information Frame to the application.

When ZW_SendNodelnformation() is used in learn mode for adding or removing the node from the
network the transmit option TRANSMIT_OPTION_LOW_POWER should NOT be used.

NOTE: ZW_SendNodelnformation uses the transmit queue in the API, so using other transmit functions
before the complete callback has been called by the API is not recommended.

WARNING: It is not allowed to call ZW_SendNodelnformation() from a controller when
ZW_SetLearnMode() is active.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE If frame was put in the transmit queue
FALSE If it was not (callback will not be called)

Parameters:

destNode IN Destination Node ID
(NODE_BROADCAST == all nodes)

txOptions IN Transmit option flags.
(see ZW_SendData)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)
txStatusReport IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x12 | destNode | txOptions | funclD

silabs.com | Building a more connected world. Page 70 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

ZW->HOST: RES | 0x12 | retVal

ZW->HOST: REQ | 0x12 | funclID | txStatus

silabs.com | Building a more connected world. Page 71 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.213 ZW_SendTestFrame
[-

BYTE ZW_SendTestFrame(BYTE nodelD,
BYTE powerlevel,
VOID_CALLBACKFUNC(func)(BYTE txStatus, TX_STATUS_TYPE*
txStatusReport))

Macro: ZW_SEND_TEST_FRAME(nodelD, power, func)
Send a test frame directly to nodelD without any routing, RF transmission power is previously set to
powerlevel by calling ZW_RF_POWERLEVEL_SET. The test frame is acknowledged at the RF
transmission powerlevel indicated by the parameter powerlevel by nodelD (if the test frame got through).
This test will be done using 9600 kbit/s transmission rate.
NOTE: This function should only be used in an install/test link situation.

Defined in: Z\W_basis_api.h

Parameters:

nodelD IN Node ID on the node ID (1..232)

the test frame should be

transmitted to.

powerLevel IN Powerlevel to use in RF
transmission, valid values:

normalPower Max power possible

minus1dB Normal power - 1dB (mapped to minus2dB*)

minus2dB Normal power - 2dB

minus3dB Normal power - 3dB (mapped to minus4dB)

minus4dB Normal power - 4dB

minus5dB Normal power - 5dB (mapped to minus6dB)

minus6dB Normal power - 6dB

minus7dB Normal power - 7dB (mapped to minus8dB)

minus8dB Normal power - 8dB

minus9dB Normal power - 9dB (mapped to minus10dB)
func IN Call back function called when

done.

1200/300 Series support only -2dB power level steps

silabs.com | Building a more connected world. Page 72 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Callback function Parameters:

txStatus IN (see ZW_SendData)
txStatusReport IN (see ZW_SendData)
Return value:

BYTE FALSE If transmit queue overflow.

Serial API
HOST->ZW: REQ | 0xBE | nodelD| powerlevel | funcID
ZW->HOST: RES | OxBE | retVal

ZW->HOST: REQ | OxBE | funclID | txStatus

silabs.com | Building a more connected world. Page 73 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.214 ZW_SetExtintLevel
[-

void ZW_SetExtintLevel(BYTE intSrc,
BYTE triggerLevel)

Macro: ZW_SET_EXT_INT_LEVEL(SRC, TRIGGER_LEVEL)

This function MAY be used to set the trigger level for external interrupts. Level triggered interrupt MUST
be selected as follows:

Level Triggered

External interrupt O ITO=0;

External interrupt 1 IT1=0;

Defined in: ZW _basis_api.h

Parameters:

intSrc IN The external interrupt valid values:
ZW _INTO External interrupt O (Pin P1.0)
ZW_INT1 External interrupt 1 (Pin P1.1)

triggerLevel IN The external interrupt trigger level:
TRUE Set the interrupt trigger to high level
FALSE Set the interrupt trigger to low level
Serial API

HOST->ZW: REQ | 0xB9 | intSrc | triggerLevel

silabs.com | Building a more connected world. Page 74 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.215 ZW_SetPromiscuousMode (only Controller Libraries)
- - - - - - - - - - - -]

void ZW_SetPromiscuousMode(BOOL state)
Macro: ZW_SET_PROMISCUOUS_MODE(state)
The API call ZW_SetPromiscuousMode enable / disable promiscuous mode.

A Controller in promiscuous mode will transfer payload from a promiscuously received application frame
destined and originated from nodes residing in same network (HomelD). The promiscuously received
application frame (only end destination frame) will be transferred to the application through
ApplicationCommandHandler / ApplicationCommandHandler_Bridge with the
RECEIVE_STATUS_FOREIGN_FRAME bit set in rxStatus.

A promiscuously application received frame is defined as:

e A frame transmitted using the same HomelD as the promiscuous controller itself.
e A frame neither originated by nor destined the promiscuous controller itself.
e A frame containing the application command class payload

An end destination frame is defined as either:

Direct frame,

Outgoing routed frame sent by last repeater,
Multicast frame or

Explore frame

With the following exceptions when the controller is a repeater itself:

e Explore frames the controller actively repeats is not transferred to the application.

¢ Routed frames with the controller as the last repeater - only one promiscuously received
application frame is transferred through ApplicationCommandHandler /
ApplicationCommandHandler_Bridge and is transferred on the receiving of the frame transmitted
by the previous Repeater. This is done even if the controller, as repeater, does retries. Acting as
repeater the controller will try transmitting up to 3 times before giving up -> Routed Error.

Promiscuously received frames are delivered to the application via the ApplicationCommandHandler /
ApplicationCommandHandler_Bridge callback function (see section 0/ 4.3.1.9).

Defined in: ZW _basis_api.h

Parameters:

state IN TRUE to enable the promiscuous mode,
FALSE to disable it.

Serial API:

HOST->ZW: REQ | 0xDO | state

See section 0/ 4.3.1.9 for callback syntax when a frame has been promiscuously received.

silabs.com | Building a more connected world. Page 75 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.216 ZW_SetRFReceiveMode
[-

BYTE ZW_SetRFReceiveMode(BYTE mode)

Macro: ZW_SET_RX_MODE(mode)

ZW_SetRFReceiveMode is used to power down the RF when not in use e.g., expects nothing to be
received. ZW_SetRFReceiveMode can also be used to set the RF into receive mode. This functionality
is useful in battery powered Z-Wave nodes e.g., the Z-Wave Remote Controller. The RF is automatic
powered up when transmitting data.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE If operation was successful

FALSE If operation was none successful
Parameters:
mode IN TRUE On: Set the RF in receive mode and

starts the receive data sampling

FALSE Off: Set the RF in power down mode (for
battery power save).

Serial API
HOST->ZW: REQ | 0x10 | mode

ZW->HOST: RES | 0x10 | retVal

silabs.com | Building a more connected world. Page 76 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.217 ZW_Type_Library
- -

BYTE ZW_Type_Library(void)

Macro: ZW_TYPE_LIBRARY()

Get the Z-Wave library type.
Defined in: ZW _basis_api.h

Return value:

BYTE Returns the library type as one of the
following:
ZW_LIB_CONTROLLER_STATIC Static controller library
ZW _LIB_CONTROLLER _BRIDGE Bridge controller library
ZW _LIB_CONTROLLER Portable controller library
ZW_LIB_SLAVE_ENHANCED Enhanced 232 slave library
ZW_LIB_SLAVE_ROUTING Routing slave library
ZW_LIB_SLAVE Slave library
ZW_LIB_INSTALLER Installer library

Serial API

HOST->ZW: REQ | 0xBD

ZW->HOST: RES | 0xBD | retVal

silabs.com | Building a more connected world. Page 77 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.218 ZW_Version
[-

BYTE ZW_Version(BYTE *buffer)

Macro: ZW_VERSION(buffer)

Get the Z-Wave basis API library version.
Defined in: ZW _basis_api.h
Parameters:

buffer OUT Returns the API library version in text
using the format:

Z-Wave x.yy
where x.yy is the library version.

Return value:

BYTE Returns the library type as one of the
following:
ZW_LIB_CONTROLLER_STATIC Static controller library
ZW_LIB_CONTROLLER_BRIDGE Bridge controller library
ZW_LIB_CONTROLLER Portable controller library
ZW _LIB_SLAVE_ENHANCED Enhanced 232 slave library
ZW _LIB_SLAVE_ROUTING Routing slave library
ZW _LIB_SLAVE Slave library
ZW _LIB_INSTALLER Installer library

Serial API:

HOST->ZW: REQ | 0x15

ZW->HOST: RES | 0x15 | buffer (12 bytes) | library type

silabs.com | Building a more connected world. Page 78 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.219 ZW_VERSION_MAJOR /ZW_VERSION_MINOR / ZW_VERSION_BETA
|

Macro: ZW_VERSION_MAJOR/ZW_VERSION_MINOR/ ZW_VERSION_BETA

These #defines can be used to get a decimal value of the used Z-Wave library. ZW_VERSION_MINOR
should be 0 padded when displayed to users EG: ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=2 should be shown as: 1.02 to the user where as ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=20 should be shown as 1.20.

ZW_VERSION_BETA is only defined for beta releases of the Z-Wave Library. In which case it is defined
as a single char for instance: 'b'

Defined in: ZW basis_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 79 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.20 ZW_WatchDogEnable
[- -

void ZW_WatchDogEnable(void)
Macro: ZW_WATCHDOG_ENABLE()
This function may be used to enable the 500 Series Z-Wave SoC built-in watchdog.
It is possible to implement a reliable safety system with a hardware watchdog; resetting the entire
hardware if a part of the system stops operating correctly. Properly designed, the watchdog handler
monitors a critical chain of conditions that must be met before the watchdog is kicked again. See
4.3.2.22.
By default, the watchdog is disabled. The watchdog SHOULD be enabled in released product firmware.
It is however RECOMMENDED that the watchdog is not enabled during development and testing prior to
final release testing. An enabled watchdog may prevent firmware crashes and stalls from being
discovered during development and initial testing. As a side note, debugging a system with an enabled
watchdog can be a challenge.

Defined in: Z\W_basis_api.h

Serial API

HOST->ZW: REQ | 0xB6

silabs.com | Building a more connected world. Page 80 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.21 ZW_WatchDogDisable
[-

void ZW_WatchDogDisable(void)

Macro: ZW_WATCHDOG_DISABLE ()

This function may be used to disable the 500 Series Z-Wave SoC built in watchdog.
Defined in: ZW _basis_api.h
Serial API

HOST->ZW: REQ | 0xB7

silabs.com | Building a more connected world. Page 81 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.222 ZW_WatchDogKick
[- |

void ZW_WatchDogKick(void)
Macro: ZW_WATCHDOG_KICK ()

This function SHOULD be used to keep the watchdog timer from resetting the 500 Series Z-Wave SoC.
The watchdog timeout interval is 1 second. If enabled, the watchdog MUST be kicked at least one time
per interval. Failing to do so will cause the 500 Series Z-Wave SoC to be reset.

It is possible to implement a reliable safety system with a hardware watchdog; resetting the entire
hardware if a part of the system stops operating correctly. Properly designed, the watchdog handler
monitors a critical chain of conditions that must be met before the watchdog is kicked again.

Itis RECOMMENDED that the designer seeks inspiration in the literature for the design of a reliable
watchdog handler.

The resulting executable code does not necessarily require much code space. As a minimum, one
SHOULD call ZW_WatchDogKick from the function ApplicationPoll.

An unconditional call of ZW_WatchDogKick from ApplicationPoll will however only catch Z-Wave
protocol exceptions. Without the abovementioned critical chain of conditions, an application may hang
infinitely in an unforeseen state without getting reset by the hardware watchdog.

The watchdog SHOULD be kicked one or more times from the function ApplicationInitSW to avoid
unintentional reset of the application during initialization.

Defined in: ZW _basis_api.h
Serial API

HOST->ZW: REQ | 0xB8

silabs.com | Building a more connected world. Page 82 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.23 ZW_GetTxTimer
[-

void ZW_GetTxTimer(BYTE bChannel,
DWORD *dwTxTime)

This function gets the protocols internal tx timer for the specified channel. The returned value is in milli
seconds from the last call to ZW_ClearTxTimers(). The tx timers are updated by the protocol exery time a
frame is send.

Defined in: ZW _basis_api.h

Parameters:

bChannel IN The channel to get the tx timer from.
Valid channels are 0, 1 and 2

dwTxTime OUT The time the transmitter has been
active since the last reset or call to
ZW_ClearTxTimers()

Serial API:

HOST->ZW: REQ | 0x38

ZW->HOST: RES | 0x38 | TxTimeChannelO | TxTimeChannel1 | TxTimeChannel2

silabs.com | Building a more connected world. Page 83 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.24 ZW_ClearTxTimers
[- -

void ZW_ClearTxTimers(void)

This function clears the protocols internal tx timers. The tx timers are updated by the protocol exery time
a frame is send.

Defined in: ZW _basis_api.h
Serial API

HOST->ZW: REQ | 0x37

silabs.com | Building a more connected world. Page 84 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.25 ZW_GetNetworkStats
- - - -]

void ZW_GetNetworkStats(S_NETWORK_STATISTICS *sNetworkStats)
This function retrieves the current Network Statistics as collected by the Z-Wave protocol. The Z-Wave
protocol will continuesly update any Network Statistics counter until it reaches 65535, which then
indicates that the specific counter has reached 65535 or more occurrences. The Network Statistics
counters are cleared either on module startup or by calling ZW_ClearNetworkStats().

Defined in: ZW _basis_api.h

Parameters:

*sNetworkStats typedef struct S NETWORK_STATISTICS

ouT { WORD wRFTxFrames Transmitted Frames —
including Retries and ACKs
WORD wRFTxLBTBackOffs; Receiving Z-Wave frame or

RSSI detected to be too high
for starting transmission. 3
channel will if too high RSSI
change channel on next try to
start same frame transmission.
2 channel will Fail frame after 1

second of continuously LBT

Backoffs.
WORD wRFRxFrames; Received Frames (No errors)
WORD wRFRxLRCEtrrors; Received Checksum Errors (2
channel only)
WORD wRFRxCRC16Errors; Received CRC16 Errors
WORD wRFRxForeignHomelD; Received Foreign Home ID

} S_NETWORK_STATISTICS;

Serial API:
HOST->ZW: REQ | 0x3A

ZW->HOST: RES | O0x3A | wRFTxFrames_MSB | wRFTxFrames_LSB | wWRFTxLBTBackOffs_MSB |
WRFTXLBTBackOffs_LSB | wRFRxFrames_MSB | wRFRxFrames_LSB | WRFRxLRCErrors_MSB |
WRFRXLRCErrors_LSB | WRFRXCRC16Errors_MSB | WRFRXCRC16Errors_LSB |
wRFRxForeignHomelD_MSB | wRFRxForeignHomelD _LSB

silabs.com | Building a more connected world. Page 85 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.26 ZW_ClearNetworkStats

. ___|]
void ZW_ClearNetworkStats(void)
This function clears the current Network Statistics collected by the Z-Wave protocol.
Defined in: ZW_basis_api.h
Serial API
HOST->ZW: REQ | 0x39

ZW->HOST: RES | 0x01

silabs.com | Building a more connected world. Page 86 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.27 ZW_Power_Management_lInit
[-

void ZW_Power_Management_Init(DWORD sleepPeriod, BYTE intEnable)

This function is used to set the WUT sleep period (in seconds) for None listening node which periodically
enter WUT sleep mode to preserve power. Also settable is if node should be able to wake up through the
EXT1 pin activation.

Defined in: ZW _basis_api.h
Parameters:

sleepPeriod IN Number of seconds the node
should be in WUT mode before
application is called again.

intEnable IN Interrupt enable bit mask. Valid
bit masks are:
ZW_INT_MASK_EXT1 External interrupt 1 (PIN P1_1) is enabled as

interrupt source
0x00 No external Interrupts will wakeup.
Serial API (Not supported)

silabs.com | Building a more connected world. Page 87 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.28 ZW_NetworkLearnModeStart
[- -]

void ZW_NetworkLearnModeStart(E_NETWORK_LEARN_MODE_ACTION eMode)

This function enables/disables the Network Management module inclusion/exclusion mode sequence
according to specified mode.

The Application defined ApplicationNetworkLearnModeCompleted (See 4.3.1.11, 4.3.1.12) is called
with either status or final result of mode sequence.

Defined in: ZW _basis_api.h
Parameters:

eMode Valid mode values are:

IN E_NETWORK _LEARN_MODE_Disable learn process
DISABLE
E_NETWORK_LEARN_MODE_ Enable the learn process to do an inclusion. Will first try
INCLUSION Classic inclusion followed by 4 tries of NWI.
E_NETWORK_LEARN_MODE__ Enable the learn process to do a Classic exclusion.
EXCLUSION

E_NETWORK LEARN_MODE_ Enable the learn process to do a NWE with 4 tries.
EXCLUSION_NWE

E_NETWORK_LEARN_MODE_ Enable the learn process to do an SMART START
INCLUSION_SMARTSTART inclusion.

Serial API

The ZW_NetworkLearnModeStart functionality can through Serial API be reached with the
FUNC_ID_ZW_SET_LEARN_MODE functionality by adding

SERIALPI_SET _LEARN_MODE_LEARN_PLUS_OFFSET to the needed Network Learn Mode.
SERIALPI_SET_LEARN_MODE_LEARN_PLUS_OFFSET = 0x80

HOST->ZW: REQ | 0x50 | eMode + 0x80 | funclD

ZW->HOST: RES | 0x01

silabs.com | Building a more connected world. Page 88 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.2.29 ZW_NetworkManagementSetMaxInclusionRequestintervals
[- - - -]

BYTE ZW_NetworkManagementSetMaxInclusionRequestintervals(BYTE binclRequestintervals)

This function can be used to set the maximum interval between SmartStart inclusion requests.

Defined in: ZW_basis_api.h
Return value:

BYTE FALSE

TRUE

Parameters:

binclRequestintervals The maximum number of 128 sec

IN ticks between SmartStart inclusion
requests.

Serial API

HOST->ZW: REQ | 0xD6 | binclRequestintervals

ZW->HOST: RES | 0xD6 | RetVal

0: Requested maximum intervals
either O(default) or not valid

5-99: The requested number of
intervals set

The unit is 128sec and valid range
is 5-99.
[5...99] => [640 sec ... 12672 sec]

silabs.com | Building a more connected world.

Page 89 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3 Z-Wave Transport API

The Z-Wave transport layer controls transfer of data between Z-Wave nodes including retransmission,
frame check and acknowledgement. The Z-Wave transport interface includes functions for transfer of
data to other Z-Wave nodes. Application data received from other nodes is handed over to the
application via the ApplicationCommandHandler function. The ZW_MAX_NODES define defines the
maximum of nodes possible in a Z-Wave network.

silabs.com | Building a more connected world. Page 90 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.1 ZW_SendData
- - -]

BYTE ZW_SendData(BYTE nodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus,
TX_STATUS_TYPE* txStatusReport))

NOTE: Not supported by the Enhanced 232 Slave library, use ZW_SendDataEx instead.
Macro: ZW_SEND_DATA(node,data,length,options,func)

This function MAY be used to transmit contents of a data buffer to a single node or all nodes (broadcast).
The data buffer contents are encapsulated in a Z-Wave transport frame by adding a protocol header and
a checksum trailer. The frame is appended to the end of the transmit queue (first in; first out) and
transmitted whenever possible.

The protocol layer automatically handles the necessary signaling when the ZW_SendData function is
used to initiate a transmission to a FIiRS node.

A bridge controller library MUST NOT send to a virtual node belonging to the bridge itself.

The following parameters MUST be specified for the SendData function.

4.3.3.1.1 nodelD parameter
The nodelD parameter MUST specify the destination nodelD.

The nodelD parameter MAY specify the broadcast nodelD (OxFF).

4.3.3.1.2 *pData parameter

The *pData parameter MUST specify a pointer to a data buffer containing a valid Z-Wave command.
The data buffer referenced by the *pData parameter MUST contain the number of bytes indicated by the
dataLength parameter.

4.3.3.1.3 datalLength parameter

The data buffer referenced by the *pData parameter is used to hold a valid Z-Wave command.
The dataLength parameter MUST specify the length of the Z-Wave command.

43314 txOptions parameter

The calling application MUST compose the txOptions parameter value by combining relevant options
chosen from the table below.

One or more callbacks to the completedFunc pointer indicate the status of the operation.

The TRANSMIT_OPTION_ACK option SHOULD be used to request that an acknowledgement is
returned by the destination node. If the TRANSMIT_OPTION_ACK transmit option is specified, the
protocol layer monitors the arrival of the acknowledgement frame. Up to two retransmissions may be
attempted if no acknowledgement frame is received.

silabs.com | Building a more connected world. Page 91 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

The application SHOULD specify the TRANSMIT_OPTION_AUTO_ROUTE option. This will enable
mesh routing to destinations which are out of direct range.

The TRANSMIT_OPTION_NO_ROUTE option MAY be specified to limit the transmission to direct range
for special application purposes.

Table 8. SendData :: txOptions
TRANSMIT_OPTION_ Description Priority

ACK Request acknowledged transmission. If ACK is disabled (0), all other
options are ignored by the
SendData function

NO_ROUTE Request acknowledged transmission and | ACK MUST be enabled (1)
explicitly disable routing.

AUTO_ROUTE Request acknowledged transmission and | ACK MUST be enabled (1)
allow routing. NO_ROUTE MUST be
If TRANSMIT_OPTION_AUTO_ROUTE == | disabled (0)

0, only the Last Working Route is used
for routing if direct range transmission
fails.

If TRANSMIT_OPTION_AUTO_ROUTE ==
1, routed transmission uses the Last
Working Route and routing table if direct
range transmission fails

EXPLORE Request acknowledged transmission and | ACK MUST be enabled (1)
allow routing. Allow dynamic route NO_ROUTE MUST be
resolution if Last Working Route, routing | disabled (0)

table and direct range transmission fails. AUTO_ROUTE SHOULD be

enabled (1)

If the broadcast nodelD (0xFF) is specified, the txOptions parameter SHOULD carry the following option
values

TRANSMIT_OPTION_ACK =0
TRANSMIT_OPTION_NO_ROUTE =1
TRANSMIT_OPTION_AUTO_ROUTE =0
TRANSMIT_OPTION_EXPLORE =0

silabs.com | Building a more connected world. Page 92 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Table 9. Use of Transmit Options for Controller Libraries

TRANSMIT_OPTION_ .
Protocol behaviour
NO_ROUTE| ACK |AUTO_ROUTE
y 0 (ignore) Transmit frame with no routing, nor retransmission;
9 just as if it was a broadcast frame.
Frame will be transmitted with direct communication
1 1 (ignore) i.e., no routing regardless whether a APR or a LWR
exist or not.
In case direct transmission fails, the frame will be
0 1 0 transmitted using LWR if one exists to the destination
in question.
If direct communication fails, then attempt with LWR.
0 y 1 If LWR also fails or simply do not exist to the
destination, then routes from the routing table will be
used.

4.3.3.1.4.1 TRANSMIT_OPTION_ACK

The transmit option TRANSMIT_OPTION_ACK MAY be used to request the destination node to return a
transfer acknowledgement. The Z-Wave protocol layer will retry the transmission if no acknowledgement
is received.

The transmit option TRANSMIT_OPTION_ACK SHOULD be specified for all normal application
communication.

If the nodelD parameter specifies the broadcast nodelD (0xFF), the Z-Wave protocol layer ignores the
transmit option TRANSMIT_OPTION_ACK.

4.3.3.1.4.2 TRANSMIT_OPTION_NO_ROUTE

The transmit option TRANSMIT_OPTION_NO_ROUTE MAY be used to force the protocol to send the
frame without routing. All available routing information is ignored.

The transmit option TRANSMIT_OPTION_NO_ROUTE SHOULD NOT be specified for normal
application communication.

If the nodelD parameter specifies the broadcast nodelD (OxFF), the Z-Wave protocol layer ignores the
transmit option TRANSMIT_OPTION_NO_ ROUTE.

4.3.3.1.4.3 TRANSMIT _OPTION_AUTO_ROUTE
The transmit option TRANSMIT_OPTION_AUTO_ROUTE MAY be used to enable routing.

The Z-Wave protocol layer will then try transmitting the frame via repeater nodes in case destination
node is out of direct range.

Controller nodes MAY use the TRANSMIT_OPTION_AUTO_ROUTE to enable routing via Last Working
Routes, calculated routes and routes discovered via dynamic route resolution.

Routing Slave and Enhanced 232 Slave nodes MAY use the TRANSMIT_OPTION_AUTO_ROUTE to
enable routing via return routes for the actual destination nodelD (if any exist).

silabs.com | Building a more connected world. Page 93 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

If the nodelD parameter specifies the broadcast nodelD (OxFF), the Z-Wave protocol layer ignores the
transmit option TRANSMIT_OPTION_AUTO_ROUTE.

4.3.3.1.4.4 TRANSMIT_OPTION_EXPLORE

The transmit option TRANSMIT_OPTION_EXPLORE MAY be used to enable dynamic route resolution.
Dynamic route resolution allows a node to discover new routes if all known routes are failing.
An explorer frame cannot wake up FLiRS nodes.

An explorer frame uses normal RF power level minus 6dB. This is also the power level used by a node
finding its neighbors.

The API function ZW_SetRoutingMAX MAY be used to specify the maximum number of routing attempts
based on routing table lookups to use before the Z-Wave protocol layer resorts to dynamic route
resolution.

A default value of five routing attempts SHOULD be used.

For backwards compatibility reasons, transmissions to nodes which do not support dynamic route
resolution will ignore the transmit option flag TRANSMIT_OPTION_EXPLORE.

4.3.3.1.4.5 TRANSMIT_OPTION_LOW_POWER

The TRANSMIT_OPTION_LOW_POWER option should only be used when the two nodes that are
communicating are close to each other (<2 meter). In all other cases, this option SHOULD NOT be used.

4.3.3.1.4.6 completedFunc

The completedFunc parameter MUST specify the calling address of a function that can be called when
the SendData frame transmission completes. Completion includes a range of possible situations:

e Direct range frame was successfully transmitted (as requested) without acknowledgement
e Direct range frame was successfully acknowledged
¢ Routed frame was successfully acknowledged

The transmit status txStatus indicates how the transmission operation was completed.

Table 10. txStatus Values

txStatus Description

TRANSMIT_COMPLETE_OK The operation was successful.

TRANSMIT_COMPLETE_NO_ACK | No acknowledgement was received from the destination
node.

TRANSMIT_COMPLETE_FAIL Indicates that the network is busy (jammed).

silabs.com | Building a more connected world. Page 94 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

WARNING: Allways use the completeFunc callback to determine when the next frame can be send.
Calling the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback
will overflow the transmit queue and eventually fail. The data buffer in the application must not be
changed before completeFunc callback is received because it is only the pointer there is passed to the
transmit queue.

43315 Payload size

The maximum size of a frame is 64 bytes. The protocol header and checksum takes 10 bytes in a single
cast or broadcast frame leaving 54 bytes for the payload. A SO security enabled single cast takes 20
bytes as overhead. The maximum dataLength field depends on the transmit options and whether a non-
secure/secure frame is used.

Table 11. Maximum Payload Size

Transmit option Maximum datalLength

Notice: Always use lowest maximum dataLength Non-secure Secure
depending on options used.

TRANSMIT_OPTION_EXPLORE 46 bytes 26 bytes

TRANSMIT_OPTION_AUTO_ROUTE 48 bytes 28 bytes

TRANSMIT_OPTION_NO_ROUTE 54 bytes 34 bytes
4.3.3.1.6 Embedded API function prototypes

Defined in: ZW _transport_api.h

Return value:

BYTE FALSE If transmits queue overflow
Parameters:
nodelD IN Destination node ID The frame will also be transmitted in case
(NODE_BROADCAST == all nodes) the source node ID is equal destination
node ID
pData IN Data buffer pointer
dataLength IN Data buffer length The maximum datalLength field depends

on the transmit options and whether a
non-secure/secure frame is used. For
details, see section 3.4. The payload
must be minimum one byte.

silabs.com | Building a more connected world. Page 95 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

txOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

TRANSMIT_OPTION_EXPLORE

completedFunc Transmit completed call back function

Transmit at low output power level (1/3 of
normal RF range).

Only send this frame directly, even if a
response route exist

Request acknowledge from destination
node.

Controllers:

Request retransmission via repeater
nodes (at normal output power level).
Number of max routes can be set using
ZW_SetRoutingMax

Routing and Enhanced 232 Slaves:
Send the frame to nodelD using the
return routes assigned for nodelD to the
routing/enhanced 232 slave, if no routes
are valid then transmit directly to nodelD
(if nodelD = NODE_BROADCAST then
the frame will be a BROADCAST).

If return routes exists and the nodelD =
NODE_BROADCAST then the frame will
be transmitted to all assigned return route
destinations. If nodelD !=
NODE_BROADCAST then the frame will
be transmitted via the assigned return
routes for nodelD.

Transmit frame as an explore frame if
everything else fails.

silabs.com | Building a more connected world.

Page 96 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Callback function Parameters:

txStatus

txStatusReport

Transmit completion status:
TRANSMIT_COMPLETE_OK

TRANSMIT_COMPLETE_NO_ACK

TRANSMIT_COMPLETE_FAIL

typedef struct TX_STATUS_TYPE_

{ WORD wTransmitTicks;
BYTE bRepeaters;
struct rssi_dBm rssi_values;
BYTE bACKChannelNo;
BYTE bLastTxChannelNo;

E_ROUTING_SCHEME
bRouteSchemeState;

BYTE

pLastUsedRoute[LAST _USED_ROUTE_SIZE];

BYTE bRouteTries;
S ROUTE_LINK bLastFailedLink;

} TX_STATUS_TYPE;

Successfully

No acknowledge is received before
timeout from the destination node.
Acknowledge is discarded in case it
is received after the timeout.

Not possible to transmit data

because the Z-Wave network is
busy (jammed).

Passed 10ms ticks
Repeaters in route

Rssi value for each hop
(see Table 7).

Channel ack was received on
Channel frame was send on

The last used routing scheme

Last used route (5 byte array)
Routing attempts

Last route that failed

silabs.com | Building a more connected world.

Page 97 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Timeout: 65s. This is a worst case scenario that happens very seldom. The ZW_SendData call typically
returns a callback.

Exception recovery: If a timeout occurs, it is important to call ZW_SendDataAbort to stop the sending of
the frame.

App_Start_Sending/
Z\W_SendData(),
TxCount=0,
CallbackTimeout=65s

Preparing
SendingData

ZW_SendData ==FALSE ZW_SendData ==TRUE

SendingData
TRANSMIT_COMPLETE_OK/

txStatus==
App_ Status_OK

ResendTimer Status==
TRANSMIT_COMPLETE_FAIL

txStatus==
TRANSMIT_COMPLETE_NO_ACK/
App_ Status_NO_ACK

\

CallbackTimeout/
App_ Status_CALLBACKTIMEOUT,
Call SendDataAbort()

TxCount<4/
TxCount++

ResendTimer=500ms
TxCount>=4/

ResendTimer=Disable,
CallbackTimeout=Disable,
App_ Status_FAIL

Preparing
Resending

Figure 9. Application State Machine for ZW_SendData

silabs.com | Building a more connected world. Page 98 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Table 12. ZW_SendData : State/Event Processing

ldle

Waiting for events
Event (Inif) => Ilnitialize timers, efc.

Event App_Start_Sending == // Higher layer application event calls for data to be sent
New state: <PreparingSendingData>
Actions: Call ZW_SendData()
Reset refransmission counter TxCount=0
Set CallbackTimeout=65s

PreparingSendingData

Waiting for events

Event ZW_SendData()==FALSE =>// Transmitter queue is full. Transmission is not attempted
New state: <PreparingResending>
Actions: IF (TxCount<4) THEN
Increment TxCount refransmission counter
Preset retransmission delay timer ResendTimerto 500ms
ELSE
Disable refransmission delay imer ResendTimer
Disable callback timeout tmer CallbackTimeout
Generate App_Status_FAIL event for application
ENDIF
Il App_Status_FAIL SHOULD cause application o reportto user that
I/ that ransmission was not possible, RF media may be jammed

Event ZW_SendData()==TRUE ==/ Transmitter is starting; await callback events
New state: <SendingData>
Actions: (none)

SendingData

Waiting for events

Event txStatus==TRANSMIT_COMPLETE_OK =>// Callback
New state: <Idle>
Actions: Generate App_Status_OK event for application

Event txStatus==TRANSMIT_COMPLETE_NO_ACK == // Callback
New state: <Idle>
Actions: Generate App_Status_NO_ACK event for application
Il App_Status_NO_ACK SHOULD cause application o reportto user that
I/that ransmission falled, Destination may be unreachable.

Event CALLBACKTIMEOUT == // Timer event
I/ This Is an exception that should never happen.
New state: <Idle>
Actions: Generate App_Status_ CALLBACKTIMEOUT event for application
Call ZW_SendDataAbort()
I Recommended application response is hard reset target via watchdog timeout
I/ The state machine may receive one or more SendDataAbort callback events
I/ after entering the <Idle> state. These events must be ignored.

PreparingResending

Waiting for events

Event ResendTimer =>// Timer event
New state: <PreparingSendingData>
Actions: (none)

silabs.com | Building a more connected world.

Page 99 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.1.7 Serial API function prototypes

HOST->ZW: REQ | 0x13 | nodelD | dataLength | pData[] | txOptions | funclD
ZW->HOST: RES | 0x13 | RetVal

If either (funcID == 0) OR (RetVal == FALSE) -> no callback

If (funcID != 0) AND (RetVal == TRUE) then callback returns with:

ZW->HOST: REQ | 0x13 | funcID | txStatus

SerialAPI targets supporting IMA
The Devkit 6.60.00 adds a txStatusReport structure to the ZW_SendData callback parameter and this

have been introduced into the IMA supporting SerialAPI targets by extending the number of parameters
in the ZW_SendData callback parameter list.

HOST->ZW: REQ | 0x13 | nodelD | dataLength | pData[] | txOptions | funclD
ZW->HOST: RES | 0x13 | RetVal

If either (funcID == 0) OR (RetVal == FALSE) -> no callback

If (funcID != 0) AND (RetVal == TRUE) then callback returns with:

ZW->HOST: REQ | 0x13 | funcID | txStatus | wTransmitTicksMSB | wTransmitTicksLSB | bRepeaters |
rssi_values.incoming[0] | rssi_values.incoming[1] | rssi_values.incoming[2] | rssi_values.incoming[3] |
rssi_values.incoming[4] | bACKChannelNo | bLastTxChannelNo | bRouteSchemeState | repeaterOQ |
repeater1 | repeater2 | repeater3 | routespeed | bRouteTries | bLastFailedLink.from | bLastFailedLink.to

The SerialAPlI command FUNC_ID_SERIAL_API_SETUP (0x0B) has been added to enable/disable the
transmission of the txStatusReport structure to HOST on ZW_SendData callback.

Notice: For IMA enabled targets the transmission of txStatusReport to HOST is ENABLED at module
startup. For NON IMA enabled targets the transmission of txStatusReport to HOST is DISABLED at
module startup.

HOST->ZW: REQ | 0x0B | 0x02 | bEnable

ZW->HOST: RES | 0x0B | 0x02 | RetVal

bEnable = 1 -> ENABLE txStatusReport transmission to HOST on ZW_SendData callback.
bEnable = 0 -> DISABLE txStatusReport transmission to HOST on ZW_SendData callback.
RetVal = 1 -> Operation executed successfully.

RetVal = 0 -> Operation executed unsuccessfully.

Notice: Serial API version is unchanged despite changed format in ZW-SendData for this particular
application.

silabs.com | Building a more connected world. Page 100 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.2 ZW_SendDataEx (only Slave Libraries)
- - - - - - - -]

ZW_SENDDATA_EX_RETURN_CODES ZW_SendDataEx(BYTE *pData,
BYTE datalLength,
TRANSMIT_OPTIONS_TYPE * pTxOptionsEx,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus,
TX_STATUS_TYPE* txStatusReport))

NOTE: Only supported by the Enhanced 232 and Routing Slave libraries. All Controller libraries
based applications must use ZW_SendData.

NOTE: Broadcast are only allowed unsecure.

This function MAY be used to transmit either unsecure or secure (S0, S2) contents of specified data
buffer to a single node or all nodes (broadcast). The data buffer is optionally security encapsulated and
then encapsulated in a Z-Wave transport frame by adding a protocol header and a checksum trailer. The
frame is appended to the end of the transmit queue (first in; first out) and transmitted whenever possible.

The protocol layer automatically handles the necessary signaling when the ZW_SendDataEx function is
used to initiate a transmission to a FIiRS node.

The following parameters MUST be specified for the SendDataEx function.

4.3.3.2.1 *pData parameter

The *pData parameter MUST specify a pointer to a data buffer containing a valid Z-Wave command.
The data buffer referenced by the *pData parameter MUST contain the number of bytes indicated by the
dataLength parameter.

4.3.3.2.2 datalLength parameter

The data buffer referenced by the *pData parameter is used to hold a valid Z-Wave command.
The dataLength parameter MUST specify the length of the Z-Wave command.

4.3.3.2.3 pTxOptionsEx parameter

The calling application MUST fill the application TRANSMIT_OPTIONS_TYPE structure the
pTxOptionsEx parameter referes to by setting relevant TRANSMIT_OPTIONS_TYPE members:

4.3.3.2.3.1 destNode
Destination node for the specified payload data.

4.3.3.2.3.2 bSrcNode
Reserved for future use.

4.3.3.2.3.3 txOptions
See ZW_Sendata txOptions parameter description (4.3.3.1.4)

4.3.3.2.3.4 txSecOptions
Options for enabling specific Security S2 funtionality.

4.3.3.2.3.5 securityKey
Security key to use for sending.

4.3.3.2.3.6 txOptions2

silabs.com | Building a more connected world. Page 101 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Reserved for future use.

43.3.24 completedFunc

The completedFunc parameter MUST specify the calling address of a function that can be called when
the SendData frame transmission completes. Completion includes a range of possible situations:

e Direct range frame was successfully transmitted (as requested) without acknowledgement
e Direct range frame was successfully acknowledged
o Routed frame was successfully acknowledged

The transmit status txStatus indicates how the transmission operation was completed.

Table 13. txStatus values

TRANSMIT_COMPLETE_OK The operation was successful.

TRANSMIT_COMPLETE_NO_ACK | No acknowledgement was received from the destination
node.

TRANSMIT_COMPLETE_FAIL Indicates that the network is busy (jammed).

WARNING: Allways use the completeFunc callback to determine when the next frame can be send.

4.3.3.25 Payload size

The maximum size of a frame is 64 bytes. The protocol header and checksum takes 10 bytes in a single
cast or broadcast frame leaving 54 bytes for the payload. A SO security enabled single cast takes 20
bytes as overhead. The maximum datalLength field depends on the transmit options and whether a non-
secure/secure frame is used.

Table 14. Maximum payload size

TRANSMIT_OPTION_EXPLORE 46 bytes | 26bytes | 46 bytes
TRANSMIT_OPTION_AUTO_ROUTE 48 bytes | 28bytes | 46 bytes
TRANSMIT_OPTION_NO_ROUTE 54 bytes | 34 bytes | 46 bytes

silabs.com | Building a more connected world. Page 102 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

43.3.2.6

Defined in:

Return value:

ZW_SENDDATA_

EX_RETURN_
CODES

Parameters:
txOptionsEx
.destNode IN
pData IN

dataLength IN

Embedded API function prototypes

ZW-_transport_api.h

ZW_TX_FAILED

ZW_TX_IN_PROGRESS

Destination node ID
(NODE_BROADCAST == all nodes)

Data buffer pointer

Data buffer length

If not queued in transmit queue. No
callback will be done.

If frame is queued for transmission.

The frame will also be transmitted in
case the source node ID is equal
destination node ID

The maximum datalLength field
depends on the transmit options and
whether a non-secure/secure frame is
used. For details, see section 3.4.
The payload must be minimum one
byte.

silabs.com | Building a more connected world.

Page 103 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

txOptionsEx
.txOptions IN

txOptionsEx
.bSrcNode IN

txOptionsEx
.txSecOptions IN

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

TRANSMIT_OPTION_EXPLORE

Reserved for future use.

Security2-specific options

S2_TXOPTION_VERIFY_DELIVERY

Transmit at low output power level
(1/3 of normal RF range).

Only send this frame directly, even if
a response route exist

Request acknowledge from
destination node.

Send the frame to nodelD using the
return routes assigned for nodelD to
the enhanced 232 slave, if no routes
are valid then transmit directly to
nodelD (if nodelD =
NODE_BROADCAST then the frame
will be a BROADCAST).

If return routes exists and the nodelD
= NODE_BROADCAST then the
frame will be transmitted to all
assigned return route destinations. If
nodelD = NODE_BROADCAST then
the frame will be transmitted via the
assigned return routes for nodelD.

Transmit frame as an explore frame if
everything else fails.

This flag will activate frame delivery
verification. In this transmission mode
ZW_SendDataEx will try to verify that
the receiver understood the message
sent. This is done by waiting a little to
see if the node will respond nonce
report to the encrypted message. If
the node does respond with a nonce
report then the option will
automatically cause the system to re-
sync the node, and deliver the
message. The
TRANSMIT_COMPLETE_VERIFIED
(0Ox05) is returned if it could be
determined that a successful (Ack
received) transmitted S2 encrypted
message has been successfully
decrypted by destination. The way
this can be determined is by the
destination returning a decryptable S2
encrypted answer message. A normal

silabs.com | Building a more connected world.

Page 104 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

txOptionsEx
.securityKey IN

txOptionsEx
.txOptions2 IN

completedFunc

S2_TXOPTION_SINGLECAST _
FOLLOWUP

S2_TXOPTION_FIRST_SINGLECAST _

FOLLOWUP

Select security key for transmission

SECURITY_KEY_NONE

SECURITY_KEY_S2_
UNAUTHENTICATED

SECURITY_KEY_S2_
AUTHENTICATED

SECURITY_KEY_S2_ACCESS
SECURITY_KEY_SO0
More transmit option flags.

Reserved for future use. Must be set to
0x00.

Transmit completed call back function

TRANSMIT_COMPLETE is returned
as callback status if message was
transmitted successfully (Ack) but no
decryptable S2 encrypted message is
returned inside timeout (~250ms).

An example where this can be seen is
in the SUPERVISION COMMAND
CLASS

This flag must be present on all single
cast followup messages to a
multicast.

This flag must be present on the first,

and only the first singlecast followup
message in a multicast transmission.

Nonsecure transmission

Use S2 Unauthenticated key

Use S2 Authenticated key

Use S2 Access key

Use Security Scheme 0 key

silabs.com | Building a more connected world.

Page 105 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Callback function Parameters:

txStatus

txStatusReport

43327

Transmit completion status:
TRANSMIT_COMPLETE_OK

TRANSMIT_COMPLETE_NO_ACK

TRANSMIT_COMPLETE_FAIL

TRANSMIT_COMPLETE_VERIFIED

typedef struct _ TX_STATUS_TYPE_

{ WORD wTransmitTicks;
BYTE bRepeaters;
struct rssi_dBm rssi_values;
BYTE bACKChannelNo;
BYTE bLastTxChannelNo;

E_ROUTING_SCHEME
bRouteSchemeState;

BYTE

pLastUsedRoute[LAST_USED ROUTE_SIZE];

BYTE bRouteTries;
S _ROUTE_LINK bLastFailedLink;

} TX_STATUS_TYPE;

Serial API function prototypes

Successfully

No acknowledge is received before
timeout from the destination node.
Acknowledge is discarded in case it
is received after the timeout.

Not possible to transmit data
because the Z-Wave network is
busy (jammed).

A S2 encrypted message has been

successfully decrypted by
destination.

Passed 10ms ticks
Repeaters in route

Rssi value for each hop
(see Table 7).

Channel ack was received on
Channel frame was send on

The last used routing scheme

Last used route (5 byte array)
Routing attempts

Last route that failed

HOST->ZW: REQ | 0xOE | nodelD | dataLength | pData[] | txOptions | txSecOptions | securityKey |
txOptions2 | funclD

ZW->HOST: RES | OxOE | RetVal
If either (funclD == 0) OR (RetVal == FALSE) -> no callback

If (funcID != 0) AND (RetVal == TRUE) then callback returns with:

silabs.com | Building a more connected world. Page 106 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

ZW->HOST: REQ | OxOE | funcID | txStatus | wTransmitTicksMSB | wTransmitTicksLSB | bRepeaters |
rssi_values.incoming[0] | rssi_values.incoming[1] | rssi_values.incoming[2] | rssi_values.incoming[3] |
rssi_values.incoming[4] | bACKChannelNo | bLastTxChannelNo | bRouteSchemeState | repeaterOQ |
repeater1 | repeater2 | repeater3 | routespeed | bRouteTries | bLastFailedLink.from | bLastFailedLink.to

silabs.com | Building a more connected world. Page 107 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.3 ZW_SendData_Bridge
[-

BYTE ZW_SendData_Bridge(BYTE srcNodelD,
BYTE destNodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus,
TX_STATUS_TYPE* txStatusReport))

NOTE: Only supported by the Bridge Controller library. For backward compatibility macros for
the Bridge Controller library has been made for ZW_SendData(node,data,length,options,func) and
ZW_SEND_DATA(node,data,length,options,func)

Macro: ZW_SEND_DATA_BRIDGE(srcnodeid, destnodeid, data, length, options, func)

Transmit the data buffer to a single Z-Wave Node or all Z-Wave Nodes (broadcast). The data buffer is
queued to the end of the transmit queue (first in; first out) and when ready for transmission the Z-Wave
protocol layer frames the data with a protocol header in front and a checksum at the end.

The transmit option TRANSMIT_OPTION_ACK requests the destination node to return a transfer
acknowledge to ensure proper transmission. The transmitting node will retry the transmission if no
acknowledge received. The Controller nodes can add the TRANSMIT_OPTION_AUTO_ROUTE flag to
the transmit option parameter. The Controller will then try transmitting the frame via repeater nodes if the
direct transmission failed.

The transmit option TRANSMIT_OPTION_NO_ROUTE force the protocol to send the frame without
routing, even if a response route exist.

To enable dynamic route resolution a new transmit option TRANSMIT_OPTION_EXPLORE must be
appended to the well known send API calls. This instruct the protocol to transmit the frame as an explore
frame to the destination node if source routing fails. An explore frame uses normal RF power level minus
6dB similar to a node finding neighbors. It is also possible to specify the maximum number of source
routing attempts before the explorer frame kicks in using the API call ZW_SetRoutingMAX. Default value
is five with respect to maximum number of source routing attempts. When communicating with nodes,
which do not support dynamic route resolution the transmit option flag TRANSMIT_OPTION_EXPLORE
is ignored. Notice that an explorer frame cannot wake up FLiRS nodes.

The completedFunc is called when the frame transmission completes, that is when transmitted if ACK is
not requested; when acknowledge received from the destination node, or when routed acknowledge
completed if the frame was transmitted via one or more repeater nodes. The transmit status
TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from the destination node.
The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave network is busy (jammed).

The TRANSMIT_OPTION_LOW_POWER option should only be used when the two nodes that are
communicating are close to each other (<2 meter). In all other cases this option should not be used.

NOTE: Always use the completeFunc callback to determine when the transmit is done. The
completeFunc should flag the application state machine that the transmit has been done and next
state/action can be started. A frame transmit should always be started through the application state
machine in order to be sure that the transmit buffer is ready for sending next frame. Calling the
ZW_SendData_Bridge in a loop without using the completeFunc callback will overflow the transmit
queue and eventually fail. The payload data buffer in the application must not be changed before
completeFunc callback is received because it is only the pointer that is passed to the transmit queue.

silabs.com | Building a more connected world. Page 108 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Defined in:
Return value:
BYTE
Parameters:

srcNodelD IN

destNodelD IN

pData IN

dataLength IN

txOptions IN

ZW _transport_api.h

FALSE

Source node ID. Valid values:

NODE_BROADCAST = Bridge
Controller NodelD.

Bridge Controller NodelD.

Virtual Slave NodelD (only existing
Virtual Slave NodelDs).

Destination node ID

(NODE_BROADCAST == all nodes)

Data buffer pointer

Data buffer length

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

completedFunc Transmit completed call back function

If transmit queue overflow

The frame will also be transmitted in case
the source node ID is equal destination
node ID

The maximum datalength field depends
on the transmit options and whether a
non-secure/secure frame is used. The
payload must be minimum one byte.

Transmit at low output power level (1/3 of
normal RF range).

Only send this frame directly, even if a
response route exist

Transmit frame as an Explore frame if all
else fails

Request acknowledge from destination
node.

Request retransmission via repeater
nodes (at normal output power level).

silabs.com | Building a more connected world.

Page 109 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Callback function Parameters:

txStatus Transmit completion status:
TRANSMIT_COMPLETE_OK Successfully
TRANSMIT_COMPLETE_NO_ACK No acknowledge is received before timeout
from the destination node. Acknowledge is
discarded in case it is received after the
timeout.
TRANSMIT_COMPLETE_FAIL Not possible to transmit data because the

Z-Wave network is busy (jammed).

txStatusReport See ZW_SendData

Serial API:

HOST->ZW: REQ | 0xA9 | srcNodelD | destNodelD | dataLength | pData[] | txOptions | pRoute[4] |
funclID

Devkit 6.x+ -> pRoute[4] not used — use pRoute[4] = {0, 0, 0, 0}
ZW->HOST: RES | 0xA9 | RetVal

ZW->HOST: REQ | 0xA9 | funcID | txStatus
| wTransmitTicksMSB | wTransmitTicksLSB
| bRepeaters
| rssi_values.incoming[0] | rssi_values.incoming[1] | rssi_values.incoming[2]
| rssi_values.incoming[3] | rssi_values.incoming[4]
| bAckChannelNo | | bLastTxChannelNo
| bRouteSchemeState
| repeaterQ | repeater1 | repeater2 | repeater3 | routespeed | bRouteTries
| bLastFailedLink.from | bLastFailedLink.to

silabs.com | Building a more connected world. Page 110 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.4 ZW_SendDataMulti
]

BYTE ZW_SendDataMulti(BYTE *pNodelDList,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_MULTI(nodelist,data,length,options,func)

NOTE: This function is not available in the Bridge Controller library (See
ZW_SendDataMulti_Bridge).

Transmit the data buffer to a list of Z-Wave Nodes (multicast frame). If the transmit optionflag
TRANSMIT_OPTION_ACK is set the data buffer is also sent as a singlecast frame to each of the
Z-Wave Nodes in the node list.

The completedFunc is called when the frame transmission completes in the case that ACK is not
requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when all single
casts have been transmitted and acknowledged.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed). The data pointed to by pNodelDList should not be changed before the
callback is called.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback will
overflow the transmit queue and eventually fail. The data buffer in the application must not be changed
before completeFunc callback is received because it is only the pointer there is passed to the transmit
queue.

Defined in: ZW_transport_api.h

Return value:

BYTE FALSE If transmit queue overflow

silabs.com | Building a more connected world. Page 111 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Parameters:
pNodelDList IN List of destination node ID's
Pdata IN Data buffer pointer

DataLength IN Data buffer length

TxOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE
(Controller API only)
completedFunc Transmit completed call back function
Callback function Parameters:
txStatus IN (see ZW_SendData)

Serial API:

This is a fixed length bit-mask.

The maximum size of a packet is 64
bytes. The protocol header, multicast
addresses and checksum takes 39 bytes
in a multicast frame leaving 25 bytes for
the payload. The payload must be
minimum one byte.

Transmit at low output power level (1/3
of normal RF range).

If TRANSMIT_OPTION_ACK is set the
will make the node try sending as an
Explore frame if all else fails when doing
the single cast transmits

The multicast frame will be followed by a
number of single cast frames to each of
the destination nodes and request
acknowledge from each destination
node.

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

HOST->ZW: REQ | 0x14 | numberNodes | pNodelDList[] | dataLength | pData[] | txOptions | funcID

ZW->HOST: RES | 0x14 | RetVal

ZW->HOST: REQ | 0x14 | funclID | txStatus

silabs.com | Building a more connected world.

Page 112 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.5 ZW_SendDataMultiEx (only Slave Libraries)
[== - -~ - -

ZW_SENDDATA_EX_RETURN_CODES ZW_SendDataMultiEx(BYTE *pData,
BYTE dataLength,

TRANSMIT_MULTI_OPTIONS_TYPE *pTxOptionsMultiEXx,
Void (*completedFunc)(BYTE txStatus))

NOTE: Only supported by the Enhanced 232 and Routing Slave libraries.
Transmit the data buffer using S2 multicast to a list of Z-Wave Nodes. Only the multicast frame is
transmitted, if singlecast frames are needed then application needs to do this using ZW_SendDataEx for

every node in the group.

NOTE: Can only be called successfully if node is S2 included and txOptionsEx.securityKey is set to a
supported S2 key.

The completedFunc is called when the frame transmission completes.

The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave network is busy (jammed).
NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Trying to
transmit in a loop without checking the completeFunc callback will overflow the transmit queue and
eventually fail.

Defined in: ZW _transport_api.h

Return value:

ZW_SENDDATA_EX_RETURN_CODES ZW_TX_FAILED If not queued in transmit
queue. No callback will
be done.

ZW_TX IN_PROGRESS If frame is queued for

transmission.

silabs.com | Building a more connected world. Page 113 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Parameters:
txOptionsMultiEx Destination grouplD Group which is to
.groupID IN receive the S2 Multicast
frame
pData IN Data buffer pointer
datalLength IN Data buffer length The maximum

datalLength field
depends on the transmit
options and whether a
non-secure/secure frame
is used. For details, see
section 3.4. The payload
must be minimum one

byte.
txOptionsMultiEx Reserved to future use.
.xOptions IN
txOptionsEx Select security key for transmission
.securityKey IN
SECURITY_KEY_S2_UNAUTHENTICATED Use S2 Unauthenticated
key
SECURITY_KEY_S2_AUTHENTICATED Use S2 Authenticated
key
SECURITY_KEY_S2 ACCESS Use S2 Access key

completedFunc Transmit completed call back function

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0xOF | dataLength | pData[] | txOptions | securityKey | groupID | funcID
ZW->HOST: RES | OxOF | RetVal

If either (funclD == 0) OR (RetVal == FALSE) -> no callback

If (funclID != 0) AND (RetVal == TRUE) then callback returns with:

ZW->HOST: REQ | OxOF | funcID | txStatus

silabs.com | Building a more connected world. Page 114 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.6 ZW_SendDataMulti_Bridge
|

BYTE ZW_SendDataMulti_Bridge(BYTE srcNodelD,
BYTE *pNodelDList,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_MULTI_BRIDGE(srcnodid,nodelist,data,length,options,func)
NOTE: This function is only available in the Bridge Controller library.

Transmit the data buffer to a list of Z-Wave Nodes (multicast frame). If the transmit optionflag
TRANSMIT_OPTION_ACK is set the data buffer is also sent as a singlecast frame to each of the
Z-Wave Nodes in the node list.

The completedFunc is called when the frame transmission completes in the case that ACK is not
requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when all single
casts have been transmitted and acknowledged.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed). The data pointed to by pNodelDList should not be changed before the
callback is called.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData_Bridge or ZW_SendDataMulti_Bridge in a loop without checking the completeFunc
callback will overflow the transmit queue and eventually fail. The data buffer in the application must not
be changed before completeFunc callback is received because it's only the pointer there is passed to the
transmit queue.

Defined in: ZW_transport_api.h

Return value:

BYTE FALSE If transmit queue overflow

silabs.com | Building a more connected world. Page 115 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

Parameters:

srcNodelD IN

pNodelDList IN
Pdata IN

DataLength IN

TxOptions IN

Source node ID. Valid values:

NODE_BROADCAST = Bridge
Controller NodelD.

Bridge Controller NodelD.

Virtual Slave NodelD (only existing
Virtual Slave NodelDs).

List of destination node ID's
Data buffer pointer

Data buffer length

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

completedFunc Transmit completed call back function

Callback function Parameters:

txStatus IN

(see ZW_SendData)

This is a fixed length bit-mask.

The maximum size of a packet is 64
bytes. The protocol header, multicast
addresses and checksum takes 39 bytes
in a multicast frame leaving 25 bytes for
the payload. In case routed single casts
follow multicast the source routing info
takes up to 6 bytes depending on the
number of hops leaving minimum 19
bytes for the payload. In case it is a
singlecast, which piggyback on an
explorer frame overhead is 8 bytes
leaving minimum 17 bytes for the
payload. The payload must be minimum
one byte.

Transmit at low output power level (1/3 of
normal RF range).

If TRANSMIT_OPTION_ACK is set the
will make the node try sending as an
Explore frame if all else fails when doing
the single cast transmits

The multicast frame will be followed by a
number of single cast frames to each of
the destination nodes and request
acknowledge from each destination node.

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

silabs.com | Building a more connected world.

Page 116 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Serial API:

HOST->ZW: REQ | 0xAB | srcNodelD | numberNodes | pNodelDList[] | dataLength | pData[] |
txOptions | funcID

ZW->HOST: RES | OxAB | RetVal

ZW->HOST: REQ | OxAB | funcID | txStatus

silabs.com | Building a more connected world. Page 117 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.7 ZW_SendDataAbort
- - - |

void ZW_SendDataAbort(void)
Macro: ZW_SEND_DATA_ABORT
Abort the ongoing transmit started with ZW_SendData() or ZW_SendDataMulti(). If an ongoing
transmission is aborted, the callback function from the send call will return with the status
TRANSMIT_COMPLETE_NO_ACK.

Defined in: ZW _transport_api.h

Serial API:

HOST->ZW: REQ | 0x16

silabs.com | Building a more connected world. Page 118 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.8 ZW_LockRoute (only Controllers)
- - - - -~ -]

void ZW_LockRoute(bLockRoute)
Macro: ZW_LOCK_ROUTE
This function locks and unlocks all last working routes (LWR) for purging.

Defined in: ZW _transport_api.h

Parameters:

bLockRoute IN Lock and unlocks all LWR TRUE lock all LWR — no purging allowed.
FALSE unlock purging of LWR

Serial API

HOST->ZW: REQ | 0x90 | bLockRoute

silabs.com | Building a more connected world. Page 119 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.9 ZW_LockRoute (only Slaves)
[- - - - |

void ZW_LockRoute(node)
Macro: ZW_LOCK_ROUTE
This function locks and unlocks response route for a given node ID.

Defined in: ZW _transport_api.h

Parameters:
node IN Lock and unlocks response node = 1..232 lock response route for the specified
route for a given node ID node ID.
node = 0 unlock response route.
Serial API

HOST->ZW: REQ | 0x90 | node

silabs.com | Building a more connected world. Page 120 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.310 ZW_SendConst
- - - - -

void ZW_SendConst(BYTE bStart, BYTE bChNo, BYTE bSignalType)

This function start/stop generating RF test signal.
The test signal can be on of the following:

e Test signal with only the carrier frequency.
e Test signal with a modulated carrier frequency; the signal will switch between sending logical 1
frequency and logical zero frequency
The function also selects which channel to send the test signal on.
This API call can only be called in production test mode from ApplicationTestPoll.

The API should only be called when starting\stopping a test.

Defined in: ZW _transport_api.h

Parameters:
bStart IN Start/Stop generating RF test TRUE start sending RF test signal.
signal FALSE stop sending RF test signal
bChNot IN The number of channel to 0..1 for 2 channels targets
send the test signal on. 0..2 for 3 channels targets

bSignalType IN type of the RF test signal to ZW_RF_TEST_SIGNAL_CARRIER
generater ZW_RF_TEST_SIGNAL_CARRIER_MODULATED

Serial API (Not supported)

silabs.com | Building a more connected world. Page 121 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.11 ZW_SetListenBeforeTalkThreshold
[=

void ZW_SetListenBeforeTalkThreshold(BYTE bChannel, BYTE bThreshold)

This function sets the “Listen Before Talk” threshold that controlles at what RSSI level a Z-Wave node
will refuse to transmit because of noise. The default threshold value is set to a value corresponding to the
RF regulatory requirements for a Z-Wave module in the specific country. The appropriate value range
goes from 34(dec) to 78(dec) and each threshold step corresponds to a 1.5dB input power step.

Region Default dBm
Threshold
(dec)
JP 50 -80
KR 64 -65
EU, US, HK, ANZ, CN, IL, IN, MY & RU 64 -65

For instance, if a SAW filter with an insertion loss of 3dB is inserted between the antenna feed-point and
the chip on a JP product, the threshold value should be set to 48(dec) .

NOTICE: In some contries (JP and KR) the value of the LBT threshold is specified in the RF regulatory
for the country and must be set to the value corresponding to the regulatory requirements.

Parameters:

bChannel IN Channel number the Threshold should
be set for. Valid channel numbers are
0,17and 2

bThreshold IN The threshold the RSSI should use.
Valid threshold range is from 34(dec) to
78(dec).

Defined in: ZW _transport_api.h

Serial API

HOST->ZW: REQ | 0x3C | bChannel | bThreshold
ZW->HOST: RES | 0x3C | TRUE

silabs.com | Building a more connected world. Page 122 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.12 ZW_Transport_CommandClassVersionGet
- - - - - - - - - - -]

BYTE ZW_CommandClassVersionGet(BYTE commandClass)

This function is used to determine the version of the Command Classes handled by the Z-Wave protocol.
SHOULD be used as a default case when receiving VERSION GET for Command Class not supported

by Application.
Defined in: ZW _transport_api.h
Return value:

BYTE 1.

UNKNOWN_VERSION

Parameters:

commandClass IN BYTE

Serial API (Not supported)

Command Class Version of the Z-
Wave protocol handled
commandClass.

Specified Command Class not handled
by the Z-Wave protocol.

Command Class ID for whom Version is
needed.

silabs.com | Building a more connected world.

Page 123 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.13 ZW_GetDefaultPowerLevels
[- -

BYTE ZW_GetDefaultPowerLevels(BYTE *pPowerlLevels)
This API call is reserved for serial API binaries delivered by Silicon Labs.
Defined in: ZW_basis_api.h

Serial API (Not supported, see SERIAL_API_SETUP_CMD_TX_POWERLEVEL_GET in [2])

silabs.com | Building a more connected world. Page 124 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.3.14 ZW_SetDefaultPowerLevels
[- - -

BYTE ZW_SetDefaultPowerLevels(BYTE bNormalPower0, BYTE bNormalPower1,
BYTE bNormalPower2, BYTE bLowPower0,
BYTE bLowPower1, BYTE bLowPower2)

This API call is reserved for serial API binaries delivered by Silicon Labs.

Defined in: ZW _basis_api.h

Serial API (Not supported, see SERIAL_API_SETUP_CMD_TX_POWERLEVEL_SET in [2])

silabs.com | Building a more connected world. Page 125 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4 ZWave Firmware Update API

The Firmware Update API provides functionality which together with the SDK supplied ZW_Bootloader
module and a big enough external NVM makes it possible to implement firmware update. Currently the
external NVM needs to be minimum 1Mbit(128KB) in size to allow for Firmware Updates, but this
minimum requirement indicates that the firmware image must have a maximum size for it to be possible
to fit in the 1 Mbit NVM together with protocol and application NVM data. The Max firmware using 1Mbit
NVM introduces effectively a maximum on the possible usage of BANK3: 0x20000 — 0x7800 — (3 *
0x8000) = 0x2000, which equals 8KB. If a NVM bigger or equal to 2Mbit a full 128KB firmware image can
be updated.

NOTE: The Application MUST call ZW_FirmwareUpdate_NVM_Init prior to calling any other Firmware
Update module functionality. If ZW_FirmwareUpdate_ NVM_ Init returns FALSE it means Firmware
Update is NOT possible with attached NVM.

Serial API: The Firmware Update API is also supported by the serial API enabling firmware update via
Serial API also called Over The Wire (OTW) firmware update. This is an alternative to program the chip
in programming mode [3] via SPI, UART or USB. However, OTW requires a target containing a boot
loader and serial API support. The PC Controller supports OTW firmware update via the serial API, refer
to [20] for details.

The Firmware Update functionality contains several functions and are all controlled through the
FUNC_ID_ZW_FIRMWARE_UPDATE_NVM serialAPI funciD:

HOST->ZW: REQ | 0x78 | FIRMWARE_UPDATE_NVM_functionality | functionalityParameters]]
Defined FIRMWARE_UPDATE_NVM_functionality:

FIRMWARE_UPDATE_NVM_INIT = 0
FIRMWARE_UPDATE_NVM_SET_NEW_IMAGE = 1
FIRMWARE_UPDATE_NVM_GET_NEW_IMAGE = 2
FIRMWARE_UPDATE_NVM_UPDATE_CRC16 = 3
FIRMWARE_UPDATE_NVM_IS_VALID_CRC16 = 4
FIRMWARE_UPDATE_NVM_WRITE =5

silabs.com | Building a more connected world. Page 126 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.41 ZW_FirmwareUpdate_NVM_Init
[- -

BYTE ZW_FirmwareUpdate_NVM_Init()
Initialize the Firmware Update functionality. The initialization includes determining if attached NVM can
be used for Firmware Update. If it is determined the the attached NVM do not support (or if

ZW_Firmware_Update_NVM_Init has not been called) following calls to any other
FirmwareUpdate_ NVM_xyz functionality will do nothing.

defined in: ZW _firmware_update_nvm_api.h
Return value:

BYTE NVM_FIRMWARE_UPDATE_SUPPORTED If NVM is Firmware Update
compatible.

NVM_FIRMWARE_UPDATE_NOT_SUPPORTED If NVM is NOT Firmware Update
compatible

Serial API

HOST->ZW: REQ | 0x78 | 0x00
ZW->HOST: RES | 0x78 | 0x00 | retVal

silabs.com | Building a more connected world. Page 127 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4.2 ZW_FirmwareUpdate_NVM_Set_ NEWIMAGE

BYTE ZW_FirmwareUpdate_NVM_Set_ NEWIMAGE(BYTE bValue)

Set the NEWIMAGE marker in NVM. Used to signal to ZW_Bootloader if a new Firmware Image are
present in NVM or not.

NOTE: The Application MUST call ZW_FirmwareUpdate_NVM _ Init prior to calling any other Firmware
Update module functionality. If ZW_FirmwareUpdate_NVM_Init returns FALSE it means Firmware
Update is NOT possible with attached NVM.

Return value:

BYTE TRUE If specified bValue has been written to NVM
FALSE If the Firmware NEWIMAGE value is already set to
bValue
Defined in: ZW-_firmware_update_nvm_api.h
Parameters:

bValue IN Value to set “NEWIMAGE” mark to in NVM, which
ZW_Bootloader uses to determine if a possible new
Firmware exist in external NVM.
FIRMWARE_UPDATE_NVM_NEWIMAGE_NEW
informs the Bootloader that a possible NEW firmware
image exist in external NVM.
FIRMWARE_UPDATE_NVM_NEWIMAGE_NOT_NEW
informs the ZW_Bootloader that NO NEW firmware
image exists in external NVM

Serial API

HOST->ZW: REQ | 0x78 | 0x01 | value
ZW->HOST: RES | 0x78 | 0x01 | retVal

silabs.com | Building a more connected world. Page 128 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4.3 ZW_FirmwareUpdate_NVM_Get_NEWIMAGE
[- - ==

BYTE ZW_FirmwareUpdate_NVM_Get_NEWIMAGE()

Get New Firmware Image available indicator in NVM. The New Firmware Image indicator is used to
signal the ZW_Bootloader if a possible new Firmware Image is present in NVM.

NOTE: The Application MUST call ZW_FirmwareUpdate_NVM _ Init prior to calling any other Firmware
Update module functionality. If ZW_FirmwareUpdate_NVM_Init returns FALSE it means Firmware
Update is NOT possible with attached NVM.

Defined in: ZW _firmware_update_nvm_api.h

Return value:

BYTE FIRMWARE_UPDATE_NVM_NEWIMAGE_NOT_NEW If Indicator indicates NO NEW
Firmware Image present
FIRMWARE_UPDATE_NVM_NEWIMAGE_NEW If Indicator indicates NEW
Firmware Image is present in
NVM

Serial API

HOST->ZW: REQ | 0x78 | 0x02
ZW->HOST: RES | 0x78 | 0x02 | retVal

silabs.com | Building a more connected world. Page 129 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4.4 ZW_FirmwareUpdate_NVM_UpdateCRC16
- - — - - - - -

WORD ZW_FirmwareUpdate_NVM_UpdateCRC16(WORD crc,
DWORD nvmOffset,
WORD blockSize)
Calculate CRC16 for specified NVM block of data.

Defined in: ZW _firmware_update_nvm_api.h

Return value:

WORD 0x0000-OxFFFF Resulting CRC16 value after CRC16 calculation on
specified block of data in external NVM

Parameters:

crc IN Seed CRC16 value to start CRC16

calculation with

nvmOffset IN Offset into NVM (full address space)
where block of data are placed

blockSize IN Size of block of data in NVM to calculate
CRC16 on

Serial API
HOST->ZW: REQ | 0x78 | 0x03 | offset3byte(MSB) | offset3byte | offset2byte(LSB) | length2byte(MSB)

| length2byte(LSB) | seedCRC16_high | seedCRC16_low
ZW->HOST: RES | 0x78 | 0x03 | resCRC16_high | resCRC16_low

silabs.com | Building a more connected world. Page 130 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4.5 ZW_FirmwareUpdate_NVM_isValidCRC16
- - - - - -]

BYTE ZW_FirmwareUpdate_NVM_isValidCRC16(WORD *presCRC16)

Check if Firmware present in NVM is valid using Firmware Descriptor information regarding BANK sizes
and the corresponding firmware CRC16 calculated and placed in the Firmware Descriptor structure at
compile/link time (fixbootcrc tool). Uses variables initialized by ZW_FirmwareUpdate_ NVM_Init to
determine where in NVM to find the stored firmware, if present. On return the resulting CRC16 is placed
in the WORD which presCRC16 points at.

NOTE: The Application MUST call ZW_FirmwareUpdate_NVM _ Init prior to calling any other Firmware
Update module functionality. If ZW_FirmwareUpdate_ NVM_ Init returns FALSE it means Firmware
Update is NOT possible with attached NVM.

Defined in: ZW-_firmware_update_nvm_api.h

Return value:

BYTE TRUE If NVM contains a valid ZW_Bootloader upgradable
Firmware
FALSE If NVM do NOT contain a valid ZW_Bootloader
upgradable Firmware
Parameters:
*resCRC16 ZERO if NVM contains a valid ZW_Bootloader Firmware
ouT
0x0001-OxFFFF if NVM do not contain a valid ZW_Bootloader
Firmware
Serial API

HOST->ZW: REQ | 0x78 | 0x04
ZW->HOST: RES | 0x78 | 0x04 | retVal | resCRC16_high | resCRC16_low

silabs.com | Building a more connected world. Page 131 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.4.6 ZW_FirmwareUpdate_NVM_Write
[- -

BYTE ZW_FirmwareUpdate_NVM_Write(BYTE *sourceBuffer,
WORD fw_bufsize,
DWORD firmwareOffset)

Write Firmware.Image block to NVM if applicable.
Uses variables initialized by the ZW_FirmwareUpdate_ NVM_Init together with the specified firmware
offset (where the sourceBuffer belongs) to determine if and where in the external NVM space the
sourceBuffer should be written, so that the Bootloader can later do the actual Firmware Update if update
was successful.
NOTE: The Application MUST call ZW_FirmwareUpdate_NVM _Init prior to calling any other Firmware
Update module functionality. If ZW_FirmwareUpdate_ NVM_ Init returns FALSE it means Firmware
Update is NOT possible with attached NVM.

Defined in: ZW _firmware_update_nvm_api.h

Return value:

BYTE TRUE If specified sourceBuffer has been written to NVM

FALSE If the sourceBuffer contents already are present at
specified firmware offset in NVM

Parameters:
sourceBuffer IN Buffer containing data to write to NVM
fw_bufsize IN Size of block to write the NVM

firmwareOffset IN Offset in firmware where sourceBuffer
should be written in NVM

Serial API
HOST->ZW: REQ | 0x78 | 0x05 |offset3byte(MSB) | offset3byte | offset2byte(LSB) | length2byte(MSB) |

length2byte(LSB) | buffer(]
ZW->HOST: RES | 0x78 | 0x05 | retVal

silabs.com | Building a more connected world. Page 132 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5 Z-Wave Node Mask API

The Node Mask API contains a set of functions to manipulate bit masks. This API is not necessary when
writing a Z-Wave application, but is provided as an easy way to work with node ID lists as bit masks.

silabs.com | Building a more connected world. Page 133 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5.1 ZW_NodeMaskSetBit
- - -]

void ZW_NodeMaskSetBit(BYTE_P pMask,
BYTE bNodelD)

Macro: ZW_NODE_MASK_SET_BIT(pMask, bNodelD)
Set the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bnodelD IN Node id (1..232) to set in node mask

Serial API (Not supported)

silabs.com | Building a more connected world. Page 134 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5.2 ZW_NodeMaskClearBit
- - - - - -

void ZW_NodeMaskClearBit(BYTE_P pMask,
BYTE bNodelD)

Macro: ZW_NODE_MASK_CLEAR_BIT(pMask, bNodelD)
Clear the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:

PMask IN Pointer to node mask

bNodelD IN Node ID (1..232) to clear in node mask

Serial API (Not supported)

silabs.com | Building a more connected world. Page 135 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5.3 ZW_NodeMaskClear
- - -]

void ZW_NodeMaskClear(BYTE_P pMask,
BYTE bLength)

Macro: ZW_NODE_MASK_CLEAR(pMask, bLength)
Clear all bits in a node mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bLength IN Length of node mask

Serial API (Not supported)

silabs.com | Building a more connected world. Page 136 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5.4 ZW_NodeMaskBitsin
[-]

BYTE ZW_NodeMaskBitsIn(BYTE_P pMask,
BYTE bLength)

Macro: ZW_NODE_MASK_BITS_IN (pMask, bLength)
Number of bits set in node mask.
Defined in: ZW_nodemask_api.h

Return value:

BYTE Number of bits set in node mask
Parameters:

pMask IN Pointer to node mask

bLength IN Length of node mask

Serial API (Not supported)

silabs.com | Building a more connected world. Page 137 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.5.5 ZW_NodeMaskNodeln
[-

BYTE ZW_NodeMaskNodeln (BYTE_P pMask,
BYTE bNode)

Macro: ZW_NODE_MASK_NODE_IN (pMask, bNode)
Check if a node is in a node mask.
Defined in: ZW_nodemask_api.h

Return value:

BYTE ZERO If not in node mask
NONEZERO If in node mask

Parameters:

pMask IN Pointer to node mask

bNode IN Node to clear in node mask

Serial API (Not supported)

silabs.com | Building a more connected world. Page 138 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43.6 10 API

The 500 Series Z-Wave SoC has four ports: PO, P1, P2, and P3. All IO’s can be set as either input or
output. The initial state of IO’s are input mode with the internal pull-up enabled. The 10 cells are push/pull
cells. When an 10 is set as input, a pull-up can be enabled optionally on the input pin of that 10.

The 10’s can be used either as a general purpose 10 (GPIO) or for some of the 10’s, it can be used by
one or more of the built-in HW peripherals. The 10’s are default set as GPIO’s. This means that they are
directly controlled by the MCU. If a built-in HW peripheral is enabled it can take over control of the 10,
this means the direction of the 1O, the pull-up state or the output state. In the case where several HW
peripherals that it takes control over can use a particular 10. The control is prioritized, for example pin
P0.4 on a SD3502 support the following functions: GPIO, Key scanner Column 4 output and LEDO output
module (Listed with lowest priority first). Refer to the relevant Z-Wave module datasheet for a complete
overview of 10 functions supported.

The state of the I0’s must be fixed before the 500 Series Z-Wave SoC is put into powerdown mode and
must be enabled after the 500 Series Z-Wave SoC is powered-up. This is done to avoid unwanted
glitches on the 10’s when the 500 Series Z-Wave SoC is powered up.

4.3.6.1 ZW_IOS_enable
- -]

void ZW_IOS_enable(BYTE bStatus)
This function is used to unlock or lock the state of the GPIO
Defined in: ZW _basis_api.h
Parameters:
bStatus IN Lock or Unlock the state of the IO pins TRUE
The state of the 10 pins can now be
changed. If the state of a IO pin was
changed before the 10’s are enabled then
the change will be made when the 10’s are
enabled
FALSE
The state of the 10 pins are now locked

and any changes made to the state will not
be made until the 10’s are enable again

Serial API (Not supported)

silabs.com | Building a more connected world. Page 139 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.6.2 ZW_IOS_set
|

void ZW_IOS_set(BYTE bPort,
BYTE bDirection,
BYTE bValue)
This function is used to set the state of the GPIO’s In ApplicationInitHW().

Defined in: ZW_basis_api.h

Parameters:
bPort IN 0-3 Port number
0=>P0,1=>P1,2=>P2,3=>P3
bDirection IN bit pattern Direction.
Ob=output, 1b=input.
For example, OxFO=> upper 4 IO's are
inputs and the lower 4 IO's are outputs
bValue IN bit pattern Output setting / Pull-up state

When an 10 is set as output the
corresponding bit in bValue will determine
the output setting:

1b=high

Ob=low

When an 10 is set as input the
corresponding bit in bValue will determine
the state of the pull-up resistor in the 10
cell:

1b=pull-up disabled

Ob=pull-up enabled

Serial API (Not supported)

silabs.com | Building a more connected world. Page 140 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.6.3 ZW_IOS_get
|

void ZW_IOS_get(BYTE *bPort,
BYTE *bDirection,
BYTE *bValue)
This function is used to read the state of the GPIO’s In ApplicationInitHW().

Defined in: ZW_basis_api.h

Parameters:
bPort IN 0-3 Port number
0=>P0,1=>P1,2=>P2,3=>P3
bDirection OUT bit pattern Direction.
Ob=output, 1b=input.
For example, OxFO=> upper 4 IO's are
inputs and the lower 4 IO's are outputs
bValue OUT bit pattern Output setting / Pull-up state

When an 10 is set as output the
corresponding bit in bValue will determine
the output setting:

1b=high

Ob=low

When an 10 is set as input the
corresponding bit in bValue will determine
the state of the pull-up resistor in the 10
cell:

1b=pull-up disabled

Ob=pull-up enabled

Serial API (Not supported)

silabs.com | Building a more connected world. Page 141 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7 GPIO Macros

The GPIOs MAY be controlled individually via a set of helper macros. These macros can set a GPIO as
input/output, set the state of the output GPIO or read the value of an input GPIO.

The GPIO name MUST be specified as a parameter in all the macros. The format of the pin name is as
follow:

P(port number)(10 number)
Therefore, I/O pin 3 in port 1 name will be P13.

WARNING: Be aware of limitations when using GPIO macros in ApplicationlnitHW(). Refer to the
individual GPIO macros for details.

4.3.7.1 PIN_OUT
]

PIN_OUT(pin)
This macro sets a GPIO as an output |O.

Defined in: Z\W_pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
x = port number; y = IO number
Example:

PIN OUT(P12);

silabs.com | Building a more connected world. Page 142 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7.2 PIN_IN
|

PIN_IN(pin, pullup)
This macro sets a GPIO as an input and determines whether the internal pullup is enabled or disabled.

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIO
x = port number; y = IO number
pullup IN Boolean Pull-up state.
Ob=disabled, 1b=enabled.
Example:

PIN IN(P30,TRUE) ;

silabs.com | Building a more connected world. Page 143 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7.3 PIN_LOW
|

PIN_LOW(pin)
This macro sets the state of an output GPIO to low.

WARNING: This macro can be called in ApplicationInitHW() but GPIO output level will first change
immediately after exit of ApplicationlnitHW().

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
x = port number; y = |O number
Example:

PIN LOW(P12);

silabs.com | Building a more connected world. Page 144 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7.4 PIN_HIGH
. __|

PIN_HIGH(pin)
This macro sets the state of an output GPIO to HIGH.

WARNING: This macro can be called in ApplicationInitHW() but GPIO output level will first change
immediately after exit of ApplicationlnitHW().

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
x = port number; y = |O number
Example:

PIN HIGH(P12);

silabs.com | Building a more connected world. Page 145 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7.5 PIN_TOGGLE
]

PIN_TOGGLE(pin)
This macro toggle the state of an output GPIO from high to low or low to high.

WARNING: This macro can be called in ApplicationInitHW() but GPIO output level will first change
immediately after exit of ApplicationlnitHW().

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
x = port number; y = |O number
Example:

PIN TOGGLE (P12);

silabs.com | Building a more connected world. Page 146 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.7.6 PIN_GET
|

PIN_GET(pin)
This macro gets the state of the pin of a GPIO.
WARNING: The API call ZW_IOS_enable MUST be called before calling PIN_GET in
ApplicationlnitHW(). It is not necessary to call ZW_IOS_enable in case PIN_GET is not called in
ApplicationInitHW().

Defined in: ZW _pindefs.h

Parameters:

pin IN Pxy Name of a GPIOr
x = port number; y = |O number

Return value

BOOL TRUE The pin is high
FALSE The pin is low

Example:

a=PIN GET (P12);

silabs.com | Building a more connected world. Page 147 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8 Z-Wave NVM Memory API
The memory application interface handles accesses to the application data area in NVM.

Routing slave nodes use MTP for storing application data. Enhanced 232 slave and all controller nodes
use an external NVM for storing application data. The Z-Wave protocol uses the first part of the external
NVM for home ID, node ID, routing table etc. The external NVM is accessed via the SPI1 interface and
using P2.5 as chip select. Alternative chip select pins, refer to [18].

NVM variables are declared and defined just like any other variables, apart from the needed use of the
"far" keyword: However, when declaring NVM variables use the #pragma ORDER at the top of the file to
keep the variables in order. When adding a new variable then append it at the end of the defined far
variables. Obsoleting a variable remember to keep a dummy far variable to maintain the variables offset.

BYTE far EEOFFSET_SENSOR_LEVEL far; /* Just an example */

NVM variables declared like this will be located in a virtual XDATA class called HDATA ranging from
address 0x10000 and upwards. The application NVM variables are located at offset 0x16000 (0x13000
for 16K NVM). The NVM variables can only be accessed through the NVM Memory API, and not directly.
The way you should access the NVM variables are like this:
ZW_MEM_PUT_BYTE((WORD)&EEOFFSET_SENSOR_LEVEL _far, toggleBasicSet); /* An example */
The map file from the linker tells you where your variable are located like this:

02016006H HDATA BYTE EEOFFSET_SENSOR_LEVEL_far /* An example */

where the first two digits means external data. The last 6 digits are the address of the variable, which is
offset by 0x10000 from the physical NVM chip address.

The NVM variables will not be initialized at reset or power on. Only the first time the device is started, the
pre-initialized variables will be initialized, because we have a sanity check of the contents. Example of a
pre-initialized far variable:

BYTE far EEOFFSET_SENSOR_LEVEL _far = Oxff; /* Just an example */

You can force an initialization of the pre-initialized NVM contents by calling ZW_SetDefault();

NOTE: The MCU halts while the API is writing to flash memory, so care should be taken not to write to

silabs.com | Building a more connected world. Page 148 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.1 MemoryGetID
- -]

void MemoryGetID(BYTE *pHomelD, BYTE *pNodelD)
Macro: ZW_MEMORY_GET_ID(homelD, nodelD)

The MemoryGetlID function copy the Home-ID and Node-ID from the NVM to the specified RAM
addresses.

NOTE: A NULL pointer can be given as the pHomelD parameter if the application is only interested in
reading the Node ID.

Defined in: ZW_mem_api.h
Parameters:

pHomelD OUT Home-ID pointer
pNodelD OUT Node-ID pointer
Serial API:

HOST->ZW: REQ | 0x20

ZW->HOST: RES | 0x20 | Homeld(4 bytes) | Nodeld

silabs.com | Building a more connected world. Page 149 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.2 MemoryGetByte
- - -]

BYTE MemoryGetByte(WORD offset)

Macro: ZW_MEM_GET_BYTE(offset)

Read one byte from the NVM allocated for the application.

If a write operation is in progress, the write queue will be checked for the actual data.
Defined in: ZW_mem_api.h

Return value:

BYTE Data from the application area of the
external NVM
Parameters:
offset IN Address of declared far variable
(see section 4.3.8).
Serial API:
HOST->ZW:
REQ
0x21
offset(MSB) offset into host application NVM memory array
offset(LSB)
ZW->HOST:
RES
0x21
retVal data byte read

silabs.com | Building a more connected world. Page 150 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.3 MemoryPutByte
[

BYTE MemoryPutByte(WORD offset, BYTE data)
Macro: ZW_MEM_PUT_BYTE(offset,data)
Write one byte to the application area of the NVM.

On controllers and enhanced 232 slaves this function is based on external NVM and a long write time (2-
5 msec.) must be taken into consideration when implementing the application.

The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a RAM

buffer and then written when the RF is not active and it is more than 200ms ago the buffer was
accessed.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If write buffer full.
Parameters:
offset IN Address of declared far variable

(see section 4.3.8).
data IN Data to store
Serial API:

HOST->ZW:
REQ
0x22
offset(MSB) offset into host application NVM memory array
offset(LSB)
data

ZW->HOST:
RES
0x22
retVal retVal=0 ==> error |
retVal=1 ==> OK (NVM no change) |
retVal>=2 ==> OK (NVM data bytes written + 1)

silabs.com | Building a more connected world. Page 151 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.4 MemoryGetBuffer
- - -]

void MemoryGetBuffer(WORD offset,
BYTE *buffer,
BYTE length)
Macro: ZW_MEM_GET_BUFFER(offset,buffer,length)
Read a number of bytes from the NVM allocated for the application.

If a write operation is in progress, the write queue will be checked for the actual data.

Defined in: ZW_mem_api.h

Parameters:
offset IN Address of declared far variable
(see section 4.3.8).
buffer IN Buffer pointer
length IN Number of bytes to read
Serial API:
HOST->ZW:
REQ
0x23
offset(MSB) offset into host application NVM memory array
offset(LSB)
length desired length of read operation
ZW->HOST:
RES
0x23
buffer[] buffer

silabs.com | Building a more connected world. Page 152 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.5 MemoryPutBuffer
- - |

BYTE MemoryPutBuffer(WORD offset,
BYTE *buffer,
WORD length,
VOID_CALLBACKFUNC(func)(void))

Macro: ZW_MEM_PUT_BUFFER(offset,buffer,length, func)

Copy a number of bytes from a RAM buffer to the application area of the NVM.

If an area is to be set to zero there is no need to specify a buffer, just specify a NULL pointer.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If the buffer put queue is full.
Parameters:
offset IN Address of declared far variable

(see section 4.3.8).
buffer IN Buffer pointer If NULL all of the area will be set to 0x00
length IN Number of bytes to read
func IN Buffer write completed function pointer
Serial API:

HOST->ZW:
REQ
0x24
offset(MSB) offset into host application NVM memory array
offset(LSB)
length(MSB) desired length of write operation
length(LSB)
buffer(] buffer
funclD

ZW->HOST:
RES
0x24
retVal=0 ==> error |
retVal=1 ==> OK (NVM no change) |
retVal>=2 ==> OK (NVM data bytes written + 1)

ZW->HOST:
REQ
0x24
funcID

silabs.com | Building a more connected world. Page 153 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.6 ZW_Eepromlinit
[-

BOOL ZW_Eepromlinit(BYTE *homelD)

Macro: ZW_EEPROM_INIT(HOMEID)

Initialize the external NVM by writing zeros to the entire NVM. The API then writes the content of homelD
if not zero to the home ID address in the external NVM.

This API call can only be called in production test mode from ApplicationTestPoll.
NOTE: This function is not implemented in Routing Slave API Library due to lack of external NVM.
Defined in: ZW_mem_api.h

Return value:

BOOL TRUE If the external NVM initialized
successfully
FALSE Initialization failed
Parameters:
homelD IN Ltc/thome ID to be written to the external

Serial API (Not supported)

silabs.com | Building a more connected world. Page 154 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.7 ZW_MemoryFlush

|
void ZW_MemoryFlush(void)

Macro: ZW_MEM_FLUSH()

This call writes data immediately to the application area of the NVM.

The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a SRAM
buffer and then written when the RF is not active and it is more than 200ms ago the buffer was
accessed. This function can be used to write data immediately to FLASH without waiting for the RF to be
idle.

NOTE: This function is only implemented in Routing Slave API libraries because they are the only
libaries that use a temporary SRAM buffer. The other libraries use an external NVM. Data is written
directly to the external NVM.

Defined in: ZW_mem_api.h

silabs.com | Building a more connected world. Page 155 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.8 ZW_NVRGetValue
- - -]

void NVRGetValue(BYTE bOffset, BYTE bLength, BYTE *pNVRValue)

Macro: None

Read a value from the NVR Flash memory area. The function will check the checksum of the NVR
page and if the checksum is correct the function will read the value in NVR. If the checksum is incorrect
the default unitialized value OxFF will be read from all fields. The valid offset goes from 0x00 to OxEF
and to hide the lock bits from the application it is offset with 0x10 compared to the addresses that can
be seen in the Z-Wave programmer when doing a raw read of the NVR.

The offset of a specific value can be found using the NVR_FLASH_STRUCT. An example of reading
the NVM Type could be:

ZW_NVRGetValue(offsetof(NVR_FLASH_STRUCT, bNVMType) , 1, &bMyNVMType);
Defined in: ZW_nvr_api.h
Return value:

pNVRValue NVR Value.

ouT
Valid values are 0x00-OxFF where a
values of OxFF indicates that the field in
the NVR is not valid

Parameters:

bOffset IN Offset of the NVR value as given by the
NVR_FLASH_STRUCT

bLength IN Length of the NVR value that should be
read

Serial API:

HOST->ZW: REQ | 0x28 | offset | length

ZW->HOST: RES | 0x28 | NVRdata[]

silabs.com | Building a more connected world. Page 156 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.9 ZW_NVRCheck
]

BOOL ZW_NVRCheck()

Macro: None

Check if the NVR Flash page contains a valid CRC field [22].
Defined in: ZW _nvr_api.h
Return value:
BOOL FALSE, NVR Flash contens is not valid

TRUE, NVR Flash contens is valid

Serial API:

Not supported

silabs.com | Building a more connected world. Page 157 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43.810 NVM_get_id
|

void NVM_get_id(NVM_TYPE_T *pNVMid)
Macro: None
Get NVM ID from external NVM. The NVM ID is collected using a NVM “read ID” command, but not all
supported NVMs support this command, so the memoryCapacity is set according to the NVM
information in the NVR.
NOTE: This function is only available in libraries that has an external NVM.
Defined in: ZW_firmware_bootloader_defs.h
Return value:
pNVMid OUT NVM ID structure.
pNVMid->manufacturerlD
Valid values for manufacturerlD:
0x00-0xFE,
NVM_MANUFACTURER_UNKNOWN
pNVMid->memoryType
Valid values for memoryType:
NVM_TYPE_FLASH,
NVM_TYPE_EEPROM (all NVMs not
supporting NVM read ID command)
pNVMid->memoryCapacity
Valid values for memoryCapacity:
NVM_SIZE_16KB, NVM_SIZE_32KB,
NVM_SIZE_128KB, NVM_SIZE_256KB,
NVM_SIZE_512KB,
NVM_SIZE_ UNKNOWN
Serial API:
HOST->ZW: REQ | 0x29

ZW->HOST: RES | 0x29 | length | NVMid

silabs.com | Building a more connected world. Page 158 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.11 NVM_ext_read_long_byte
[

BYTE NVM_ext_read_long_byte(DWORD offset)
Macro: None
Read a byte from external NVM at address offset.

NOTE: This function is used when doing OTA, and it is only avalible in libraries that has an external
NVM.

Defined in: ZW_firmware_bootloader_defs.h

Return value:

BYTE Data read from the external NVM
Parameters:
offset IN Offset where to data is to be read.

Currently only the 3 least significant
bytes are used when addressing the
NVM
Serial API:
HOST->ZW: REQ | 0x2C | offset3byte(MSB) | offset3byte | offset3byte(LSB)

ZW->HOST: RES | 0x2C | retval

silabs.com | Building a more connected world. Page 159 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.12 NVM_ext_write_long_byte
[-

BYTE NVM_ext_write_long_byte(DWORD offset, BYTE data)
Macro: None
Write a byte to external NVM at address offset.

NOTE: This function is used when doing OTA, and it is only avalible in libraries that has an external
NVM.

WARNING: This function can write in the full NVM address space and is not offset to start at the
application area. So care should be taken when using this function to avoid writing in the protocol NVM
area.

Defined in: ZW_firmware_bootloader_defs.h

Return value:

BYTE FALSE If no write was needed.
TRUE If write was done

Parameters:

offset IN Offset where to data is to be written.

Currently only the 3 least significant
bytes are used when addressing the
NVM.
data IN Data to write to external NVM
Serial API:
HOST->ZW: REQ | 0x2D | offset3byte(MSB) | offset3byte | offset3byte(LSB) | data

ZW->HOST: RES | 0x2D | retval

silabs.com | Building a more connected world. Page 160 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.13 NVM_ext_read_long_buffer
- -

void NVM_ext_read_long_buffer(DWORD offset,
BYTE *buffer,
WORD length)
Macro: None

Read a number of bytes from external NVM starting from address offset.

NOTE: This function is used when doing OTA, and it is only avalible in libraries that has an external
NVM.

Defined in: ZW_firmware_bootloader_defs.h
Parameters:
offset IN Offset from where data is to be read.

Currently only the 3 least significant
bytes are used when addressing the

NVM
buffer OUT Buffer pointer
length IN Number of bytes to read

Serial API:

ZW->HOST: REQ | 0x2A | offset3byte(MSB) | offset3byte | offset3byte(LSB) | length(MSB) |
length(LSB)

ZW->HOST: RES | 0x2A | buffer(]

silabs.com | Building a more connected world. Page 161 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.8.14 NVM_ext_write_long_buffer
- |

byte NVM_ext_write_long_buffer(DWORD offset,
BYTE *buffer,
WORD length)
Macro: None

Write a number of bytes to external NVM starting from address offset.

NOTE: This function is used when doing OTA, and it is only avalible in libraries that has an external
NVM.

WARNING: This function can write in the full NVM address space and is not offset to start at the
application area. So care should be taken when using this function to avoid writing in the protocol NVM
area.

Defined in: ZW-_firmware_bootloader_defs.h

Return Value:

BYTE FALSE If no write was needed.
TRUE If write was done
Parameters:
offset IN Offset where to data is to be written.

Currently only the 3 least significant
bytes are used when addressing the

NVM.
buffer IN Buffer pointer
length IN Number of bytes to write

Serial API:

HOST->ZW: REQ | 0x2B | offset3byte(MSB) | offset3byte | offset3byte(LSB) | length(MSB) |
length(LSB) | buffer]]

ZW->HOST: RES | Ox2B | retval

silabs.com | Building a more connected world. Page 162 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9 Z-Wave Timer API

The Z-Wave Timer API provides a set a functions which MAY be used by an application to control the
timing of events. Applications SHOULD use the Z-Wave Timer API functions. The Z-Wave Timer API
supports a high number of concurrent software timer instances.

In addition to the software timers, the application MAY use one or two hardware timers provided by the
8051 architecture. Before using a hardware timer, the application designer MUST make sure that the
actual hardware timer is not already allocated for use by the Z-Wave protocol library. Refer to section
3.7.

Software timers are based on a “tick-function” every 10 ms. The “tick-function” triggers a global tick
counter and a number of active timers. The global tick counter is incremented on each “tick”. Active
software timers are decremented on each “tick”. When an active timer value reaches 0, the registered
timer function is called. The timer function is called from the Z-Wave main loop (non-interrupt
environment).

Software timers provide limited accuracy. They are stopped while changing RF transmission direction
and during sleep mode. The global tick counter and software timers will continue from their current state
when resuming operation after sleep mode.

Software timers are targeted for a limited time duration. Longer timers may implemented by the
application designer by multiple software timer periods combined with referring to the global tick counter.
The global tick counter is stored in the global variable:

WORD tickTime

silabs.com | Building a more connected world. Page 163 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.1 TimerStart
'

BYTE TimerStart(VOID_CALLBACKFUNC(func)(),
BYTE bTimerTicks,
BYTE bRepeats)
Macro: ZW_TIMER_START(func, bTimerTicks, bRepeats)
Register a function that is called when the specified time has elapsed. Remember to check if the timer is
allocated by testing the return value. The call back function is called "bRepeats" times before the timer is
stopped. It’s possible to have up to 5 timers running simultaneously.
Defined in: ZW _timer_api.h
Return value:
BYTE Timer handle (timer table index). OxFF
is returned if the timer start operation
failed.
The timer handle is used when calling
other timer functions such as
TimerRestart, etc.
Parameters:

pFunc IN Timeout function address (not NULL).

bTimerTicks IN Timeout value (value * 10 ms).
Predefined values:

TIMER_ONE_SECOND

bRepeats IN Number of function calls. Maximum
value is 253. Predefined values:

TIMER_ONE_TIME
TIMER_FOREVER

Serial API (Not supported)

silabs.com | Building a more connected world. Page 164 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.2 TimerRestart
'

BYTE TimerRestart(BYTE bTimerHandle)
Macro: ZW_TIMER_RESTART(BYTE bTimerHandle)
Set the specified timer’s tick count to the initial value (extend timeout value).

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired or been canceled.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer restarted
Parameters:
bTimerHandle IN Timer to restart

Serial API (Not supported)

silabs.com | Building a more connected world. Page 165 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.3 TimerCancel
'

BYTE TimerCancel(BYTE bTimerHandle)
Macro: ZW_TIMER_CANCEL(bTimerHandle)
Stop and unregister the specified timer.

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer cancelled
Parameters:
bTimerHandle IN Timer number to stop

Serial API (Not supported)

silabs.com | Building a more connected world. Page 166 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.4 ZW_TimerLongStart
- - -]

bTimerHandle_t
ZW_TimerLongStart(
VOID_CALLBACKFUNC(func)(),
DWORD dwtimerTicks,
BYTE bRepeats);
Register a function that is called when the specified time has elapsed. Remember to check if the timer is
allocated by testing the return value. The callback function is called "bRepeats" times before the timer is
stopped.
Defined in: ZW _timer_api.h
Return value:
bTimerHandle_t Timer handle (timer table index). OxFF
is returned if the timer start operation
failed.
The timer handle is used when calling
other timer functions such as
TimerLongRestart, etc.
Parameters:
func IN Callback function (not NULL).

dwtimerTicks IN Timeout value in ms (32 bit).

bRepeats IN Number of function calls. Maximum
value is 253. Predefined values:

TIMER_ONE_TIME
TIMER_FOREVER

Serial API (Not supported)

silabs.com | Building a more connected world. Page 167 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.5 ZW_TimerLongRestart
[- -

BYTE ZW_TimerLongRestart(bTimerHandle_t bTimerHandle)
Set the specified timer’s tick count to the initial value (extend timeout value).

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired or been canceled.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer restarted
Parameters:
bTimerHandle IN Timer to restart

Serial API (Not supported)

silabs.com | Building a more connected world. Page 168 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.6 ZW_TimerLongCancel
[- -

BYTE ZW_TimerLongCancel(bTimerHandle_t bTimerHandle)
Stop and unregister the specified timer.

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer cancelled
Parameters:
bTimerHandle IN Timer number to stop

Serial API (Not supported)

silabs.com | Building a more connected world. Page 169 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.9.7 ZW_TimerLongGetTimeLeft
[- - - -]

DWORD ZW_TimerLongGetTimeLeft(bTimerHandle_t bTimerHandle)
Returns the time left before the timer calls the registered callback function.
Defined in: ZW _timer_api.h

Return value:

DWORD Time left in ms.
Parameters:
bTimerHandle IN Handle to the timer in question.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 170 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.10 Power Control API
The 500 Series Z-Wave SoC has two types of power down modes: WUT mode and Stop mode.

Stopped mode is the lowest power mode of the SoC where all circuitry is shut down except for a small
basic block that keeps the |0 states.

WUT mode is identical to Stopped mode except for enabling of a low power ring oscillator that ticks every
second or 1/128 second. The WUT timer can wake up the chip after a programmable period of time.

Wake up of the two modes can also be accomplished by an external source (EXT1 pin).

During power down mode is a small part of the RAM powered called Critical Memory.

43101 ZW_SetSleepMode
- - - |

BOOL ZW_SetSleepMode(BYTE mode,
BYTE intEnable,
BYTE beamCount)

Macro: ZW_SET_SLEEP_MODE(MODE,MASK_INT)

This function MAY be used to set the SoC in a specified power down mode. Battery-operated devices
may use this functionality in order to save power when idle.

If the Z-Wave protocol is currently busy, the node may stay awake for some time after the application
issues a call to ZW_SetSleepMode(). When the protocol is idle, (stopped RF transmission etc.) the MCU
will power down.

The RF transceiver is turned off so nothing can be received while in WUT or Stop mode. The ADC is also
disabled when in WUT or Stop mode. The Z-Wave main loop is stopped until the MCU is awake again.
Refer to the mode parameter description regarding how the MCU can be wakened up from sleep mode.
In STOP and WUT modes interrupt(s) may be masked out so they cannot wake up the chip.

Any external hardware controlled by the application should be turned off before returning from the
application poll function. The Z-Wave main loop is stopped until the MCU is wakened.

The chip resumes from sleep mode via a reset event. Therefore, all temporary state must be re-
established after the sleep mode.

Itis RECOMMENDED that applications implementing FLIRS node functionality stays awake for two
seconds after receiving a frame; either singlecast or multicast. This allows a transmitting node to send
additional frames to the FLiRS node without prepending a beam to each frame. A two second stay-
awake period after each received frame allows a FLIRS to quickly initiate secure communication and to
transfer long payloads such as security certificates and firmware images.

When the ASIC is in power-down mode the EXT1 pin can get the SoC out of the power-down state by
asserting it. This mode of operation can be activated by setting the intEnable parameter in
Z\W_SetSleepMode to ZW_INT_MASK_EXTH1. If the EXT1 pin is asserted when the SoC is in power-
down mode, the ASIC will wake up from reset. If we are in FLIRS mode and the EXT1 pin is asserted
and the unasserted during beam search then it will not wakeup the SoC. If we are in FLIRS mode and
WUT timeout occur and an event on EXT1 happens simultaneously, the Z-Wave protocol will search for
a beam, and if no beam is detected, then it will power down again. So to make sure that an event in
EXT1 is detected when in FLIRS mode we should ensure that it is asserted longer than the beam search
time (2.5ms for 2 channels and 4ms for 3 channels).

Warning: Using EXT1 pin as both an external interrupt source by setting EX1 = 1 and as wake up

silabs.com | Building a more connected world. Page 171 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

source for a FLIRS node requires that the EXT1 Interrupt Service Routine (ISR) can handle wake up
events in an appropriate manner.

NOTE: This function is only implemented in Routing Slave, Enhanced 232 Slave and Portable Controller
API libraries.

Defined in: ZW_power_api.h
Return values

BOOL TRUE The chip will power down when the
protocol is ready

FALSE The protocol can not power down
because a wakeup beam is being
received, try again later.

Parameters:
mode IN Specify the type of power save mode:

ZW_STOP_MODE The whole chip is turned down. The chip
can be wakened up again by Hardware
reset or by the external interrupt INT1.

ZW_WUT_MODE The chip is powered down, and it can
only be waked by the timer timeout or by
the external interrupt INT1. The timeout
interval of the WUT timer is controlled by
the API call ZW_SetWutTimeout.

ZW_WUT_FAST_MODE This mode has the same functionality as
ZW_WUT_MODE, except that the timer
resolution is 1/128 s. The maximum
timeout value is 2 s.

ZW_FREQUENTLY_LISTENING_MODE This mode make the module enter a
Frequently Listening mode where the
module will wakeup for a few
milliseconds every 1000 ms or 250 ms
and check for radio transmissions to the
module (See 4.3.1.6 for details about
selecting wakeup speed). The application
will only wakeup if there is incoming RF
traffic or if the intEnable or beamCount
parameters are used.

silabs.com | Building a more connected world. Page 172 of 445

https://www.silabs.com/

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

intEnable IN

beamCount IN

Serial API

Interrupt enable bit mask. If a bit mask is
1, the corresponding interrupt is enabled
and this interrupt will wakeup the chip
from power down. Valid bit masks are:

ZW_INT_MASK_EXT1

0x00

Frequently listening WUT wakeups

0x00

0x01-OxFF

HOST->ZW: REQ | 0x11 | mode | intEnable

External interrupt 1 (PIN P1_1) is
enabled as interrupt source

No external Interrupts will wakeup.

Useful in WUT mode

No WUT wakeups in Frequently listening
mode. Both macro and serial API call use
this value when called.

Number of frequently listening wakeup
interval between the module does a
normal WUT wakeup. This parameter is
only used if mode is set to
ZW_FREQUENTLY_LISTENING_ MODE.

silabs.com | Building a more connected world.

Page 173 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.10.2 ZW_SetWutTimeout
|

void ZW_SetWutTimeout (BYTE wutTimeout)

Macro: ZW_SET_WUT_TIMEOUT(TIME)

ZW_SetWutTimeout is speficially intended to set the WUT timer interval.

The chip resumes from sleep mode via a reset event. Therefore, ZW_SetWutTimeout SHOULD be
called before every call to ZW_SetSleepMode when enabling ZW_WUT_MODE. If not calling
ZW_SetWutTimeout, a default value of 0 (zero) will be used (corresponding to 1 second).

The timer resolution of the WUT timer is one second. The maximum timeout value is 256 secs.

NOTE: This function is only implemented in Routing Slave, Enhanced 232 Slave and Portable Controller
API libraries.

Defined in: ZW_power_api.h

Parameters:
wutTimeout IN The Wakeup Timer timeout value. The unit is the second.
The resolution is 8 bit.
[0..255] => [1 sec .. 256 sec]
Serial API

HOST->ZW: REQ | 0xB4 | wutTimeout

silabs.com | Building a more connected world. Page 174 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11 SPI Interface API
The 500 Series Z-Wave SoC offers up to two SPI interfaces:

SPI0: operate as a SPI master or as a SPI slave
SPI1: operates as a SPI master

The SPI master, SPI1, is reserved by the Z-Wave protocol, if the 500 Series Z-Wave SoC is programmed
as one of the following Z-Wave nodes types: Portable Controller, Static Controller, Bridge Controller, or
Enhanced 232 Slave.

The state of the I0's used for SCK, MOSI, MISO and SS_N automatically setup by the SPI once it is
enabled.

The SS_N input is used as SPI Slave Select for an SPI setup as a slave. If the SPI controller is master

and it needs to select the slave(s), this has to be controlled by the application SW and an extra 10 pin(s)
has to be used for that purpose.

4.3.11.1 Operation

Data to be transmitted is written to a SPI data register, one byte at the time and data received is read
from a SPI data register one byte at the time.

A SPl interrupt is set when the SPI interface has transferred a byte on the SPI interface. T

silabs.com | Building a more connected world. Page 175 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43.11.2 ZW_SPIO0_init
]

void ZW_SPI0_init(BYTE bSpilnit)

Initializes the 500 Series Z-Wave SoC built-in SPI0 master/slave controller. Notice that not all 500 Series
Z-Wave SoC/modules has this SPI available on the pin-out and for some Z-Wave device types this SPI is
reserved for the Z-Wave protocol.

This function sets the SPI clock speed, the signaling mode and the data order. For example,

ZW_SPIO init (SPI_SPEED 8 MHZ|SPI MODE 0|SPI MSB_FIRST)

Sets clock speed to 8MHz, SPI clock idle to low, data sampled at rising edge and clocked at
falling edge, and sends most significant bit first.

Defined in: ZW _spi_api.h
Parameters:
bSpilnit IN bit mask:

Speed of the SPI clock (master mode only)

SPI_SPEED_8 MHZ SPI clock runs at @8MHz
SPI_SPEED_4 MHZz SPI clock runs at @4MHz
SPI_SPEED_2_MHZz SPI clock runs at @2MHz
SPI_SPEED_1_MHZ SPI clock runs at @1MHz

SPI signaling modes'’

SPI_MODE_0 SPI clock idle low, data sampled at
rising edge and clocked at falling edge

SPI_MODE_1 SPI clock idle low, data sampled at
falling edge and clocked at rising edge

SPlI_ MODE_2 SPI clock idle high, data sampled at
falling edge and clocked at rising edge

SPI_MODE_3 SPI clock idle high, data sampled at
rising edge and clocked at falling edge

Data order

SPI_MSB_FIRST send MSB bit first

SPI_LSB_FIRST send LSB bit first

Master/Slave

SPI_MASTER enable SPI master mode
SPI_SLAVE enable SPI slave mdoe

" In the 400 series APl SPI_MODE_0 was called SPI_SIG_MODE_1, SPI_MODE_1 was called SPI_SIG_MODE_2, etc. The 400
names can still be used ina 500 Series application, but beware of the numbering.

silabs.com | Building a more connected world. Page 176 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Slave Select (Slave mode only)

SPI_SS N_SS use io SS_N 10 as the slave select
signal input when the 500 Series
Z-Wave SoC is in SPI slave mode

SPI_SS_N_GPIO slave controller is always enabled
when the 500 Series Z-Wave SoC is in
SPI slave mode. The 10, SS_N, can
freely be used as a GPIO or for
another HW function.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 177 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.3 ZW_SPI0_enable
- - - |

void ZW_SPI0_enable(BYTE bState)

Function enables the SPI0 master and allocates the pins MISO0, MOSIO, and SCKO. If SPI_SS N _SS
is set in ZW_SPIO0_init() then also SS_NO is allocated.

Defined in: ZW _spi_api.h

Parameters:

bState IN TRUE enable the SPIO controller
FALSE disable the SPIO controller

Serial API (Not supported)

silabs.com | Building a more connected world. Page 178 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43.11.4 ZW_SPI0_rx_get
|

BYTE ZW_SPI0_rx_get(void)
Function returns a previously received byte from SPIO.
This function does not wait until data has been received.
Defined in: ZW _spi_api.h
Return value:
BYTE Received data.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 179 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.5 ZW_SPI0_tx_set
- - - ——

void ZW_SPI0_tx_set(BYTE data)
For SPI master:

Function starts transmission over the SP10. Waits until SPI0 transmitter is idle before it sends the new
data and will then immediately return before the serial transmission has taken place.

For SPI slave:
Function transfers a data byte to the SPIO register. Waits until SPI0 transmitter is idle before it transfers
the new data, but it will not ensure that the transfer of data to the SPIO register didn't happen without
colliding with the next byte transfer. Use the function ZW_SPI0_rx_coll_get() to check whether a collition
has occurred. The function will then immediately return possibly before the serial transmission is started
(initiated by the SPI master).

Defined in: ZW_spi_api.h

Parameters:

data IN Data to be send.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 180 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.6 ZW_SPIO_active_get

BYTE ZW_SPI0_active_get(void)
Read the SPIO send data status.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI0 Transmitter is busy
zero (0x00) SPI0 Transmitter is idle

Serial API (Not supported)

silabs.com | Building a more connected world. Page 181 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.7 ZW_SPI0_coll_get
- -

BYTE ZW_SPI0_coll_get(void)
This function returns the state of the SPIO collision flag and then clears the collision flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI0 data collided
zero (0x00) SPI0 no collisions

Serial API (Not supported)

silabs.com | Building a more connected world. Page 182 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.8 ZW_SPIO0_int_enable
(- -]

void ZW_SPI0_int_enable(BYTE boEnable)
Call will enable or disable the SPI0 interrupt. If enabled an interrupt routine must be defined. Default is
the SPIO interrupt is disabled.
NOTE: If the SPIO0 interrupt is used, then the SPI0 interrupt flag should be reset before returning from the
interrupt routine by calling ZW_SPI0_int_clear.
‘Defined in: ZW._spi_api.h

Parameters:

boEnable IN TRUE Enables the SPIO interrupt.

FALSE Disables the SPIO interrupt.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 183 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43119 ZW_SPIO0_int_get
- - - |

BYTE ZW_SPI0_int_get(void)
This function returns the state of the SPI0 interrupt/transmission done flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPIO0 interrupt/transmission flag is set

zero (0x00) SPI0 interrupt/transmission flag is cleared

Serial API (Not supported)

silabs.com | Building a more connected world. Page 184 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.10 ZW_SPIO0_int_clear

|
void ZW_SPIO0_int_clear(void)
Function clears the SPIO interrupt/transmission done flag

Defined in: ZW _spi_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 185 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.11 ZW_SPI1_init
]

void ZW_SPI1_init(BYTE bSpilnit)

Initializes the 500 Series Z-Wave SoC built-in SPI master controller, SPI1. Notice that not all 500 Series
Z-Wave SoC/modules has this SPI available on the pin-out and for some Z-Wave device types this SPI is
reserved for the Z-Wave protocol.

The function sets the SPI clock speed, the signaling mode and the data order. E.g.:

ZW_SPI1 init (SPI_SPEED 8 MHZ|SPI MODE 0|SPI _MSB_FIRST)

Sets clock speed to 8MHz, SPI clock idle to low, data sampled at rising edge and clocked at
falling edge, and sends most significant bit first.

Defined in: ZW _spi_api.h
Parameters:
bSpilnit IN bit mask:

Speed of the SPI clock

SPI_SPEED_8 MHZ SPI clock runs at @8MHz
SPI_SPEED_4 MHZz SPI clock runs at @4MHz
SPI_SPEED_2_MHZz SPI clock runs at @2MHz
SPI_SPEED_1_MHZ SPI clock runs at @1MHz

SPI signaling modes'’

SPI_MODE_0 SPI clock idle low, data sampled at rising
edge and clocked at falling edge

SPI_MODE_1 SPI clock idle low, data sampled at falling
edge and clocked at rising edge

SPlI_ MODE_2 SPI clock idle high, data sampled at
falling edge and clocked at rising edge

SPI_MODE_3 SPI clock idle high, data sampled at
rising edge and clocked at falling edge

Data order

SPI_MSB_FIRST send MSB bit first

SPI_LSB_FIRST send LSB bit first

Serial API (Not supported)

" In the 400 series APl SPI_MODE_0 was called SPI_SIG_MODE_1, SPI_MODE_1 was called SPI_SIG_MODE_2, etc. The 400
names can still be used ina 500 Series application, but beware of the numbering.

silabs.com | Building a more connected world. Page 186 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.12 ZW_SPI1_enable

void ZW_SPI1_enable(BYTE bState)
Function enables the SPI1 master and allocates the pins MISO1, MOSI1, and SCK1.
Defined in: ZW _spi_api.h
Parameters:
bState IN TRUE enable the SPI1 controller
FALSE disable the SPI1 controller

Serial API (Not supported)

silabs.com | Building a more connected world. Page 187 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.13 ZW_SPI1_rx_get
- -

BYTE ZW_SPI1_rx_get(void)
This function returns a previously received byte from SPI1.
This function does not wait until data has been received.
Defined in: ZW _spi_api.h
Return value:
BYTE Received data.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 188 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

431114 ZW_SPH_tx_set
|

void ZW_SPI1_tx_set(BYTE data)

Function starts transmission over the SPI1. Waits until SPI1 transmitter is idle before it sends the new
data and will then immediately return before the serial transmission has taken place.

Defined in: ZW _spi_api.h
Parameters:
data IN Data to be send.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 189 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.15 ZW_SPI1_active_get

BYTE ZW_SPI1_active_get(void)
Read the SPI1 send data status.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI1 Transmitter is busy
zero (0x00) SPI1 Transmitter is idle

Serial API (Not supported)

silabs.com | Building a more connected world. Page 190 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.16 ZW_SPI1_coll_get
|

BYTE ZW_SPI1_coll_get(void)
This function returns the state of the SPI1 collision flag and then clears the collision flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI1 data collided
zero (0x00) SPI1 no collisions

Serial API (Not supported)

silabs.com | Building a more connected world. Page 191 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

431117 ZW_SPI_int_enable
|

void ZW_SPI1_int_enable(BYTE boEnable)
Call will enable or disable the SPI1 interrupt. If enabled an interrupt routine must be defined. Default is
the SPI1 interrupt is disabled.
NOTE: If the SPI1 interrupt is used, then the SPI1 interrupt flag should be reset before returning from the
interrupt routine by calling ZW_SPI1_int_clear.
‘Defined in: ZW._spi_api.h

Parameters:

boEnable IN TRUE Enables the SPI1 interrupt.

FALSE Disables the SPI1 interrupt.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 192 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.18 ZW_SPI1_int_get
|

BYTE ZW_SPI1_int_get(void)
This function returns the state of the SPI1 interrupt/transmission done flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI1 interrupt/transmission flag is set

zero (0x00) SPI1 interrupt/transmission flag is cleared

Serial API (Not supported)

silabs.com | Building a more connected world. Page 193 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.11.19 ZW_SPI1_int_clear

|
void ZW_SPI1_int_clear(void)
Function clears the SPI1 interrupt/transmission done flag

Defined in: ZW _spi_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 194 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12 ADC Interface API

The ADC interface API provides access to an 8/12-bit ADC with input multiplexer.

Refer to [16] for a detailed description of the ADC hardware.

The ADC MAY be used for monitoring battery levels [15], voltages across various sensors etc. The ADC
MAY be configured to generate an interrupt request if the measured voltage is above, below or equal to a
threshold depending on the configuration settings. The ADC MAY use up to 4 GPIO as inputs depending
on its configuration. Input pins that are not enabled MAY be used as GPIO's for by other peripherals.
Three sources can work as voltage-references for the ADC, namely either the power-supply for the chip,
an internal 1.2V voltage-reference or the P3.7 pin (ADC_PIN3). The maximum sample rate when in
continuous conversion mode is 23.6k sample/s for 8 bit conversions and 10.9k sample/s for 12 bit

conversions.

The figures below show when the ADC interrupt is released dependent on, how the ADC threshold
gradient is set:

Voltage
A

[] .
Threshold :> ADC conversion
° ® results

» Time

ADC I_
interrupt

Figure 10. Threshold Functionality when Threshold Gradient Set to High

Voltage
A
® []

° ° ,
Threshold ADC conversion
ry results

» Time

ADC |_
interrupt

Figure 11. Threshold Functionality when Threshold Gradient Set to Low

silabs.com | Building a more connected world. Page 195 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

The figure below shows how the connections to the ADC can be configured:

Internal Ref.——
VDD —— 7 / > SFR
Internal generated (test m.) —— ADC 7
\4
GND —— Vref+ Interrupt
—P3.7 Vref- Out —/H Comparator —»—
—P3.6 —— BG ——
—P3.5 ? Vi
in

P3.4——
Internal Ref. E

Figure 12. Configuration of Input Pins

/***

* To be placed in interrupt routine module
**/

void

adc_int (void) interrupt INUM ADC

{
push (SFRPAGE) ;
ZW _ADC int clear();
adc_triggered=TRUE;
adc_value=zZW ADC result get();
pop (SFRPAGE) ;

}

/***

* To be placed in applicationInitHW ()
******************~k~k~k~k~k~k**************************/

// Power up ADC and set ADC conversion mode, references, pins

ZW_ADC init (ADC_ IO MULTI MODE,ADC_REF U VDD,ADC REF L VSS,\
ADC PIN1|ADC PIN2);

// Set auto zero period

ZW ADC auto zero set (ADC AZPL 128);

// Set ADC resolution

ZW _ADC resolution_ set (ADC_8 BIT);

// Clear ADC interrupt flag

ZW _ADC int clear();

// Enable ADC interrupt

ZW ADC int enable (TRUE);

silabs.com | Building a more connected world.

Page 196 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

/***

* To be placed in applicationPoll ()
**/

if (state==powerUp)
{

// select ADC input pin

if (measure==sensorl)

{
// sensor 1 is on ADC pin 1
ZW _ADC pin_select (ADC_PIN1);
// enable lower threshold
ZW_ADC threshold mode set (ADC _THRES LOWER) ;
// set threshold level to ~25% of VDD
ZW _ADC threshold set (0x0040);

}

else

{
// sensor 2 is on ADC pin 2
ZW ADC pin select (ADC PIN2);
// enable upper threshold
ZW_ADC threshold mode set (ADC_THRES UPPER);
// set threshold level to ~50% of VDD
ZW _ADC threshold set (0x0080);

}

// Start ADC

ZW_ADC enable (TRUE) ;

state=xxx;

}

if (state==running)
{
// React on sampled ADC value
if (adc_triggered)
{
if (measure==sensorl)
do_somethingl (adc_value);
else
do_something2 (adc_value);
adc_triggered=FALSE;
}

Figure 13, ADC Code Sample Snippets Using an I/O as Input

silabs.com | Building a more connected world.

Page 197 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

/***

* To be placed in applicationInitHW ()

**/

// Set ADC to battery monitoring mode, other parameters are ignored
ZW _ADC init (ADC _BATT SINGLE MODE, 0, 0, 0);

// Set auto zero period

ZW ADC auto zero set (ADC AZPL 128);

// Set ADC resolution

ZW ADC resolution set (ADC 12 BIT);

/***

* To be placed in applicationPoll ()

**/

if (state==startBatteryVoltageMeasurement)
{
// Power up ADC
ZW ADC power enable (TRUE) ;
// Start ADC
ZW_ADC enable (TRUE) ;
state=awatingBatteryVoltageMeasurement;

if ((state==awatingBatteryVoltageMeasurement)
{
battLevel=ZW ADC result get();
if (battLevel!= ADC_NOT FINISHED))
{
// Calc battery level in mV (Vbg is the band gab voltage)
battVol= (DWORD) Vbg*4096/ (DWORD) battLevel
// Return battery voltage in mV
send (battVol) ;
state=xxx;
// Power down ADC
ZW_ADC power enable (FALSE) ;

Figure 14, ADC Code Sample Snippets Using Battery Monitoring Mode

silabs.com | Building a more connected world. Page 198 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43121 ZW_ADC init
|

void ZW_ADC _init (BYTE bMode,
BYTE bUpper_ref,
BYTE bLower_ref,
BYTE bPin_en)

This function MAY be used to power up and initialize the ADC unit. The ADC unit may be operated in two
different modes, battery monitoring mode and I/O mode.

In battery monitoring mode the ADC will automatically be configured to have the VDD as upper reference
voltage, VSS as lower reference voltage and the band gap as the ADC input. In battery monitoring mode
the parameters bUpper_ref, bLower_ref and bPin_en are ignored.

Refer to [15] for a detailed description of battery monitoring mode and of battery powered Z-Wave
applications in general..

In I/O mode the ADC unit can sample four hardware inputs with user selectable upper and lower voltage
references.

The upper reference voltage can be set to be VDD, internal bandgab or external voltage on ADC_PIN3.
Lower reference voltage can be set to be either VSS (GND) or external voltage on pin ADC_PIN2.

If called in I/O mode, the parameter bPin_en MUST be used to enable one or more of the 1/O pins

P3.4 .. P3.7 (ADC_PINO .. ADC_PIN3) as ADC inputs pins. If a pin is enabled as ADC input this pin can
not be used as a GPIO at the same time. Be aware that enabling other peripherals (like Keypad scanner,
IR and Triac Controller) can overrule this setting.

Even though the bPin_en is set, no I/O pin will be selected as the active ADC input by this function. To
select the active ADC input, ZW_ADC_pin_select MUST be called before ZW_ADC_enable(TRUE) is
called.

The ADC can either run in single conversion mode or multi (continuous) conversion mode

Refer to [16] for a detailed description of the ADC hardware and of PCB layout.

silabs.com | Building a more connected world. Page 199 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Defined in: ZW_adcdriv_api.h

Parameters

bMode IN ADC _10_MULTI_MODE
ADC_10_SINGLE_ MODE
ADC_BATT_MULTI_MODE
ADC BATT_SINGLE_MODE

bUpper_ref
ADC REF U VDD
ADC REF _U_EXT
ADC_REF_U_BGAB

bLower_ref

ADC_REF_L_VSS

ADC_REF_L_EXT

Set the ADC in multi conversion mode
ADC input will be from the I/O's. The ADC will
continue converting until it is stopped.

Set the ADC in single conversion mode
ADC input will be from the I/O's. The ADC will
convert one time then stop.

Set the ADC in battery monitoring mode.

The chip supply voltage (VDD) is selected as upper
reference. GND will be selected as lower
reference voltage. The ADC input will be the band
gap circuit. The ADC will continue converting until it
is stopped.

Set the ADC in battery monitoring mode.
The chip supply voltage (VDD) is selected as upper
reference. GND will be selected as lower reference
voltage. The ADC input will be the band gap circuit.
The ADC will convert one time then stop.

Ignored when battery monitoring mode is enabled

Select the chip power supply (VDD) as the upper
reference voltage.
Ignored when ADC in battery monitor mode.

Select 10 P3.7 as the upper reference voltage.
Ignored when ADC in battery monitor mode.

Select the band gab circuit as the upper reference
voltage.
Ignored when ADC in battery monitor mode.

Ignored when battery monitoring mode is enabled

Select the ground (VSS) as the lower reference
voltage.
Ignored when ADC in battery monitor mode.

Select |0 P3.6 as lower reference voltage.
Ignored when ADC in battery monitor mode.

silabs.com | Building a more connected world.

Page 200 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21
bPin_en Ignored when battery monitoring mode is enabled
Bitmask Select which 10 to enable as ADC inputs.
Selected pins MUST NOT be used as GPIOs
ADC_PINO Select /0 P3.4 as an ADC input
ADC_PIN1 Select I/O P3.5 as an ADC input
ADC_PIN2 Select I/O P3.6 as an ADC input
ADC_PIN3 Select I/O P3.7 as an ADC input

Serial API (Not supported)

silabs.com | Building a more connected world.

Page 201 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.2 ZW_ADC_power_enable
[- -

void ZW_ADC_power_enable(BYTE boEnable)

This function SHOULD be used to control when the ADC unit is powered. ADC is powered down, when
the module enters sleep mode.

Calling ZW_ADC _init() will power up the ADC.

Defined in: ZW_adcdriv_api.h

Parameters:
boEnable IN TRUE Turn the ADC power on
FALSE Turn the ADC power off.
The ADC will cancel any activity
immediately.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 202 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.3 ZW_ADC_enable
- -

void ZW_ADC_enable(BYTE boStart)

This function MAY be used to start / stop the ADC unit.

If ZW_ADC_enable(FALSE) is called when the ADC unit is currently performing multi conversions, any
current running conversion process will continue running is has finished whereafter this function call will

return.

If the ADC is powered off ZW_ADC_power_enable(TRUE) MUST be called before
ZW_ADC_enable(TRUE) is called.

Defined in: ZW _adcdriv_api.h
Parameters:
boStart IN TRUE Start the ADC and begin conversion
FALSE Single mode: stop the ADC.
Multi mode: wait for conversion to finish

then stop ADC

Serial API (Not supported)

silabs.com | Building a more connected world. Page 203 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43124 ZW_ADC_pin_select
- - -]

void ZW_ADC_pin_select(BYTE bAdcPin)

This function MAY be used to select the 10 pin to use as the active ADC input.

Not applicable in battery monitoring mode.

The 10 pin MUST be enabled as an ADC input before calling ZW_ADC_enable(TRUE).

Defined in: ZW_adcdriv_api.h

Parameters:

bAdcPin IN ADC_PINO Select /0 P3.4 as an ADC input
ADC_PIN1 Select I/0 P3.5 as an ADC input
ADC_PIN2 Select I/0 P3.6 as an ADC input
ADC_PIN3 Select I/0 P3.7 as an ADC input

Serial API (Not supported)

silabs.com | Building a more connected world. Page 204 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.5 ZW_ADC_threshold_mode_set

void ZW_ADC_threshold_mode_set(BYTE bThresMode)

This function MAY be used to set the threshold mode of the ADC unit.
The threshold mode controls when the ADC generates an interrupt request.

Use ZW_ADC_threshold_set() to set the actual threshold level.
Defined in: ZW _adcdriv_api.h
Parameters:

bThresMode ADC_THRES_UPPER Generate an interrupt request when input is
above/equal to the threshold value

ADC _THRES LOWER Generate an interrupt request when input is
below/equal to the threshold value
Serial API (Not supported)

silabs.com | Building a more connected world. Page 205 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.6 ZW_ADC_threshold_set
[- -]

void ZW_ADC_threshold_set(WORD wThreshold)
This function MAY be used to set the ADC threshold value.
Depending on the threshold mode (set by ZW_ADC_threshold_mode_set) , the threshold value is used
to trigger an interrupt when the sampled value is above/equal or below/equal the threshold value.
The APl ZW_ADC_ threshold_mode_set MUST be called before calling this function.
Defined in: ZW _adcdriv_api.h
Parameters:
wThreshold IN 8-bit resolution Threshold value range is 0 .. 255

12-bit resolution Threshold value range is 0 .. 4095

Serial API (Not supported)

silabs.com | Building a more connected world. Page 206 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.7 ZW_ADC int_enable
- - -]

void ZW_ADC_int_enable(BYTE boEnable)

Therefore, function MAY be used to enable or disable ADC interrupt requests. If enabled, an interrupt
routine MUST be defined. The ADC interrupt is disabled by default.

If ADC interrupts are enabled, the ADC interrupt flag MUST be reset by calling ZW_ADC_int_clear
before returning from the interrupt routine.

Defined in: ZW _adcdriv_api.h

Parameters:

boEnable IN TRUE Enable the ADC interrupt
FALSE Disable the ADC interrupt

Serial API (Not supported)

silabs.com | Building a more connected world. Page 207 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.8 ZW_ADC int_clear

|

void ZW_ADC _int_clear(void)

If ADC interrupts are enabled, this function MUST be called before returning from the interrupt routine.
Defined in: ZW _adcdriv_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 208 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43129 ZW_ADC is_fired
(- - -]

BOOL ZW_ADC _is_fired(void)

This function MAY be used to check if the most recent ADC conversion result meets the threshold
criterion.

Defined in: ZW_adcdriv_api.h
Retrun value:

BOOL TRUE The most recent conversion result meets
the threshold criterion

FALSE ADC conversion is not finished or the
most recent conversion result does not
meet the threshold criterion

Serial API (Not supported)

silabs.com | Building a more connected world. Page 209 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.10 ZW_ADC_result_get
- - -]

WORD ZW_ADC_result_get(void)
This function MAY be used to read back the result of the most recent ADC conversion. The return value
is an 8-bit or 12-bit integer depending on the ADC resolution mode. The value ADC_NOT_FINISHED
may be returned in case the ADC conversion process is still running.

Defined in: ZW_adcdriv_api.h

Return value:

WORD 8-bit resolution Return value range is 0 .. 255 in bits 0..7
The 8 MS bits of the return value MUST be ignored

12-bit resolution Return value range is 0 .. 4095 in bits 0..11
The 4 MS bits of the return value MUST be ignored.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 210 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.11 ZW_ADC_buffer_enable
- -

void ZW_ADC_buffer_enable(BYTE boEnable)

This function MAY be used to enable or disable an input buffer between the analog input and the ADC
converter. The input buffer is disabled by default.

The input buffer SHOULD be enabled when interfacing to a high impedance analog input. A high
impedance analog input connected directly to the ADC converter may cause increased ADC settling
time.
Not applicable in battery monitoring mode.

Defined in: ZW_adcdriv_api.h

Parameters:

boEnable TRUE Enable the input buffer
FALSE Disable the input buffer

Serial API (Not supported)

silabs.com | Building a more connected world. Page 211 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

431212 ZW_ADC_auto_zero_set
- - - - — --—- -

void ZW_ADC_auto_zero_set(BYTE bAzpl)

This function MAY be used to define the ADC sampling period. Default value is ADC_AZPL_128.
Itis RECOMMENDED to use longer sampling periods for high impedance analog inputs.

Defined in: ZW _adcdriv_api.h
Parameters:

bAzpl ADC_AZPL_1024 Set the autozero period to 128us
RECOMMENDED for high impedance
analog inputs

ADC_AZPL_512 Set the autozero period to 64us
RECOMMENDED for medium to high impedance
analog inputs.

ADC_ZPL_256 Set the autozero period to 32us

RECOMMENDED for medium to low impedance
analog inputs.

ADC ZPL 128 Set the autozero period to 16us
RECOMMENDED for low impedance analog inputs.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 212 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.12.13 ZW_ADC resolution_set
[- - -]

void ZW_ADC_resolution_set(BYTE bReso)

Therefore, function SHOULD be used to set the resolution of the ADC.
The threshold value SHOULD also be updated when changing the ADC resolution.

Apart from setting the resolution this function will, together with the auto zero period, also set the
sampling rate.

When resolution is ADC_8_ BIT the sampling rate is 23.6k samples/s @autozero=128
17.1k samples/s @autozero=256
11.1k samples/s @autozero=512

6.5k samples/s @autozero=1024

When resolution is ADC_12_BIT the sampling rate is 10.9k samples/s @autozero=128

9.3k samples/s @autozero=256
7.2k samples/s @autozero=512
4.9k samples/s @autozero=1024
Defined in: ZW _adcdriv_api.h
Parameters:
bReso ADC 12 BIT Set the ADC resolution to 12 bits
ADC 8 BIT Set the ADC resolution to 8 bits

Serial API (Not supported)

silabs.com | Building a more connected world. Page 213 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13 UART Interface API

The UART (Universal Asynchronous Receiver Transmitter) interface is for serial communication with
external devices such as PC’s, host controllers etc. The two UART interfaces transmits data in an
asynchronous way, and is a two-way communication protocol, using 2 pins each as a communications
means: TxD and RxD. The two pins can be enabled and disabled individually. If only using RX mode the
TxD pin can be used as general IO pins and vice versa. The UART’s use dedicated timers and do not
take up any 8051 timer resources.

Since the two UART’s are identical the description of each function is collapsed using the notation
UARTX, where x is either 0 or 1.

The UARTX supports full duplex and can operate with the baud rates between 9.6kbaud and 230.4
kbaud. (See under ZW_UARTXx_init)

The interface operates with 8 bit words, one start bit (low), one stop bit (high) and no parity. This setup is
hardwired and can not be changed.

The UARTX shifts data in/out in the following order: start bit, data bits (LSB first) and stop bit. The figure
below gives the waveform of a serial byte.

START STOP
e[o T

Figure 15. Serial Waveform

4.3.13.1 Transmission

An interrupt is released when D7 has been sent on the TxD pin. A new byte can be written to the buffer
when the interrupt has been released.

4.3.13.2 Reception

The reception is activated by a falling edge on RxD. If the falling edge is not verified by the majority
voting on the start bit, then the serial port stops reception and waits for another falling edge on RxD.
When the MSB of the byte has been received a stop bit is expected. The first 2/3 of the stop bit is
sampled and a majority decision is made on these samples. The interrupt will be released if the stop bit
is recognized as high.

When 2/3 of the stop bit has been received the serial port waits for another high-to-low transition (start
bit) on the RxD pin.

4.3.13.3 RS232

Connecting a RS232 level converter to the 2 pins of a UART interface makes the 500 Series Z-Wave
SoC able to communicate according to the RS232 standard.

RS2

g

RO - -ROM RZR
70—~ 50— LRVER

o |

Figure 16. RS232 Setup

-~
-
&

silabs.com | Building a more connected world. Page 214 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.4 Integration

Before using the UARTx the UART should be initialized and mapped to the 10O pins. This initialization
should be performed in the initialization function ApplicationlnitHW. The initialization and IO mapping is
performed using the ZW_UARTXx_init function.

The use of the UART is typically performed in the ApplicationPoll. The UART is then polled and
characters are received / transmitted. Alternatively, the UART can be serviced in an ISR, but this
approach is often to slow for higher baudrates.

A UART application typically writes a character or string to a teminal. This can be performed by
initializing the modem as described above in ApplicationlnitHW and then calling
ZW_UARTx_tx_send_str(BYTE *str) for an entire string. The function wait until the UART is ready
before sending each character. However in some cases it is not desirable to wait until the UART is ready
before continuing code execution. In this case it is better to poll to see if the UART is ready and then
transmit characters when the UART is ready. In this case a different set of functions are needed as given
below.

if (!zZwW UARTO tx active get())
{

ZW _UARTO_ tx send str();
}

Another possibility is to use the interrupt flags:

if (ZW _UARTO tx int get())

{
ZW UARTO tx int clear();
ZW _UARTO_ tx send str();

However the latter method has the disadvantage that it requires an initial write to the UART or else the
first interrupt flag will not go high and the writing will never start.

Another typical UART application is to receive a character to the 500-series Z-Wave SoC. Similarly as for
the TX setup, it is possible to poll for a new character before reading it.

An example of the preferred solution to receive characters is given below:

if (ZW_UARTO rx int get())

{
ZW UARTO rx int clear(); // Clear flag right after detection
ch = ZW UARTO0 rx data get(); // Where ch is of the type BYTE

silabs.com | Building a more connected world. Page 215 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

Note: It is important to clear the interrupt flag as fast as possible after detecting the interrupt flag (even
before reading data). Omitting to do this may lead to loss of data as the interrupt flag may trigger again
before the flag is cleared. This is especially a concern at high baudrates.

The serial interface API handles transfer of data via the serial interfaces using the 500 Series Z-Wave
SoC built-in UARTO and UART1.

4.3.13.5 Operation

Data to be transmitted is written to a UART data register, one byte at the time and data received is read
from a SPI data register one byte at the time. A UART interrupt can be issued when the UART controller
has transferred a byte on the UART interface. This API supports transmissions of either a single byte, or
a data string. The received characters are read by the application one-by-one.

silabs.com | Building a more connected world. Page 216 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.6 ZW_UARTO init/ ZW_UART1_init
|

void ZW_UARTO_init(WORD bBaudRate, BYTE bEnableTx, BYTE bEnableRx) /
void ZW_UART1_init(WORD bBaudRate, BYTE bEnableTx, BYTE bEnableRx)

Initializes the 500 Series Z-Wave SoC built-in UARTX to support ZM5101 and SD3502. Using ZM5202
requires that the NVR uart pin swap bit is set in the NVR to map to correct pin configuration. The function
should be called in the ApplicationInitHW() so the ports are mapped correctly when the chip starts up.

The init functions optionally enable/disable UARTX transmit and/or receive, clears the rx and tx interrupt
flags and sets the specified baud rate.

Defined in: ZW _uart_api.h
Parameters:

bBaudRate IN Baud Rate / 100 Valid values: 96 = 9.6kbaud,
144 = 14 .4kbaud,
192 = 19.2kbaud,
384 = 38.4kbaud,
576 = 57.6kbaud,
1152 = 115.2kbaud,
2304 = 230.4kbaud

bEnableTx IN TRUE Enable UARTX transmitter and allocate
TxD pin as follows:
UARTO TxD is allocated on P2.1
UART1 TxD is allocated on P3.1

FALSE Disable UARTx Transmitter and de-
allocate TxD pin

bEnableRx IN TRUE Enable UARTX receiver and allocate RxD
pin as follows:
UARTO RxD is allocated on P2.0
UART1 RxD is allocated on P3.0

FALSE Disable UARTX receiver and de-allocate
RxD pin

Serial API (Not supported)

silabs.com | Building a more connected world. Page 217 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.7 ZW_UARTO_rx_data_get/ ZW_UART1_rx_data_get
- - - -]

BYTE ZW_UARTO0_rx_data_get(void) / BYTE ZW_UART1_rx_data_get(void)
This function returns the last received byte from UARTx. The UART should be polled using the
ZW_UARTO_rx_int_get / ZW_UART1_rx_int_get to see whether a new byte is ready before calling this
function.
The function does not wait for a byte to be received but returns immediately. The alternative functions
ZW_UARTO_rx_data_wait_get / ZW_UART1_rx_data_wait_get waits until a byte is received before
returning.

Defined in: ZW _uart_api.h

Return value:

BYTE Received data.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 218 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.8 ZW_UARTO_rx_data_wait_get / ZW_UART1_rx_data_wait_get
- - - - -]

BYTE ZW_UARTO0_rx_data_wait_get(void) / BYTE ZW_UART1_rx_data_wait_get(void)
Returns a byte from the UARTX receiver. If no byte is available the function waits until data has been
received. This function should be used with extreme caution as it may freeze the system if no character
is received. In normal cases it is better to use polling, ZW_UARTO0_rx_int_get / ZW_UART1_rx_int_get,
to check if a new byte is received and then ZW_UARTO0_rx_data_get / ZW_UART1_rx_data_get to get
the byte.

Defined in: ZW _uart_api.h

Return value:

BYTE Received data.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 219 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.9 ZW_UARTO_tx_active_get/ ZW_UART1_tx_active_get
- - -]

BYTE ZW_UARTO_tx_active_get(void) / BYTE ZW_UART1_tx_active_get(void)
Read the UARTX send data status. The function returns TRUE if the UART is currently busy transmitting
data. The function is typically used in a polled TX setup to check whether the UART is ready before
sending the next character using ZW_UARTO_tx_data_set / ZW_UART1_tx_data_set.

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTXx Transmitter is busy

zero (0x00) UARTXx Transmitter is idle

Serial API (Not supported)

silabs.com | Building a more connected world. Page 220 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.10 ZW_UARTO tx_data_set/ZW_UART1_tx_data_set
- - - -

void ZW_UARTO_tx_data_set(BYTE data) / void ZW_UART1_tx_data_set(BYTE data)
Function sets the transmit data register
This function does not wait until UARTx transmitter is idle before it sends the new data. The function
should not be called unless the UART is ready. To check if the UART is ready is done using the
ZW_UARTO_tx_active_get / ZW_UART1_tx_active_get. Data send to the UART when it is not ready
will be ignored.

Defined in: ZW _uart_api.h

Parameters:

data IN Data to send.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 221 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.11 ZW_UARTO_tx_send_num /ZW_UART1_tx_send_num
[- - - - -

void ZW_UARTO0_tx_send_num(BYTE data) / void ZW_UART1_tx_send_num(BYTE data)
Converts a byte to a two-byte hexadecimal ASCII representation, and transmits it over the UART. This
function waits until UARTX transmitter is idle before it sends the new data. The function does not wait
until the last data byte has been sent.
See also: ZW_UARTO0_tx_send_str/ ZW_UART1_tx_send_str

Defined in: ZW _uart_api.h

Parameters:

data IN Byte value to be converted into two-byte

hexadecimal ASCII respresentation and

transmitted via the UART.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 222 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.12 ZW_UARTO_tx_send_str/ ZW_UART1_tx_send_str
[- - -

void ZW_UARTO0_tx_send_str(BYTE* pStr) / void ZW_UART1_tx_send_str(BYTE* pStr)
Transmit a null terminated string over UARTX. The null data is not transmitted. This function waits until
UARTX transmitter is idle before it sends the first data byte data. The function does not wait until the last
data byte has been sent.
See also: ZW_UARTO0_tx_send_num /ZW_UART1_tx_send_num

Defined in: ZW _uart_api.h

Parameters:

pStr IN Pointer to zero terminated string to be
transmitted via the UART.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 223 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1313 ZW_UARTO_INT_ENABLE / ZW_UART1_INT_ENABLE
|

ZW_UARTO_INT_ENABLE / ZW_UART1_INT_ENABLE
This macros enables UARTX interrupts
Defined in: ZW _uart_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 224 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1314 ZW_UARTO_INT_DISABLE / ZW_UART1_INT_DISABLE
|

ZW_UARTO_INT_DISABLE / ZW_UART1_INT_DISABLE
This macros disables UARTX interrupts
Defined in: ZW _uart_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 225 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.15 ZW_UARTO_tx_send_nl/ZW_UART1_tx_send_nl
[- -

void ZW_UARTO0_tx_send_nli(void) / void ZW_UART1_tx_send_nl(void)
Transmit “new line” sequence (CR + LF) over UARTX .

See also: ZW_UARTO0_tx_send_num /ZW_UART1_tx_send_num and ZW_UARTO_tx_send_str/
ZW_UART1_tx_send_str

Defined in: ZW _uart_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 226 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.16 ZW_UARTO_tx_int_clear / ZW_UART1_tx_int_clear
[- - -

void ZW_UARTO_tx_int_clear(void) / void ZW_UART1_tx_int_clear(void)
Clear the UARTX transmit interrupt/done flag.
See also: ZW_UARTO_tx_int_get / ZW_UART1_tx_int_get

Defined in: ZW _uart_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 227 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.17 ZW_UARTO_rx_int_clear / ZW_UART1_rx_int_clear
- - -

void ZW_UARTO_rx_int_clear(void) / void ZW_UART1_rx_int_clear(void)
Clear the UARTX receiver interrupt/ready flag.
See also: ZW_UARTO_rx_int_get / ZW_UART1_rx_int_get

Defined in: ZW _uart_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 228 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.18 ZW_UARTO_tx_int_get/ ZW_UART1_tx_int_get
[- -

BYTE ZW_UARTO_tx_int_get(void) / BYTE ZW_UART1_tx_int_get(void)
Returns the state of the Transmitter done/interrupt flag. This function has limited used and in practice it is
preferred to check if the UART is ready using the ZW_UARTO_tx_active_get /
ZW_UART1_tx_active_get function in a polled configuration. The ZW_UARTO0_tx_active_get /
ZW_UART1_tx_active_get does not require the interrupt flag to be cleared.
See also : ZW_UARTO0_tx_int_clear / ZW_UART1_tx_int_clear

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTXx Transmitter done/interrupt flag is
set
zero (0x00) UARTXx Transmitter done/interrupt flag is
cleared

Serial API (Not supported)

silabs.com | Building a more connected world. Page 229 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.19 ZW_UARTO_rx_int_get/ ZW_UART1_rx_int_get
[- -

BYTE ZW_UARTO_rx_int_get(void) / BYTE ZW_UART1_rx_int_get(void)

Returns the state of the receiver data ready/interrupt flag. The flag goes high when a new byte has been
received. The flag should be cleared as soon as possible after detection in order to minimize risk of data
loss (especially at high baud rates). Clearing the interrupt flag is done using the function
ZW_UARTO_rx_int_clear / ZW_UART1_rx_int_clear. When a new byte is detected the byte can be
read using the ZW_UARTO_rx_data_get / ZW_UART1_rx_data_get function.

See also: ZW_UARTO_rx_int_clear / ZW_UART1_rx_int_clear and ZW_UARTO_rx_data_get /
ZW_UART1_rx_data_get

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTXx Receiver data ready/interrupt flag
is set
zero (0x00) UARTX receiver data ready/interrupt flag
is cleared

Serial API (Not supported)

silabs.com | Building a more connected world. Page 230 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.13.20 ZW_UARTO_rx_enable / ZW_UART1_rx_enable

void ZW_UARTO_rx_enable(BYTE bState) / void ZW_UART1_rx_enable(BYTE bState)
This function is used to enable or disable the UARTx Rx function in runtime. Use the function
ZW_UARTXx_init to set the initial state of the Rx function. When enabling the UARTx Rx function the
UARTXx Rx pin will become an intput.

Defined in: ZW _uart_api.h

Parameters:

bState IN TRUE UARTx Rx enabled

FALSE UARTXx Rx disabled

Serial API (Not supported)

silabs.com | Building a more connected world. Page 231 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.313.21 ZW_UARTO tx_enable / ZW_UART1_tx_enable

void ZW_UARTO_tx_enable(BYTE bState) / void ZW_UART1_tx_enable(BYTE bState)
This function is used to enable or disable the UARTx TX function in runtime. Use the function
ZW_UARTXx_init to set the initial state of the Rx function. When enabling the UARTXx Tx function the
UARTX Tx pin will become an output.

Defined in: ZW _uart_api.h

Parameters:

bState IN TRUE UARTx Tx enabled

FALSE UARTX Tx disabled

Serial API (Not supported)

silabs.com | Building a more connected world. Page 232 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

4.3.14 Application HW Timers/PWM Interface API

The 500 Series Z-Wave SoC has three built-in HW timers available for the application:

1. Timer0

2. Timer1

3. GPTimer or PWM generator.
Timer bits Clocked by Count up/down
Timer0 8/13/16 32MHz /2 or P3.4 Counts up
Timer1 8/13/16 32MHz / 2 or P3.5 Counts up
GPTimer 16 32MHz / 8 or 32MHz / 1024 Counts down

Timer0 and Timer1 are standard 8051 timers that can be configured to:
e be enabled/disabled
e use the system clock divided by 2 (16MHz) or use a pin as clock source
e generate an interrupt at overflow

Refer to figure below for principle diagrams of how the clock control works for TimerO.

TIMERO

ZW_TIMERO_ENABLE

CE

P3.4 [

clk

clkeys (32MHz)

ZW_TIMERO_ext_clk()
Figure 17. Principle of Clock Control for Timer0

Refer to figure below for principle diagrams of how the clock control works for TimerO.

TIMER1

ZW_TIMER1_ENABLE

CE

P3.5 O

clk

Clkeys (32MHz)

ZW_TIMER1_ext_clk()
Figure 18. Principle of Clock Control (mode 0-2) for Timer1

Timer0 and Timer1 can operate in four different modes. Refer to the description of ZW_TIMER1_init

silabs.com | Building a more connected world.

Page 233 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43141 ZW_TIMERO_init

void ZW_TIMERO_init(BYTE bValue)

This function SHOULD be used to initialize Timer0.
Defined in: ZW _appltimer_api.h
Parameters:
bValue Timer0 Mode:

TIMER_MODE_0

TIMER_MODE_1

TIMER_MODE_2

TIMER_MODE_3

Serial API (Not supported)

13 bit mode. The 5 lower bits of the low
register acts as a 5 bit prescaler for the
high byte

16 bit mode

8bit - auto reload mode. The 8bit timer
runs in the high byte register. After an
overflow the low byte register value is
loaded into the high byte register

Timer O division mode. Timer 0 is divided
into two 8 bit timers, one controlled by the
Timer O control bits and the other
controlled by the Timer 1 control bits.
Warning: Enabling this will stop Timer 1

silabs.com | Building a more connected world.

Page 234 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43142 ZW_TIMER1_init
|

void ZW_TIMER1_init(BYTE bValue)
This function SHOULD be used to initialize Timer1.

Defined in: ZW _appltimer_api.h

Parameters:
bValue Timer1 Mode:

TIMER_MODE_0 13 bit mode. The 5 lower bits of the low
register acts as a 5 bit prescaler for the
high byte

TIMER_MODE _1 16 bit mode (no reload)

TIMER_MODE_2 8bit - auto reload mode. The 8bit timer

runs in the high byte register. After an
overflow the low byte register value is
loaded into the high byte register

TIMER_MODE_3 Disabled.

Warning: If TimerO uses mode 3 then
Timer1 is stopped.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 235 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.3 ZW_TIMERO_INT_CLEAR/ZW_TIMER1_INT_CLEAR
|

ZW_TIMERX_INT_CLEAR
This macro SHOULD be used to clear timer interrupt/overflow flags.

Mode0-2: This macro clears the TIMERO/TIMER1 interrupt/overflow flag.
Mode3: This macro clears the TIMERO/TIMER1 high counter interrupt/overflow flag.

Defined in: ZW_appltimer_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 236 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.4 ZW_TIMERO_INT_ENABLE / ZW_TIMER1_INT_ENABLE
|

ZW_TIMERx_INT_ENABLE(BYTE bState)

This macro SHOULD be used to enable or disable the Timer0/Timer1 interrupt.
Defined in: ZW _appltimer_api.h
Parameters:

bState IN TRUE Mode 0-2: TIMERO/TIMER1 interrupt is
enabled
Mode 3: TIMERO/TIMER1 high counter
interrupt is enabled

FALSE Mode 0-2: TIMERO/TIMER1 interrupt is
disabled
Mode 3: TIMERO/TIMER1 high counter
interrupt is disabled

Serial API (Not supported)

silabs.com | Building a more connected world. Page 237 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

43145 ZW_TIMERO_ENABLE /ZW_TIMER1_ENABLE
]

ZW_TIMERx_ENABLE(BYTE bState)
This macro SHOULD be used to enable or halt TimerO/Timer1.

Defined in: ZW _appltimer_api.h

Parameters:
bState IN TRUE Mode 0-2: TIMERO/TIMER1 runs
Mode 3: TimerQ/Timer1 high counter runs
FALSE Mode 0-2: TIMERO/TIMER1 is halted
Mode 3: TimerO/timer1 high counter is
halted

Serial API (Not supported)

silabs.com | Building a more connected world. Page 238 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.146 ZW_TIMERO ext_clk / ZW_TIMER1_ext_clk
|

ZW_TIMERX_ext_clk(BYTE bState)
This function SHOULD be used to set the clock source for timerO/timer1

Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE TimerO runs on external clock (falling edge)
of P3.4.
Timer1 runs on external clock (falling edge)
of P3.5.

(synchronized to the system clock)

FALSE TimerO/Timer1 runs on system clock
(divided by 2) - default value after reset

Serial API (Not supported)

silabs.com | Building a more connected world. Page 239 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.7 ZW_TIMERO_LOWBYTE_SET/ZW_TIMER1_LOWBYTE_SET
|

ZW_TIMERx_LOWBYTE_SET (BYTE bValue)
This macro SHOULD be used to set the timerO/timer1 low byte value, see below.
Defined in: ZW _appltimer_api.h
Parameters:
bValue IN The input value depends on the chosen mode:
ModeO: ITower 5 bits sets the prescaler value for the 13 bit
Mode1: grgtzrthe lower 8 bits of the 16 bit timer
Mode2: N.A.
Mode3: N.A.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 240 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.8 ZW_TIMERO_HIGHBYTE_SET/ZW_TIMER1_HIGHBYTE_SET
|

ZW_TIMERx_HIGHBYTE_SET (BYTE bValue)
This macro SHOULD be used to set the timerO/timer1 high byte value, see below.
Defined in: ZW _appltimer_api.h
Parameters:
bValue IN The input value depends on the chosen mode:
ModeO: Sets the 8 bit timer value
Mode1: Sets the upper 8 bits of the 16 bit timer
Mode2: Sets the 8 bit reload value of the 8 bit timer0
Mode3: N.A.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 241 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.9 ZW_TIMERO_HIGHBYTE_GET /ZW_TIMER1_HIGHBYTE_GET

|
BYTE ZW_TIMERx_HIGHBYTE_GET
This macro MAY be used to query the timerO/timer1 high register value
Defined in: ZW _appltimer_api.h
Return value:
BYTE The return value depends on the chosen mode:
ModeO: 8 bit timer value
Mode1: upper 8 bits of the 16 bit timer
Mode2: 8 bit timer value

Mode3: N.A.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 242 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1410 ZW_TIMERO _LOWBYTE_GET/ZW_TIMER1_LOWBYTE_GET

|
BYTE ZW_TIMERx_LOWBYTE_GET
This macro MAY be used to query the timerO/timer1 timer low register value
Defined in: ZW _appltimer_api.h
Return value:
BYTE The return value depends on the chosen mode:
ModeO: 5 bit prescaler value for the 13 bit timer. (lower 5 bits)
Mode1: lower 8 bits of the 16 bit timer
Mode2: 8 bit timer value

Mode3: N.A.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 243 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

431411 ZW_TIMERO_word_get / ZW_TIMER1_word_get
- - - - = -

WORD ZW ZW_TIMERx_word_get (void)

This function MAY be used to query the two 8 bit timerO/timer1 register values as one 16 bit value. Used
when timerO/timer1 is set in mode 1.

Defined in: ZW_appltimer_api.h
Return value:
WORD 16bit timer value

Serial API (Not supported)

silabs.com | Building a more connected world. Page 244 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1412 ZW_GPTIMER init

void ZW_GPTIMER_init(BYTE bValue)

This function SHOULD be used to initialize the GPTimer. Calling ZW_GPTIMER _init() will disable the
PWM, since the GP Timer and the PWM share the same hardware resources. The GPTimer is
hardcoded to count down.

Defined in: ZW_appltimer_api.h

Parameters:

bValue IN Bit mask:
Prescaler setting

PRESCALER_BIT When set: Timer counter runs @
32MHz / 1024 = 31.25kHz

When nor set: Timer counter runs @
32MHz / 8 = 4MHz
Reload Timer

RELOAD_BIT When set: The GPTimer counter
registers are reloaded with the reload
register value upon underrun.

When not set: The GPTimer stops upon
underrun.

Immediate write

IMWR_BIT When set: The GP Timer counters will be
loaded with the value of the reload
register when it is disabled or
immediately when the reload values are
set.

When not set: The GP Timer counters
will be loaded with the value of the reload
register when it is disabled or when it
times out (underrun).

Serial API (Not supported)

silabs.com | Building a more connected world. Page 245 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1413 ZW_GPTIMER_int_clear
- -

void ZW_GPTIMER_int_clear (void)
This function SHOULD be used to clear the GP Timer interrupt flag.
Defined in: ZW _appltimer_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 246 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1414 ZW_GPTIMER int_get
|

BYTE ZW_GPTIMER_int_get (void)

This function MAY be used to query the state of the GP Timer interrupt flag.
Defined in: ZW _appltimer_api.h
Return value:

BYTE 0x00: interrupt flag is not set
mom-0x00: Interrupt is set

Serial API (Not supported)

silabs.com | Building a more connected world. Page 247 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.31415 ZW_GPTIMER_ int_enable
|

void ZW_GPTIMER _int_enable(BYTE bState)
This function SHOULD be used to enable or disable the GPTimer interrupt.

The application designer MUST declare an Interrupt Service Routine (ISR) to handle the GP Timer
interrupt. The ISR MUST use the ISR number INUM_GP_TIMER as declared in section 3.9.

Defined in: ZW_appltimer_api.h

Parameters:

bState IN TRUE enable GPTimer interrupt
FALSE disable GPTimer interrupt

Serial API (Not supported)

silabs.com | Building a more connected world. Page 248 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.16 ZW_GPTIMER_enable

void ZW_GPTIMER_enable(BYTE bState)

This function SHOULD be used to enable or disable the GPTimer.
Disabling the GPTimer also clears the interrupt flag and resets the GPTimer counters.

Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE enable GPTimer.
FALSE disable GPTimer.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 249 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.17 ZW_GPTIMER_pause
(- - -]

void ZW_GPTIMER_pause(BYTE bState)
This function MAY be used to control the GPTimer pause state.
When entering the pause state, the GPTimer counters stops counting.
When leaving the pause state, the counters will start counting from the state they were in when the
pause state was entered.
Defined in: ZW _appltimer_api.h
Parameters:
bState IN TRUE Enter GPTimer pause state.
FALSE Leave GPTimer pause state.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 250 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.18 ZW_GPTIMER reload_set
- - -]

void ZW_GPTIMER _reload_set(WORD wReloadValue)
This function SHOULD be used to set the 16 bit GPTimer reload register. This value sets the time from
where the GPTimer is enabled or is reloaded until it reaches zero (issues an interrupt).
As an example, if the GPtimer reload value is set to 0x0137 and the prescaler is set to 1024, the timer
will reach zero after 0x137 * 1024 * (32MHz)" = 9.95ms.
The value 0x0000 equals a timer reload value of 0x10000. E.g. if the GPtimers reload value is set to
0x0000 and the prescaler is set to 8, the timer will reach zero after 0x10000 * 8 * (32MHz)' = 16.38ms.
Defined in: Z\W_appltimer_api.h
Parameters:

wReloadValue IN 16 bit reload value

Serial API (Not supported)

silabs.com | Building a more connected world. Page 251 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.1419 ZW_GPTIMER _reload_get
- -

WORD ZW_GPTIMER_reload_get(void)

This function MAY be used to query the 16 bit GPTimer reload register value.
Defined in: ZW _appltimer_api.h
Return value:
WORD 16 bit reload value

Serial API (Not supported)

silabs.com | Building a more connected world. Page 252 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.20 ZW_GPTIMER_get
|

WORD ZW_GPTIMER_get(void)

This function MAY be used to query the 16 bit GPTimer counter register value.

The returned value is in the range [reload_value-1;0]. As an example, if the reload value is set to
0x2A40, ZW_GPTIMER_get() will return a value in the range [Ox2A3F;0].

An application SHOULD be designed to be robust if a higher value is returned, e.g. because the reload
value was not correctly stored in the chip.

Defined in: ZW _appltimer_api.h
Return value:
WORD 16 bit counter value

Serial API (Not supported)

silabs.com | Building a more connected world. Page 253 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.21 ZW_PWM_init
|

void ZW_PWM_init(BYTE bValue)

This function SHOULD be used to initialize the pulse width modulator. Calling ZW_PWM_init() will
disable the GPTimer function, since the PWM and the GP Timer share the same hardware.

Itis NOT RECOMMENDED that Immediate write mode is enabled as it introduces a risk of unintended
waveforms.

Defined in: ZW _appltimer_api.h

Parameters:

bValue IN Bit mask:
Prescaler setting

PRESCALER BIT When set: PWM counter runs @
32MHz / 1024 = 31.25kHz
When nor set: PWM counter runs @
32MHz / 8 = 4MHz

Invert signal

PWMINV_BIT When set: PWM signal is inverted.
When not set: The signal is not inverted

Immediate write

IMWR_BIT When set: The PWM counters will be
loaded with the value of the waveform
registers when it is disabled or
immediately when the waveform values
are set.

When not set: The PWM counters will be
loaded with the value of the waveform
registers when it is disabled or at the
end of a PWM signal period.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 254 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.22 ZW_PWM_enable

void ZW_PWM_enable(BYTE bState)

This function SHOULD be used to enable or disable the PWM.
Disabling the PWM also clears the interrupt flag and resets the PWM counter.

Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE enable PWM.
FALSE disable PWM.

Serial API (Not supported)

silabs.com | Building a more connected world. Page 255 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.23 ZW_PWM._int_clear
- -

void ZW_PWM_int_clear (void)
This function SHOULD be used to clear the PWM interrupt flag.
Defined in: ZW _appltimer_api.h

Serial API (Not supported)

silabs.com | Building a more connected world. Page 256 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.24 ZW_PWM_int_get
|

BYTE ZW_PWM_int_get (void)

This function MAY be used to query the state of the PWM interrupt flag.
Defined in: ZW _appltimer_api.h
Return value:

BYTE 0x00: interrupt flag is not set
non-0x00: Interrupt is set

Serial API (Not supported)

silabs.com | Building a more connected world. Page 257 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.25 ZW_PWM_int_enable

void ZW_PWM_int_enable(BYTE bState)

This function SHOULD be used to enable or disable the PWM interrupt.

The PWM interrupt is triggered on the rising edge of the PWM signals (or at the falling edge of the PWM
signal if PWMINV_BIT is set in ZW_PWM_init()).

The application designer MUST declare an Interrupt Service Routine (ISR) to handle the PWM controller
interrupt. The ISR MUST use the ISR number INUM_GP_TIMER as declared in section 3.9.

Section 4.3.14.25 recommends that Immediate write is not enabled. With Immediate write disabled, the
application may unintentionaly inhibit the flow of IRQs from the PWM controller. This may happen if the
application calls ZW_PWM_waveform_set with the parameter value (0,0). Refer to 4.3.14.26 on how to
recover from this situation.

Defined in: Z\W_appltimer_api.h

Parameters:

bState IN TRUE enable PWM interrupt

FALSE disable PWM interrupt

Serial API (Not supported)

silabs.com | Building a more connected world. Page 258 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.26 ZW_PWM_waveform_set
[-

void ZW_PWM_waveform_set (BYTE bHigh,
BYTE bLow)

This function SHOULD be used to set the high and low time of the PWM signal. Refer to figure below.

High time of PWM signal: thewm = (bHigh * PRESCALER)/fsys
Low time of PWM signal tipwm = (bLow * PRESCALER) ffsys
Total period of PWM signal: Trwm = thewm + tiewm

where fs is 32MHz and
PRESCALER is 1024 when PRESCALER_BIT is set by ZW_PWM_init() and
PRESCALER is 8 when PRESCALER_BIT is not set.

NOTE: If PWMINV_BIT was set by ZW_PWM_init(), bHigh defines the duration of the low period
and bLow defines the duration of the high period..

. Tewm R
tipwm tipwm
4 —> 4 —>
[>
4 —> 4 —>
thpwm thpwm

Figure 19. PWM Waveform

Section 4.3.14.25 recommends that Immediate write is not enabled. With Immediate write disabled, the
application SHOULD NOT call ZW_PWM_waveform_set with the parameter value (0,0). In case the
parameter value (0,0) has been used, the application MUST call ZW_PWM_waveform_set with one or
two non-zero values and subsequently disable and re-enable the PWM controller by calling
ZW_PWM_enable.

While NOT RECOMMENDED, Immediate write MAY be enabled. In that case, the application MAY call
ZW_PWM_waveform_set with any parameter value.

Defined in: Z\W_appltimer_api.h

Parameters:
bHigh IN high time
bLow IN low time

Serial API (Not supported)

silabs.com | Building a more connected world. Page 259 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.14.27 ZW_PWM_waveform_get
- -

void ZW_waveform_get(BYTE *bHigh,
BYTE *bLow)

This function MAY be used to query the values of the waveform registers.

Defined in: ZW_appltimer_api.h

Parameters:
bHigh OUT high time
bLow OUT low time

Serial API (Not supported)

silabs.com | Building a more connected world. Page 260 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.15 Security API

This API handles security keys on application level.

4.3.151 ZW_GetSecurityKeys (Only slave libraries)

BYTE ZW_GetSecurityKeys()
This function returns a bitmask of security keys the node posses. The application can request
ZW_SendDataEx() to use these keys for outgoing messages. Incoming messages sent with any of these
keys will be decrypted and delivered to the application. An excluded node returns no security keys.
Defined in: ZW _security_api.h
Parameters:
BYTE OUT Bit mask:
0x00 = SECURITY_KEY_NONE_MASK No security keys
0x01 = SECURITY_KEY_S2 UNAUTHENTICATED_BIT
0x02 = SECURITY_KEY_S2 AUTHENTICATED_BIT
0x04 = SECURITY_KEY_S2_ACCESS BIT
0x80 = SECURITY_KEY_SO_BIT
Serial API
HOST->ZW: REQ | 0x9C | 0
ZW->HOST: RES | 0x9C | 0 | securityKeys_bitmaskLen(1) | securityKeys_bitmask
In the Serial API the Security API functions are reached through the
FUNC_ID_ZW_SECURITY_SETUP (0x9C) and this Serial API FUNC_ID makes it possible to set the
Requested Security Keys and Requested Authentication method in a Slave Routing/Enhanced 232
based Serial APl Node prior to inclusion (add). The Requested Security Keys and Authentication is

requested by the protocol during S2 inclusion.

Set Requested Security Inclusion Keys
(E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_KEYS):

HOST->ZW: REQ | 0x9C | 5 | registeredSecurityKeysLen(1) | registeredSecurityKeys
ZW->HOST: RES | 0x9C | 5 | retValLen(1) | retVal - retVal == TRUE => success

Set Requested Security Inclusion Authentication
(E_SECURITY_SETUP_CMD_SET_SECURITY_INCLUSION_REQUESTED_AUTHENTICATION):

HOST->ZW: REQ | 0x9C | 6 | registeredSecurityAuthenticationLen(1) | registeredSecurityAuthentication

ZW->HOST: RES | 0x9C | 6 | retValLen(1) | retVal - retVal == TRUE => success

silabs.com | Building a more connected world. Page 261 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.15.2 ZW_s2_inclusion_init(Only slave libraries)
[- - - - -

void ZW_s2_inclusion_init(void)

Initialises the S2 inclusion machine. Must only be called if Requested Security Keys or Requested
Authentication method is changed.

Defined in: ZW _security_api.h

Serial API

Not implemented. SerialAPI Application calls ZW_s2_inclusion_init() when changing either the
Requested Security Keys or the Requested Authentication Method (See 4.3.15.1).

silabs.com | Building a more connected world. Page 262 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.15.3 ZW_SetSecurityS2inclusionPublicDSK_CSA(Only slave libraries)
- - - - - - - - -]

void ZW_SetSecurityS2InclusionPublicDSK_CSA(s_SecurityS2InclusionCSAPublicDSK_t
*response)

Set the Controller DSK requested by protocol through ApplicationSecurityEvent with the Security Event
E_APPLICATION_SECURITY_EVENT_S2_INCLUSION_REQUEST_DSK_CSA.

Defined in: ZW_security_api.h

Parameters:

s_SecurityS2InclusionCSAPublicDSK_t* IN response->aCSA_ DSKJ[4] Pointer to 4 BYTE
Public CSA DSK

Serial API

HOST->ZW: REQ | 0x9C | 4 | bCSA_DSKLen(4) | aCSA_DSK4]

ZW->HOST: RES | 0x9C | 4 | retValLen(1) | retVal - retVal == TRUE => success

silabs.com | Building a more connected world. Page 263 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.15.4 ZW_GetSecurityS2PublicDSK(Only slave libraries)

__|
void ZW_GetSecurityS2PublicDSK(BYTE *buf)

This function returns the 16 byte Public DSK for the node in the 16 byte long array buf points to — buf
most point to an array at least 16 byte in size. Can be used to do S2 SSA Authenticated inclusion (add)
by using the returned DSK to present to user which then must enter the needed part of the DSK on the
Controller when doing Authenticated S2 inclusion.

Defined in: ZW_security_api.h

Parameters:

BYTE OUT *buf Pointer to 16 byte array
the DSK should be written
to.

Serial API

HOST->ZW: REQ | 0x9C | 2

ZW->HOST: RES | 0x9C | 2 | publicDSKLen(16) | publicDSK[16]

4.3.15.5 ZW_SetSecurityS2CriticalNodelD (Only routing slave library)

void ZW_SetSecurityS2CriticalNodelD(BYTE bNodelD)

This function set the S2 Critical NodelD used when a S2 included slave_routing based node enter
sleepmode. When Sleepmode is entered the SPAN used in connection with S2 communicating with the
Critical NodelD is saved in Retention RAM and restored when wakeup. This makes SPAN resync not
necessary when communicating with the Critical NodelD after wakeup.

Defined in: ZW _security_api.h

Parameters:
BYTE IN bNodelD:

0 Save MRU SPAN in
retention RAM when going
into Sleep Mode.

1-232 Save SPAN concerning
bNodelD (if present) in
retention when going into
Sleep Mode.

233 - 255 Reserved.

Serial API

HOST->ZW: REQ | 0x9C | 3 | bNodelDLen(1) | nodelD

silabs.com | Building a more connected world. Page 264 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

ZW->HOST: RES | 0x9C | 3 | retValLen(1) | retVal - retVal == TRUE => success

silabs.com | Building a more connected world. Page 265 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.15.6 ZW_SetSecuritySONetworkKey (Only enhanced 232 slave library)

void ZW_SetSecuritySONetworkKey(BYTE *network_key)

This function is only used after a firmware update of an application that is securely included in a SO
based network. The call transfer the SO network key from the application area in external NVM to the Z-
Wave Protocol area in external NVM.

Defined in: ZW_security_api.h

Parameters:
network_key IN Array of 16 bytes Pointer to byte array containing the SO
network key
Serial API

HOST->ZW: REQ | 0x9C | 1 | networkkeyLen(16) | network_key[16]
ZW->HOST: RES | 0x9C | 1 | retValLen(1) | retVal - retVal == TRUE => success
retVal = FALSE if ZW_SetSecuritySONetworkKey was NOT called (network_key must be 16 bytes)

retVal = TRUE if ZW_SetSecuritySONetworkKey was called with specified network_key

silabs.com | Building a more connected world. Page 266 of 445

https://www.silabs.com/

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.16 AES API

The built-in AES-128 hardware engine is a NIST standardized AES 128 block cipher. The cipher engine
is used by the Z-Wave Protocol to encrypt/decrypt Z Wave frame payload and to authenticate Z Wave
frames. In addition this AES-128 encryption engine can also be used to encrypt a 128bit data block
(Using ECB - Electronic CookBook mode) by the application.

The input and output data and key for the AES API's are 16 bytes long char arrays. ZW_AES_ecb_set is
used to set the input data (plaintext and key) and the function ZW_AES_ecb_get is used to return the
cipher data from the AES engine. The ECB process is started using the function
ZW_AES_ecb_enable(TRUE) and it lasts about 24ps. The process can be canceled by calling
ZW_AES_ecb_enable(FALSE). The AES engine must be polled, using the function
ZW_AES_ecb_active to check when a ECB process is done. Figure below gives an example of how the
AES engine functions are called.

/* Example of ECB ciphering. Vectors are from FIPS-197 */

void ApplicationPoll ()
{

switch (mainState)

{

case START AES TEST:

keybuffer[15] = 0x00;
keybuffer([14] = 0x01;
keybuffer[13] = 0x02;
keybuffer([12] = 0x03;
keybuffer[11l] = 0x04;
keybuffer[10] = 0x05;
keybuffer[9] = 0x06;
keybuffer[8] = 0x07;
keybuffer[7] = 0x08;
keybuffer[6] = 0x09;
keybuffer[5] = 0x0A;
keybuffer[4] = 0x0B;
keybuffer[3] = 0x0C;
keybuffer[2] = 0x0D;
keybuffer[l] = 0x0E;
keybuffer[0] = O0xO0F;
plainbuffer[15] = 0x00;
plainbuffer[14] = 0x11;
plainbuffer[13] = 0x22;
plainbuffer[12] = 0x33;
plainbuffer[11] = 0x44;
plainbuffer[10] = 0x55;
plainbuffer[9] = 0x66;
plainbuffer (8] = 0x77;
plainbuffer[7] = 0x88;
plainbuffer (6] = 0x99;
plainbuffer[5] = 0xAA;
plainbuffer (4] = 0xBB;
plainbuffer[3] = 0xCC;
plainbuffer (2] = 0xDD;
plainbuffer[l] = OxEE;
plainbuffer (0] = 0OxFF;
cipherbuffer[15] = 0x69;
cipherbuffer[14] = 0xC4;
cipherbuffer[13] = 0xEQ;
cipherbuffer[12] = 0xD8;

silabs.com | Building a more connected world. Page 267 of 445

https://www.silabs.com/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

INS13954-13

Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x

2020-04-21

cipherbuffer]|
cipherbuffer]|
cipherbuffer]|
cipherbuffer]|
cipherbuffer]|
cipherbuffer|
cipherbuffer]|
cipherbuffer|
cipherbuffer]|
cipherbuffer]|
cipherbuffer([l]
cipherbuffer[0]

11
10
9]
8]
7]
6]
5]
4]
3]
2]

]
]

0x6A;
0x7B;
0x04;
0x30;
0xD8;
0xCD;

= 0xB7;
= 0x80;

0x70;
0xB4;
0xC5;
0x5A;

/* Set AES ECB input data pointers */
ZW AES ecb set (plainbuffer, keybuffer);
/* Start AES ECB function */

ZW AES enable (TRUE) ;
mainState=WAIT AES ECB;

break;

case WAIT AES ECB:

/* Check to se if AES ECB procedure is done */
if (ZW_AES active get ()==FALSE)

{

ZW _AES ecb get(plainbuffer);
/* check against proven data */

fail=FALSE;

for (i=0;1i<16;i++)

{

if (plainbuffer[i]!=chipherbuffer[i])

{

fail=TRUE;

break;

}

if (fail) report();

mainState= IDLE;

}

break;

Figure 20. Example of ECB Ciphering. Vectors are from FIPS-197.

silabs.com | Building a more connected world.

Page 268 of 445

https://www.silabs.com/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

INS13954-13 Z-Wave 500 Series Appl. Programmers Guide v6.8x.0x 2020-04-21

4.3.16.1 ZW _AES _ecb_set
- - - -

void ZW_AES_ecb_set(BYTE *bData,
BYTE *bKey)

Call this function to setup the input data for the AES in ECB mode (Electronic Cookbook mode). Use the
function ZW_AES_swap_byte to swap the order of which the data from the array is read into the AES
engine.

Defined in: ZW _aes_api.h

Parameters:

bData Array of 16 bytes Pointer to byte array containing the data
to be encrypted.

bKey Array of 16 bytes Pointer to byte array containing the

encryption ke