
UG118: Bluetooth®Profile Toolkit
Developer's Guide

Bluetooth GATT services and characteristics are the basis of the Bluetooth data ex-
change. They are used to describe the structure, access type, and security properties
of the data exposed by a device, such as a heart-rate monitor. Bluetooth services and
characteristics have a well-defined and structured format, and they can be easily de-
scribed using XML mark-up language.

The Profile Toolkit is an XML-based mark-up language for describing the Bluetooth
services and characteristics, also known as the GATT database, in both easy human-
readable and machine-readable formats. This guide walks you through the XML syntax
used in the Profile Toolkit and instructs you how to easily describe your own Bluetooth
services and characteristics, configure the access and security properties, and how to
include the GATT database as a part of the firmware.

This guide also contains practical examples showing the use of both standardized
Bluetooth and vendor-specific proprietary services. These examples provide a good
starting point for your own development work.

KEY POINTS

• Understanding Bluetooth GATT profiles,
services, characteristics, attribute protocol

• Building the GATT database with the
Profile Toolkit

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 2.8

1. Understanding Profiles, Services, Characteristics, and the Attribute Protocol

This section provides a basic explanation of Bluetooth profiles, services, and characteristics, and also explains how the Attribute proto-
col is used in the data exchange between the GATT server and client. Further information on these topics can be found on the Blue-
tooth SIG website at: https://www.bluetooth.com/specifications/specs/.

1.1 GATT-Based Bluetooth Profiles and Services

A Bluetooth profile specifies the structure in which data is exchanged. The profile defines elements, such as services and characteris-
tics used in a profile, but it may also contain definitions for security and connection-establishment parameters. Typically a profile con-
sists of one or more services which are needed to accomplish a high-level use case, such as heart-rate or cadence monitoring. Stand-
ardized profiles allow device and software vendors to build inter-operable devices and applications.

1.2 Services

A service is a collection of data composed of one or more characteristics used to accomplish a specific function of a device, such as
battery monitoring or temperature data, rather than a complete use case.

1.3 Characteristics

A characteristic is a value used in a service, either to expose and/or exchange data and/or to control information. Characteristics have a
well-defined known format. They also contain information about how the value can be accessed, what security requirements must be
fulfilled, and, optionally, how the characteristic value is displayed or interpreted. Characteristics may also contain descriptors that de-
scribe the value or permit configuration of characteristic data indications or notifications.

1.4 The Attribute Protocol

The Attribute protocol enables data exchange between the GATT server and the GATT client. The protocol also provides a set of oper-
ations, namely how to query, write, indicate, or notify the data and/or control information between the two GATT parties.

GATT server
(Heart Rate profile)

GAP service
UUID: 0x1800

Device Information
service

UUID: 0x180A

HR measurement
Characteristic
UUID: 0x2A37

Body Sensor
Location

Characteristic
UUID: 0x2A38

Declaration
(notify property, no

security
requirements)

Characteristic
(2-6B of data
exposing HR

reading)

Descriptors
(enable/disable

notifications)

GATT client
Attribute protocol

Operations:
Read
Write
Notify

Indicate

Heart Rate Service
UUID: 0x180D

Figure 1.1. Profile, Service, and Characteristic Relationships

UG118: Bluetooth®Profile Toolkit Developer's Guide
Understanding Profiles, Services, Characteristics, and the Attribute Protocol

silabs.com | Building a more connected world. Rev. 2.8 | 2

https://www.bluetooth.com/specifications/specs/

Figure 1.2. Attribute Read Operation

Figure 1.3. Attribute Write Operation

Figure 1.4. Attribute Write without Response Operation

Figure 1.5. Attribute Indicate Operation

Figure 1.6. Attribute Notify Operation

UG118: Bluetooth®Profile Toolkit Developer's Guide
Understanding Profiles, Services, Characteristics, and the Attribute Protocol

silabs.com | Building a more connected world. Rev. 2.8 | 3

2. Building the GATT Database with Profile Toolkit

This section of the document describes the XML syntax used in the Bluetooth Profile Toolkit and walks you through the different options
you can use when building Bluetooth services and characteristics.

A few practical GATT database examples are also shown.

2.1 General Limitations

The table below shows the limitations of the GATT database supported by the EFR32BG devices.
Item Limitation Notes

Maximum number of characteristics Not limited; practically restricted
by the overall number of attrib-
utes in the database

All characteristics which do NOT have the prop-
erty const="true" are included in this count.

Maximum length of a type="user" characteristic 255 bytes These characteristics are handled by the applica-
tion, which means that the amount of RAM avail-
able for the application will limit this.

Note: GATT procedures Write Long Character-
istic Values, Reliable Writes and Read Multi-
ple Characteristic Values are not supported for
these characteristics.

Maximum length of a type="utf-8/hex" charac-
teristic

255 bytes If const="true" then the amount of free flash on
the device defines this limit.

If const="false" then RAM will be allocated for
the characteristic for storing its value. The
amount of free flash available on the device used
defines this.

Maximum number of attributes in a single GATT
database

255 A single characteristic typically uses 3-5 attrib-
utes.

Maximum number of notifiable characteristics 64

Maximum number of capabilities 16 The logic state of the capabilities will determine
the visibility of each service/characteristic.

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 4

2.2 <gatt>

The GATT database along with the services and characteristics must be described inside the XML attribute <gatt>.
Parameter Description

out Filename for the GATT C source file

Value: Any UTF-8 string. Must be valid as a filename and end
with '.c'
Default: gatt_db.c

header Filename for the GATT C header file

Value: Any UTF-8 string. Must be valid as a filename and end
with '.h'

Default: gatt_db.h

db_name GATT database structure name and the prefix for data structures
in the GATT C source file.

Value: Any UTF-8 string; must be valid in C.

Default: bg_gattdb_data

name Free text, not used by the database compiler

Value: Any UTF-8 string

Default: Nothing

prefix Prefix to add to each 'id' name for defining the handle macro that
can be referenced from the C application.

Value: Any UTF-8 string. Must be valid in C.

Default: gattdb_

For example: If prefix="gattdb_" and id="temp_measurement" for
a particular characteristic, then the following will be generated in
the GATT C header file:

#define gattdb_temp_measurement X (where X is the handle
number for the temp_measurement characteristic)

generic_attribute_service If it is set to true, Generic Attribute service and its serv-
ice_changed characteristic will be added in the beginning of the
database. The Bluetooth stack takes care of database structure
change detection and will send service_changed notifications to
clients when a change is detected. In addition, this will enable the
GATT-caching feature introduced in Bluetooth 5.1.

Values:

true: Generic Attribute service is automatically added to the
GATT database and GATT caching is enabled.

false: Generic Attribute service is not automatically added to the
GATT database and GATT caching is disabled.

Default: false

gatt_caching The GATT caching feature is enabled by default if generic_attrib-
ute_service is set to true. However, it can be disabled by setting
this attribute to false.

Example: A GATT database definition.

<?xml version="1.0" encoding="UTF-8" ?>
<gatt out="my_gatt_db.c" header="my_gatt_db.h" db_name="my_gatt_db_" prefix="my_gatt_"
 generic_attribute_service="true" name="My GATT database">

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 5

…
</gatt>

2.3 <capabilities_declare>

The GATT database services and characteristics can be made visible/invisible by using capabilities. A capability must be declared in a
<capability> element and all capabilities in a GATT database must be first declared in a <capabilities_declare> element consisting of a
sequence of <capability> elements. The maximum number of capabilities in a database is 16.

This new functionality does not affect legacy GATT XML databases (prior to Silicon Labs Bluetooth stack version 2.4.x). Because they
don't have any capabilities explicitly declared, all services and characteristics will remain visible to a remote GATT client.

Example: Capabilities declaration

 <capabilities_declare>
 <capability enable="false">feature_1</capability>
 <capability enable="false">feature_2</capability>
 </capabilities_declare>

2.3.1 <capability>

Each capability must be declared individually within a <capabilities_declare> element using the <capability> element. The <capability>
element has one attribute named "enable" that indicates the capability's default state at database initialization.

The text value of the <capability> element will be the identifier name for that capability in the generated database C header. Thus, it
must be valid in C.

Inheritance of Capabilities

Services and characteristics can declare the capabilities that they want to use. If no capabilities are declared, then the following inheri-
tance rules apply:

1. A service that does not declare any capabilities will have all the capabilities from <capabilities_declare> element.
2. A characteristic that does not declare any capabilities will have all the capabilities from the service that it belongs to. If the service

declares a subset of the capabilities in <capabilities_declare>, then only that subset will be inherited by the characteristic.
3. All attributes of a characteristic inherit the characteristic's capabilities.

Visibility

Capabilities can be enabled/disabled to make services and characteristics visible/invisible to a GATT client according with the following
logic:

1. A service and all its characteristics are visible when at least one of its capabilities is enabled.
2. A service and all its characteristics are invisible when all of its capabilities are disabled.
3. A characteristic and all its attributes are visible when at least one of its capabilities is enabled.
4. A characteristic and all its attributes are invisible when all of its capabilities are disabled.

Parameter Description

enable Sets the default state of a capability at database initialization.

Values:

true: Capability is enabled.

false: Capability is disabled.

Default: true

Example: Capabilities declaration

<capabilities_declare>
 <!-- This capability is enabled by default and the identifier is cap_light -->
 <capability enable="true">cap_light</capability>
 <!-- This capability is disabled by default and the identifier is cap_color -->
 <capability enable="false">cap_color</capability>
</capabilities_declare>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 6

2.4 <service>

The GATT service definition is done with the XML attribute <service> and its parameters.

The following table below describes the parameters that can be used for defining the related values.

Parameter Description

uuid Universally Unique Identifier. The UUID uniquely identifies a service. 16-bit values are used for the
services defined by the Bluetooth SIG and 128-bit UUIDs can be used for vendor specific implementa-
tions.

Range:

0x0000 – 0xFFFF: Reserved for Bluetooth SIG standardized services

0x00000000-0000-0000-0000-000000000000 - 0xFFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFF: Re-
served for vendor specific services.

id The ID is used to identify a service within the service database and can be used as a reference from
other services (include statement). Typically, this does not need to be used.

Value:

Any UTF-8 string

type The type field defines whether the service is a primary or a secondary service. Typically this does not
need to be used.

Values:

primary: a primary service

secondary: a secondary service

Default: primary

advertise This field defines if the service UUID is included in the advertisement data.

The advertisement data can contain up to 13 16-bit UUIDs or one (1) 128-bit UUID.

Values:

true: UUID included in advertisement data

false: UUID not included in advertisement data

Default: false

Note: You can override the advertisement data with the GAP API, in which case this is not valid.

Example: A Generic Access Profile (GAP) service definition.

<!-- Generic Access Service -->
<service uuid="1800">
 …
</service>

Example: A vendor-specific service definition.

<!-- A vendor specific service -->
<service uuid="25be6a60-2040-11e5-bd86-0002a5d5c51b">
 …
</service>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 7

Example: A Heart Rate service definition with UUID included in the advertisement data and ID “hrs”.

<!-- Heart Rate Service -->
<service uuid="180D" id="hrs" advertise=”true”>
 …
</service>

Note: You can generate your own 128-bit UUIDs at: http://www.itu.int/en/ITU-T/asn1/Pages/UUID/uuids.aspx

2.4.1 <capabilities>

A service can declare the capabilities it has with a <capabilities> element. The element consists of a sequence of <capability> elements
whose identifiers must also be part of the <capabilities_declare> element. The attribute "enable" has no effect in the capabilities de-
clared within this context so it can be excluded.

If a service does not declare any capabilities, it will have all the capabilities from <capabilities_declare> per the inheritance rules.

A service and all its characteristics will be visible when at least one of its capabilities is enabled and invisible when all its capabili-
ties are disabled.

Example: Capabilities declaration

<capabilities>
 <capability>cap_light</capability>
 <capability>cap_color</capability>
</capabilities>

2.4.2 <informativeText>

The XML element <informativeText> can be used for informative purposes (commenting) and is not exposed in the actual GATT data-
base.

2.4.3 <include>

A service can be included within another service by using the XML attribute <include>.

Parameter Description

id ID of the included service

Value:

ID of another service

Example: Including Heart Rate service within the GAP service.

<!-- Generic Access Service -->
<service uuid="1800">

 <!-- Include HR Service -->
 <include id="hrs” />
 …
</service>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 8

http://www.itu.int/en/ITU-T/asn1/Pages/UUID/uuids.aspx

2.5 <characteristic>

All the characteristics exposed by a service are defined with the XML attribute <characteristic> and its parameters, which must be
used inside the <service> XML attribute tags.

The table below describes the parameters that can be used for defining the related values.

Parameter Description

uuid Universally Unique Identifier. The UUID uniquely identifies a characteristic.

16-bit values are used for the services defined by the Bluetooth SIG and 128-bit UUIDs can be used
for vendor specific implementations.

Range:

0x0000 – 0xFFFF: Reserved for Bluetooth SIG standardized characteristics.

0x00000000-0000-0000-0000-000000000000 to 0xFFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFF :

Reserved for vendor specific characteristics.

id The ID is used to identify a characteristic. The ID is used within a C application to read and write
characteristic values or to detect if notifications or indications are enabled or disabled for a specific
characteristic.

When the project is built, the generated GATT C header file contains a macro with the characteristic
'id' and corresponding handle value.

Value:Any UTF-8 string

const Defines if the value stored in the characteristic is a constant.

Default: false

name Free text, not used by the database compiler.

Value:Any UTF-8 string

Default: Nothing

Example: Adding Device name characteristic into GAP service.

<!-- Generic Access Service -->
<service uuid="1800">

 <!-- Device name -->
 <characteristic uuid="2a00">
 …
 </characteristic>
 …
</service>

Example: Adding a vendor-specific characteristic into a vendor-specific service with ID.

<!-- A vendor specific service -->
<service uuid="25be6a60-2040-11e5-bd86-0002a5d5c51b">

 <!-- My proprietary data -->
 <characteristic uuid="59cd69c0-2043-11e5-a717-0002a5d5c51b" id="mydata”>
 …
 </characteristic>
 …
</service>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 9

2.5.1 <capabilities>

A characteristic can declare the capabilities it has with a <capabilities> element. The element consists of a sequence of <capability>
elements whose identifiers must also be declared (or fully inherited) by the parent service. The attribute "enable" has no effect in the
capabilities declared within this context so it can be excluded.

If a characteristic does not declare any capabilities it will have all the capabilities from the service that it belongs to per the inheri-
tance rules. All attributes of a characteristic inherit the characteristic's capabilities.

A characteristic and all its attributes will be visible when at least one of its capabilities is enabled and invisible when all its capabili-
ties are disabled.

Example: Capabilities declaration

<capabilities>
 <capability>cap_light</capability>
 <capability>cap_color</capability>
</capabilities>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 10

2.5.2 <properties>

The characteristic's access properties and its permission level are defined by the children attributes of the XML attribute <properties>,
which must be used inside <characteristic> XML attribute tags. A characteristic can have multiple access properties at the same time
—for example, it can be readable, writable, or both. Each access property can have a different permission level (for example, encrypted
or authenticated).

The following table lists the possible access properties. Each row in the table defines a new attribute under the <properties> attribute.

Attribute Description

read Characteristic can be read by a remote device.

Values:

true: Characteristic can be read

false: Characteristic cannot be read

Default: false

write Characteristic can be written by a remote device

Values:

true: Characteristic can be written

false: Characteristic cannot be written

Default: false

write_no_response Characteristic can be written by a remote device. Write without response is not acknowledged over
the Attribute Protocol.

Values:

true: Characteristic can be written

false: Characteristic cannot be written

Default: false

notify Characteristic has the notify property and characteristic value changes are notified over the Attribute
Protocol. Notifications are not acknowledged over the Attribute Protocol.

Values:

true: Characteristic has notify property.

false: Characteristic does not have notify property.

Default: false

Note: The notify attribute is stored in the SIG defined Client Characteristic Configuration Descriptor
(a descriptor with the UUID 0x2902, which will be autogenerated when notifications are enabled). If
you manually add a CCCD to the characteristic, the descriptor’s value will overwrite this setting.

indicate Characteristic has the indicate property and characteristic value changes are indicated over the At-
tribute Protocol. Indications are acknowledged over the Attribute Protocol.

Values:

true: Characteristic has indicate property.

false: Characteristic does not have indicate property.

Default: false

Note: The indicate attribute is stored in the SIG defined Client Characteristic Configuration Descrip-
tor (a descriptor with the UUID 0x2902, which will be autogenerated when indications are enabled).
If you manually add a CCCD to the characteristic, the descriptor’s value will overwrite this setting.

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 11

Attribute Description

reliable_write Allows using a reliable write procedure to modify an attribute; this is just a hint to a GATT client. The
Bluetooth stack always allows the use of reliable writes to modify attributes.

Values:

true: Reliable write enabled.

false: Reliable write disenabled.

Default: false

The following table lists the permission levels or security requirements. Any security requirement can be assigned to any access prop-
erty.

Attribute Description

authenticated Accessing the characteristic value requires an authentication. To access the characteristic with this
property the remote device has to be bonded using MITM protection and the connection must be
also encrypted.

Values:

true: Authentication is required

false: Authentication is not required

Default: false

encrypted Accessing the characteristic value requires an encrypted link. Devices with iOS 9.1 or higher must
also be bonded at least with Just Works pairing.

Values:

true: Encryption is required

false: Encryption is not required

Default: false

bonded Accessing the characteristic value requires an encrypted link. Devices must also be bonded at least
with Just Works pairing.

Values:

true: Bonding and encryption are required

false: Bonding is not required

Default: false

Example: Device name characteristic with const and read properties.

<!-Device Name-->
<characteristic const = true uuid="2a00">
<properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

Example: Device name characteristic with read and write properties to allow the value to be modified by the remote device.

<!-Device Name-->
<characteristic uuid="2a00">
<properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 <write authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 12

Example: Heart Rate Measurement characteristic with notify property.

<!-Heart Rate Measurement -->
<characteristic uuid="180D">
<properties>
 <notify authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

Example: Characteristic with encrypted read property.

<!-Device Name-->
<characteristic uuid="1234">
<properties>
 <read authenticated="false" bonded="false" encrypted="true"/>
</properties>
</characteristic>

Example: Characteristic with authenticated write property.

<!-Device Name-->
<characteristic uuid="1234">
<properties>
 <write authenticated="true" bonded="false" encrypted="false"/>
</properties>
</characteristic>

Example: Characteristic with authenticated indicate properties.

<!-Descriptor value changed -->
<characteristic uuid="2A7D">
<properties>
 <indicate authenticated="true" bonded="false" encrypted="false"/>
</properties>
</characteristic>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 13

2.5.3 <value>

The data type and length for a characteristic is defined with the XML attribute <value> and its parameters, which must be used inside
the <characteristic> XML attribute tags.

The table below describes the parameters that can be used for defining the related values.

Parameter Description

length Defines a fixed length for the characteristic or the maximum length if variable_length is true. If
length is not defined and there is a value (e.g. data exists inside <value></value>), then the value
length is used to define the length.

If both length and value are defined, then the following rules apply:
1. If variable_length is false and length is bigger than the value's length, then the value will be

padded with 0's at the end to match the attribute's length.
2. If length is smaller than the value's length, then the value will be clipped to match length, re-

gardless of whether variable_length is true or false.

Range:

0 – 255: Length in bytes if type is 'hex', 'utf-8', or 'user'

0 – 512: Length in bytes if type is 'user'

Default: 0

variable_length Defines that the value is of variable length. The maximum length must also be defined with the
length attribute or by defining a value. If both length and value are defined, then the rules descri-
bed in length apply.

Values:

true: Value is of variable length

false: Value has a fixed length

Default: false

type Defines the data type.

Values:

hex: Value type is hex

utf-8: Value is a string

user: When the characteristic type is marked as type="user", the application is responsible for initi-
alizing the characteristic value and also providing it, for example, when read operation occurs. The
Bluetooth stack does not initialize the value or automatically provide the value when it is being read.
When this is set, the Bluetooth stack generates gatt_server_user_read_request or gatt_serv-
er_user_write_request, which must be handled by the application.

Default: utf-8

Example: Heart Rate Measurement characteristic with notify property and fixed length of two (2) bytes.

<!-Heart Rate Measurement -->
<characteristic uuid="180D">
<value length="2" type="hex" variable_length = "false"/>
<properties>
<notify authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

Example: A variable length vendor-specific characteristic with maximum length of 20 bytes.

<!-My proprietary data -->
<characteristic uuid="59cd69c0-2043-11e5-a717-0002a5d5c51b" id="mydata">
<value variable_length="true" length="20" type="hex" />

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 14

<properties>
 <notify authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

Example: The value and length of a characteristic can also be defined by typing the actual value inside the <value> tags.

<characteristic const="true" id="device_name" name="Device Name"
sourceId="org.bluetooth.characteristic.gap.device_name" uuid="2A00">
<value length="17" type="utf-8" variable_length="false">EFR32 BGM111</value>
<properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
</properties>
</characteristic>

In the above example, the value is “EFR32 BGM111” and the length is 17 bytes.

Example: Defining both length and value with length bigger than the value's length.

<!-- Device name -->
<characteristic uuid="2a00">
 <properties read="true" />
 <value type="hex" length="4" variable_length="false">0102</value>
</characteristic>

In the example above, the value will be “01020000” because the length is bigger than the value's length and the value gets padded
with 0's.

Example: Defining both length and value with length smaller than the value's length.

<!-- Device name -->
<characteristic uuid="2a00">
 <properties read="true" />
 <value type="hex" length="2" variable_length="false">01020304</value>
</characteristic>

In the example above, the value will be “0102” because the length is smaller than the value's length, so the value gets clipped to
match the length.

2.5.4 <descriptor>

The XML element <descriptor> can be used to define a generic characteristic descriptor.

Descriptor properties are defined by the <properties> element and only read and/or write access is allowed. Value is defined by <val-
ue> element the same way as for characteristics values.

Note: If you manually add a Client Characteristic Configuration Descriptor (UUID: 0x2902), its value will overwrite the notify/indicate
properties of its characteristic. If no CCCD added manually, it will be generated automatically if the characteristic has enabled notifica-
tion or indication.

Example: Adding a characteristic descriptor with type UUID 2908.

<characteristic uuid="2a4d" id="hid_input">
<properties notify="true" read="true" />
<value length="3" />
 <descriptor const="false" discoverable="true" id="" name="Custom Descriptor" sourceId="" uuid="2908">
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 <value length="0" type="hex" variable_length="false">00</value>
 </descriptor>
</characteristic>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 15

2.5.5 <description>

Characteristic user description values are defined with the XML attribute <description>, which must be used inside the <characteristic>
XML attribute tags.

Characteristic user description is an optional value. It is exposed to the remote device and can be used, for example, to provide a user-
friendly description of the characteristic shown in the application's user interface.

Example: Constant string "Heart Rate Measurement"

<characteristic uuid="2a37">
<properties>
 <notify authenticated="false" bonded="false" encrypted="false"/>
</properties>
<description> Heart Rate Measurement </description>
</characteristic>

Properties element can be used to allow remote modification of an attribute.

Example: Allow remote reading but require bonding for writing

<characteristic uuid="2a37">
 <properties>
 <read authenticated="false" bonded="false" encrypted="true"/>
 <write authenticated="false" bonded="true" encrypted="false"/>
 </properties>
</characteristic>

Note: If a description is writable, then the GATT Parser automatically adds the extended properties attribute with writable_auxiliaries bit
set to be Bluetooth-compliant.

2.5.6 <aggregate>

The XML element <aggregate> enables the creation of an aggregated characteristic format descriptor by automatically converting IDs
to attribute handles.

Attribute IDs should refer to characteristic presentation format descriptors.

Example: Adding a characteristic aggregate

<characteristic uuid="da8a80c0-829d-498f-b70b-e85c95e0f839">
 <properties notify="true" read="true"/>
 <value length="10" />
 <aggregate>
 <attribute id="format1" />
 <attribute id="format2" />
 </aggregate>
</characteristic>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 16

2.6 GATT Examples

Example: A full GAP service with device name and appearance characteristics as constant values with read property.

<?xml version="1.0" encoding="UTF-8" ?>
<gatt>

<!--Generic Access-->
<service advertise="false" name="Generic Access" requirement="mandatory"
sourceId="org.bluetooth.service.generic_access" type="primary" uuid="1800">
 <informativeText>Abstract: The generic_access service contains generic information about the device. All
available
 Characteristics are readonly. </informativeText>
 <!--Device Name-->
 <characteristic const="true" id="device_name" name="Device Name"
sourceId="org.bluetooth.characteristic.gap.device_name"
 uuid="2A00">
 <informativeText/>
 <value length="17" type="utf-8" variable_length="false">EFR32 BGM111</value>
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>

 <!--Appearance-->
 <characteristic const="true" name="Appearance" sourceId="org.bluetooth.characteristic.gap.appearance"
uuid="2A01">
 <informativeText>Abstract: The external appearance of this device. The values are composed of a category
(10-bits) and sub-categories (6-bits). </informativeText>
 <value length="2" type="hex" variable_length="false">0000</value>
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>
 </service>
</gatt>

Example: Link Loss and Immediate Alert services.

<?xml version="1.0" encoding="UTF-8" ?>

<gatt>
<!--Link Loss-->
 <service advertise="false" id="link_loss" name="Link Loss" requirement="mandatory"
sourceId="org.bluetooth.service.link_loss" type="primary" uuid="1803">
 <!--Alert Level-->
 <characteristic const="false" id="alert_level" name="Alert Level"
sourceId="org.bluetooth.characteristic.alert_level" uuid="2A06">
 <value length="1" type="hex" variable_length="false"/>
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 <write authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>
 </service>

 <!--Immediate Alert-->
 <service advertise="false" id="immediate_alert" name="Immediate Alert" requirement="mandatory"
sourceId="org.bluetooth.service.immediate_alert" type="primary" uuid="1802">
 <!--Alert Level-->
 <characteristic const="false" id="alert_level" name="Alert Level"
sourceId="org.bluetooth.characteristic.alert_level" uuid="2A06">
 <value length="1" type="hex" variable_length="false"/>
 <properties>
 <write_no_response authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>
 </service>

</gatt>

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 17

Example: GATT database with capabilities

<gatt db_name="light_gattdb" out="gatt_db.c" header="gatt_db.h" generic_attribute_service="true">
 <capabilities_declare>
 <capability enable="true">cap_light</capability>
 <capability enable="false">cap_color</capability>
 </capabilities_declare>

 <!--Light Service-->
 <service advertise="false" id="light_service" name="Light Service" requirement="mandatory" sourceId=""
type="primary" uuid="257f993d-756e-baa6-e69c-8b101e4e6b3f">
 <informativeText>Info about custom service</informativeText>
 <capabilities>
 <capability>cap_light</capability>
 <capability>cap_color</capability>
 </capabilities>

 <!--Ligth Control-->
 <characteristic const="false" id="light_control" name="Ligth Control" sourceId=""
uuid="85e82a1c-8423-610b-9fea-5ad999445231">
 <description>User description</description>
 <informativeText/>
 <capabilities>
 <capability>cap_light</capability>
 </capabilities>
 <value length="0" type="user" variable_length="false"/>
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 <write authenticated="false" bonded="false" encrypted="false"/>
 <write_no_response authenticated="false" bonded="false" encrypted="false"/>
 <reliable_write authenticated="false" bonded="false" encrypted="false"/>
 <indicate authenticated="false" bonded="false" encrypted="false"/>
 <notify authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>

 <!--Color control-->
 <characteristic const="false" id="color_control" name="Color control" sourceId="" uuid="16b90591-c54a-
e7c9-413e-a82748a1e783">
 <informativeText/>
 <capabilities>
 <capability>cap_color</capability>
 </capabilities>
 <value length="0" type="user" variable_length="false"/>
 <properties>
 <read authenticated="false" bonded="false" encrypted="false"/>
 <write authenticated="false" bonded="false" encrypted="false"/>
 </properties>
 </characteristic>
 </service>
</gatt>

• If the capabilities cap_light and cap_color are enabled, the entire light_service will be visible.
• If the capability cap_light is disabled, the characteristic light_control will be invisible.
• If the capability cap_color is disabled, the characteristic color_control will be invisible.

UG118: Bluetooth®Profile Toolkit Developer's Guide
Building the GATT Database with Profile Toolkit

silabs.com | Building a more connected world. Rev. 2.8 | 18

3. Generating the Code Files

This section of the document describes how to use Simplicity Studio or the bgbuild Python script and your IDE to generate the
gatt_db.c/h code files from the gatt_configuration.btconf XML file.

3.1 Using Simplicity Studio

When using the GATT Configurator in Simplicity Studio, the code files (gatt_db.c/gatt_db.h) are generated automatically each time the
configuration is saved.

3.2 Using bgbuild

The code files can be generated independently from the IDE, using the bgbuild Python script provided in the SDK:

$GSDK_PATH\protocol\bluetooth\bin\gatt\bgbuild.py

$GSDK_PATH is the installation directory of the selected GSDK, for example ~/SimplicityStudio/SDKs/gecko_sdk/.

The script requires installing Python 3 and the Jinja2 package by calling pip install jinja2. The script can parse only GATT config-
urations created with Simplicity Studio 5 / SDK v4.x, or written manually according to this user guide. The GATT Configurator can im-
port older gatt.xml formats.

Mandatory argument:
• Path to the GATT XML files, or directories to find the XML files. Separate input with “;”

Optional arguments:
• -h, --help: display help message
• -o OUTDIR, --outdir OUTDIR: the output directory, where the files will be generated (Simplicity Studio 5 generates the sources into

the autogen folder. Generating them somewhere else in the project structure could cause potential collisions.)

python $GSDK_PATH/protocol/bluetooth/bin/gatt/bgbuild.py
~/SimplicityStudio/v5_workspace/btmesh_soc_empty/config/btconf/gatt_configuration.btconf
-o ~/SimplicityStudio/v5_workspace/btmesh_soc_empty/autogen/

In the Bluetooth GATT Configurator, the GATT can contain a Contributed items section. These are additional XML files that are non-
modifiable from the user interface, but the source generation in Simplicity Studio will include them.

To produce the same result with bgbuild, you have to include the whole config/btconf folder.

python $GSDK_PATH/protocol/bluetooth/bin/gatt/bgbuild.py
~/SimplicityStudio/v5_workspace/btmesh_soc_empty/config/btconf/
-o ~/SimplicityStudio/v5_workspace/btmesh_soc_empty/autogen/

UG118: Bluetooth®Profile Toolkit Developer's Guide
Generating the Code Files

silabs.com | Building a more connected world. Rev. 2.8 | 19

4. Revision History

Revision 2.8

October 2023
• In section 3.2 Using bgbuild of Japanese translation only, corrected “pip install jinja22” to “pip install jinja2”.
• In section 3.2 Using bgbuild, updated the process to generate code files manually.

UG118: Bluetooth®Profile Toolkit Developer's Guide
Revision History

silabs.com | Building a more connected world. Rev. 2.8 | 20

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Understanding Profiles, Services, Characteristics, and the Attribute Protocol
	1.1 GATT-Based Bluetooth Profiles and Services
	1.2 Services
	1.3 Characteristics
	1.4 The Attribute Protocol

	2. Building the GATT Database with Profile Toolkit
	2.1 General Limitations
	2.2 <gatt>
	2.3 <capabilities_declare>
	2.3.1 <capability>

	2.4 <service>
	2.4.1 <capabilities>
	2.4.2 <informativeText>
	2.4.3 <include>

	2.5 <characteristic>
	2.5.1 <capabilities>
	2.5.2 <properties>
	2.5.3 <value>
	2.5.4 <descriptor>
	2.5.5 <description>
	2.5.6 <aggregate>

	2.6 GATT Examples

	3. Generating the Code Files
	3.1 Using Simplicity Studio
	3.2 Using bgbuild

	4. Revision History

