The Thunderboard™ EFR32BG22 is a low cost, small form factor prototype and development platform for the EFR32BG22 Wireless Gecko System-on-Chip.

The board is a small and cost effective, feature rich, prototype and development platform based on the EFR32™ Wireless Gecko System-on-Chip. The Thunderboard EFR32BG22 is an ideal platform for developing energy-friendly connected IoT devices.

The Thunderboard EFR32BG22 ships with a Bluetooth demo that works with a cloud connected smartphone app, showcasing easy collection of environmental and motion sensor data, as well as button and LED control.

A built in SEGGER J-Link debugger ensures easy debugging through the USB Micro-B connector.

TARGET DEVICE

- EFR32 Wireless Gecko System-on-Chip (EFR32BG22C224F512IM40)
- 32-bit ARM® Cortex®-M33 with 76.8 MHz maximum operating frequency
- 512 kB flash and 32 kB RAM
- Energy-efficient radio core with low active and sleep currents
- Bluetooth 5.2 Direction Finding
- Integrated PA with up to 6 dBm (2.4 GHz) TX power
- Secure Boot with Root of Trust and Secure Loader (RTSL)

KIT FEATURES

- 2.4 GHz ceramic chip antenna
- Power control of on-board peripherals for ultra low power operation
- Relative humidity and temperature sensor
- Ambient light sensor
- Hall effect sensor
- 6-axis inertial sensor
- PDM stereo microphones
- 8 Mbit flash for OTA programming and data logging
- User LED and push button
- 20-pin 2.54 mm breakout pads
- SEGGER J-Link on-board debugger
- Virtual COM port
- Packet Trace Interface (PTI)
- Mini Simplicity connector for AEM and packet trace using external Silicon Labs debugger
- USB or coin cell battery powered.

SOFTWARE SUPPORT

- Simplicity Studio™
Table of Contents

1. **Introduction** 4
 1.1 Kit Contents 4
 1.2 Getting Started 4
 1.3 Hardware Content 4
 1.4 Kit Hardware Layout 5
2. **Specifications** 6
 2.1 Recommended Operating Conditions 6
 2.2 Current Consumption 7
3. **Hardware** 9
 3.1 Block Diagram 9
 3.2 Power Supply 10
 3.3 EFR32BG22 Reset 10
 3.4 Peripherals 11
 3.4.1 Si7021 Relative Humidity and Temperature Sensor 12
 3.4.2 Si7210 Hall Effect Sensor 12
 3.4.3 VEML6035 Ambient Light Sensor 13
 3.4.4 PDM Stereo Microphones 13
 3.4.5 ICM-20648 6-Axis Inertial Sensor 14
 3.4.6 Push Button and LED 15
 3.4.7 External Memory 15
 3.5 On-board Debugger 16
 3.6 Connectors 17
 3.6.1 Breakout Pads 18
 3.6.2 Mini Simplicity Connector 19
 3.6.3 Debug USB Micro-B Connector 19
4. **Debugging** 20
 4.1 On-board Debugger 21
 4.2 External Debugger 21
 4.3 Virtual COM Port 22
5. **Radio** .. 23
 5.1 RF Section 23
 5.1.1 Description of the RF Matching 23
 5.1.2 RF Section Power Supply 23
 5.1.3 RF Matching Bill of Materials 23
 5.1.4 Antenna 24
 5.1.5 Antenna Matching Bill of Materials 24
 5.2 EMC Regulations for 2.4 GHz 24
 5.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band 24
 5.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band 24
5.2.3 Applied Emission Limits ... 25
5.3 Relaxation with Modulated Carrier ... 25
5.4 Radiated Power Measurements ... 26
 5.4.1 Maximum Radiated Power Measurement 26
 5.4.2 Antenna Pattern Measurement .. 27
5.5 EMC Compliance Recommendations ... 29
 5.5.1 Recommendations for 2.4 GHz ETSI EN 300-328 Compliance 29
 5.5.2 Recommendations for 2.4 GHz FCC 15.247 Compliance 29

6. Schematics, Assembly Drawings, and BOM 30

7. Kit Revision History ... 31

8. Board Revision History and Errata .. 32
 8.1 Revision History ... 32
 8.2 Errata ... 32

9. Document Revision History .. 33
1. Introduction

The Thunderboard EFR32BG22 (OPN: SLTB010A) has been designed to inspire customers to make battery operated IoT devices with the Silicon Labs EFR32BG22 Wireless Gecko System-on-Chip. The highlights of the board include four different environmental sensors and stereo PDM microphones accessible to the EFR32BG22 wireless MCU. The peripherals have been grouped into power domains that can be turned on and off by the application code as needed.

Programming the Thunderboard EFR32BG22 is easily done using a USB Micro-B cable and the on-board J-Link debugger. A USB virtual COM port provides a serial connection to the target application, and the Packet Trace Interface (PTI) offers invaluable debug information about transmitted and received packets in wireless links. Included on the board is an 8 Mbit serial flash that can be used for Over-The-Air (OTA) firmware upgrade, or as a general purpose non-volatile memory. The Thunderboard EFR32BG22 is supported in Simplicity Studio™, and a Board Support Package (BSP) is provided to give application developers a flying start.

Energy profiling and advanced wireless network analysis and debugging tools are available through the provided Mini Simplicity Connector using an external Silicon Labs debugger.

Connecting external hardware to the Thunderboard EFR32BG22 can be done using the 20 breakout pads which present peripherals from the EFR32BG22 Wireless Gecko such as \(^2 \)C, SPI, UART and GPIOs. The breakout pads follow the same pinout as the expansion headers (EXP) on other Silicon Labs Starter Kits.

1.1 Kit Contents

The following items are included in the box:

- 1x Thunderboard EFR32BG22 board (BRD4184B)
- 1x USB Type A to Micro-B cable.

1.2 Getting Started

Detailed instructions for how to get started with your new Thunderboard EFR32BG22 can be found on the Silicon Labs web pages:

https://www.silabs.com/support/getting-started/thunderboard

1.3 Hardware Content

The following key hardware elements are included on the Thunderboard EFR32BG22:

- EFR32BG22 Wireless Gecko SoC with 76.8 MHz operating frequency, 512 kB kB flash and 32 kB RAM
- 2.4 GHz ceramic antenna for wireless transmission
- Silicon Labs Si7021 relative humidity and temperature sensor
- Silicon Labs Si7210 hall effect sensor
- Vishay VEML6035 ambient light sensor
- TDK InvenSense ICM-20648 6-axis inertial sensor
- Two Knowles SPK0641HT4H-1 MEMS microphones
- Macronix ultra low power 8 Mbit SPI flash (MX25R8035F)
- One LED and one push button
- Power enable signals and isolation switches for ultra low power operation
- On-board SEGGER J-Link debugger for easy programming and debugging, which includes a USB virtual COM port and Packet Trace Interface (PTI)
- Mini Simplicity connector for access to energy profiling and advanced wireless network debugging
- Breakout pads for GPIO access and connection to external hardware
- Reset button
- Automatic switchover between USB and battery power
- CR2032 coin cell holder
1.4 Kit Hardware Layout

The layout of the Thunderboard EFR32BG22 is shown below.

![Thunderboard EFR32BG22 Hardware Layout](image)

Figure 1.1. Thunderboard EFR32BG22 Hardware Layout
2. Specifications

2.1 Recommended Operating Conditions

The following table is intended to serve as guideline for a correct use of Thunderboard EFR32BG22, indicating typical operating conditions and some design limits.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Supply Input Voltage</td>
<td>V_{USB}</td>
<td>—</td>
<td>5.0</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Battery Supply Input Voltage</td>
<td>V_{VBAT}</td>
<td>2.0</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Supply Input Voltage (VMCU supplied externally)</td>
<td>V_{VMCU}</td>
<td>2.0</td>
<td>3.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{OP}</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note:
1. The maximum supply voltage may be less under certain conditions when using the EFR32BG22’s dc-dc converter. For more information see the EFR32BG22 data sheet.
2. Not recommended for use with rechargeable Lithium batteries. Most Li-Ion and Li-Po cells exceed 3.6 V when fully charged.
2.2 Current Consumption

The table below summarizes the data sheet current consumption of the various components on the board. The operating current of the board greatly depends on the application. The number of enabled sensors, how often they are sampled and how often the radio is transmitting or receiving are examples of factors that influence the operating current. In many cases the given conditions differ from the operating conditions on the Thunderboard EFR32BG22, but the table can still be used as an indication of how much each feature contribute to the total current consumption. More details can be found in the specific data sheet for each device.

Table 2.2. Current Consumption

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Typ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR32BG22 Current Consumption 1</td>
<td>I_EFR32</td>
<td>MCU current consumption in EM0 mode with all peripherals disabled (dc-dc converter at 3.0 V input and 1.8 V output, VSCALE1, 38.4 MHz crystal, CPU running Prime from flash at 25 °C) EM4, no BURTC, no LF oscillator</td>
<td>28</td>
<td>µA/MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radio system current consumption in receive mode, active packet reception (dc-dc converter at 3.0 V input and 1.8 V output, MCU in EM1 and all MCU peripherals disabled, HCLK = 38.4 MHz, 1Mbit/s, 2GFSK, f = 2.4 GHz, VSCALE1 at 25 °C)</td>
<td>3.8</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radio system current consumption in transmit mode (dc-dc converter at 3.0 V input and 1.8 V output, MCU in EM1 and all MCU peripherals disabled, HCLK = 38.4 MHz, f = 2.4 GHz, CW, 6 dBm output power, VSCALE1 at 25 °C)</td>
<td>8.4</td>
<td>mA</td>
</tr>
<tr>
<td>Ambient Light Sensor Current Consumption 2</td>
<td>I_VEML6035</td>
<td>Shutdown at 1.8 V</td>
<td>0.5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation mode at 1.8 V (ALS only)</td>
<td>170</td>
<td>µA</td>
</tr>
<tr>
<td>RH/Temperature Sensor Current Consumption 3</td>
<td>I_SI7021</td>
<td>Standby, -40 to +85°C</td>
<td>0.06</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RH conversion in progress</td>
<td>150</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature conversion in progress</td>
<td>90</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak I_DD during I^2C operations</td>
<td>3.5</td>
<td>mA</td>
</tr>
<tr>
<td>Hall Effect Magnetic Sensor Current Consumption 4</td>
<td>I_DD</td>
<td>Sleep mode at 3.3 V</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average current for periodic activation at 3.3 V, sleep timer enabled, 200 msec sleep time</td>
<td>0.4</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conversion in progress at 3.3 V</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Microphone Current Consumption 5</td>
<td>I_MIC</td>
<td>Sleep mode current (Fclock = 0 Hz, VDD = 3.6 V)</td>
<td>26</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply current in performance mode (V_DD = 3.6 V, Fclock = 2.4 MHz)</td>
<td>700</td>
<td>µA</td>
</tr>
<tr>
<td>IMU Current Consumption 6</td>
<td>I_IMU</td>
<td>Full-chip sleep mode at 1.8 V supply</td>
<td>8</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyroscope Only, 102.3 Hz update rate at 1.8 V supply</td>
<td>1.23</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accelerometer only, 102.3 Hz update rate at 1.8 V supply</td>
<td>68.9</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyroscope + Accelerometer, 102.3 Hz update rate at 1.8 V supply</td>
<td>1.27</td>
<td>mA</td>
</tr>
<tr>
<td>Serial Flash Memory Current Consumption 7</td>
<td>I_FLASH</td>
<td>Deep power-down current in ultra low power mode at 1.8 V</td>
<td>0.007</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standby current in ultra low power mode at 1.8 V</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write status register current in ultra low power mode at 1.8 V</td>
<td>3.1</td>
<td>mA</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Condition</td>
<td>Typ</td>
<td>Unit</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>On-board Debugger Sleep Current Consumption ²</td>
<td>I(DBG)</td>
<td>On-board debugger current consumption when USB cable is not inserted (EFM32GG12 EM4S mode current consumption)</td>
<td>80</td>
<td>nA</td>
</tr>
<tr>
<td>Minimum Board Current Consumption</td>
<td>I(BOARD)</td>
<td>Minimum total board current consumption for VMCU = 3.0 V with EFR32BG22 in EM4S, the USB cable disconnected, and all peripherals either in sleep mode or disconnected</td>
<td>0.4</td>
<td>µA</td>
</tr>
</tbody>
</table>

Note:
1. From EFM32BG22 data sheet
2. From VEML6035 data sheet
3. From Si7021-A20 data sheet
4. From Si7210 data sheet
5. From SPK0641HT4H-1 data sheet
6. From ICM-20648 data sheet
7. From MX25R8035F data sheet
8. From EFM32GG12 data sheet
3. Hardware

The core of the Thunderboard EFR32BG22 is the EFR32BG22 Wireless Gecko System-on-Chip. The board also contains several peripherals connected to the EFR32BG22. For placement and layout of the hardware components the reader is referred to section 1.4 Kit Hardware Layout.

3.1 Block Diagram

An overview of the Thunderboard EFR32BG22 is illustrated in the figure below.

![Kit Block Diagram](image-url)

Figure 3.1. Kit Block Diagram
3.2 Power Supply

The kit can be powered through one of these interfaces:

- USB Micro-B
- Battery
- Mini Simplicity connector

The figure below shows the power options available on the kit and illustrates the main system power architecture.

Figure 3.2. Thunderboard EFR32BG22 Power Architecture

Power is normally applied either through the USB cable or a CR2032 battery. When the USB cable is connected, VBUS is regulated down to 3.0 V. An automatic switchover circuit switches the main system power from battery power to USB power when the USB cable is inserted, and protects the battery from reverse current.

Power can also be applied through the Mini Simplicity connector. This requires that no other power sources are present on the kit, as power is injected directly to the VMCU net. It is important to follow this in order to avoid power conflicts and backfeeding the battery. Powering the Thunderboard EFR32BG22 through the Mini Simplicity connector allows current measurements using the Advanced Energy Monitoring (AEM) as described in section 4.2 External Debugger.

Important: When powering the board through the Mini Simplicity connector, the USB and battery power sources must be removed.

The power supply options are summarized in the table below.

Table 3.1. Thunderboard EFR32BG22 Power Options

<table>
<thead>
<tr>
<th>Supply Mode</th>
<th>Typical Input Voltage</th>
<th>VMCU Source</th>
<th>3V0</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB power</td>
<td>5.0 V</td>
<td>On-board regulator</td>
<td>On-board regulator</td>
<td>USB VBUS</td>
</tr>
<tr>
<td>CR2032 battery</td>
<td>3.0 V</td>
<td>Battery voltage</td>
<td>Disconnected</td>
<td>No voltage present</td>
</tr>
<tr>
<td>Mini Simplicity</td>
<td>3.3 V</td>
<td>Debugger dependent</td>
<td>Disconnected</td>
<td>No voltage present</td>
</tr>
</tbody>
</table>

3.3 EFR32BG22 Reset

The EFR32BG22 can be reset by a few different sources:

- A user pressing the RESET button.
- The on-board debugger pulling the #RESET pin low.
- An external debugger pulling the #RESET pin low.
3.4 Peripherals

The Thunderboard EFR32BG22 contains a set of peripherals that can be accessed from the EFR32BG22. All the peripherals have enable signals which can be used to completely turn off the peripherals that are not in use, or they can be put into a state that draws minuscule amount of power. This allows for the lowest possible power consumption in every application. The following peripherals are accessible to the EFR32BG22:

- One Silicon Labs Si7021 relative humidity & temperature sensor
- One Silicon Labs Si7210 hall effect sensor
- One Vishay VEML6035 ambient light sensor
- One TDK InvenSense ICM-20648 6-axis inertial measurement sensor
- Two Knowles SPK0641HT4H-1 MEMS microphones with PDM output
- One Macronix MX25R8035F ultra low power 8 Mbit SPI flash
- One LED and one push button

The figure below gives an overview of the peripherals that are connected to the EFR32BG22. Note that some of the peripherals share the same interface and enable signals. As the enable signals does not have external pull-down resistors on the board, the application code should actively drive the signals either low or high to prevent the lines from floating.
3.4.1 Si7021 Relative Humidity and Temperature Sensor

The Si7021 I2C relative humidity and temperature sensor is a monolithic CMOS IC integrating humidity and temperature sensor elements, an analog-to-digital converter, signal processing, calibration data, and an I2C interface. The patented use of industry-standard, low-K polymeric dielectrics for sensing humidity enables the construction of low-power, monolithic CMOS Sensor ICs with low drift and hysteresis, and excellent long term stability. The Si7021 offers an accurate, low-power, factory-calibrated digital solution ideal for measuring humidity, dew-point, and temperature, in applications ranging from HVAC/R and asset tracking to industrial and consumer platforms.

On Thunderboard EFR32BG22, the Si7021 is connected through a switch. The switch must therefore be enabled by setting EFR32_SENSOR_EN high before it can be used by the application. This enables power to the Si7021 and connects the I2C lines used for the sensor to the EFR32BG22 I2C bus. The application code should always drive the EFR32_SENSOR_EN signal either high or low to prevent it from floating. The figure below shows how the Si7021 is connected to the EFR32BG22.

![Figure 3.4. Si7021 Relative Humidity and Temperature Sensor](image1.png)

Although measures have been taken to thermally isolate the sensor from the board, temperature readings will be influenced when power is dissipated on the board. More accurate temperature measurements are achieved when powering the board with a battery or through the Mini Simplicity connector as self-heating from the on-board LDO is eliminated and the on-board debugger is put in a low power state.

3.4.2 Si7210 Hall Effect Sensor

The Si7210 family of Hall effect sensors from Silicon Labs combines a chopper-stabilized Hall element with a low-noise analog amplifier, 13-bit analog-to-digital converter, and an I2C interface. Leveraging Silicon Labs’ proven CMOS design techniques, the Si7210 family incorporates digital signal processing to provide precise compensation for temperature and offset drift. The 13-bit magnetic field strength can be read through the I2C interface at any time. Applications for the Si7210 include mechanical position sensing in consumer, industrial and automotive applications, reed switch replacement, fluid level measurement, speed sensing and control knobs and switches.

On Thunderboard EFR32BG22, the Si7210 is connected through a switch. The switch must therefore be enabled by setting EFR32_SENSOR_EN high before it can be used by the application. This enables power to the Si7210 and connects the I2C lines used for the sensor to the EFR32BG22 I2C bus. The application code should always drive the EFR32_SENSOR_EN signal either high or low to prevent it from floating. The figure below shows how the Si7210 is connected to the EFR32BG22.

![Figure 3.5. Hall Effect Sensor](image2.png)
3.4.3 VEML6035 Ambient Light Sensor

The VEML6035 is an ambient light sensor with I²C digital interface.

On Thunderboard EFR32BG22, the VEML6035 is connected through a switch. The switch must therefore be enabled by setting EFR32_SENSOR_EN high before it can be used by the application. This enables power to the VEML6035 and connects the I²C lines used for the sensor to the EFR32BG22 I²C bus. The application code should always drive the EFR32_SENSOR_EN signal either high or low to prevent it from floating. The figure below shows how the VEML6035 is connected to the EFR32BG22.

![VEML6035 Ambient Light Sensor](image)

Figure 3.6. VEML6035 Ambient Light Sensor

3.4.4 PDM Stereo Microphones

The Thunderboard EFR32BG22 features two Knowles SPK0641HT4H-1 digital MEMS microphones with PDM output. The microphones are configured to form a stereo sound input device using only a single PDM data line. The clock to the microphones are fed from a pin on EFR32BG22 with PDM clock support. The output from both microphones are connected to the same line and connected to a pin on the EFR32BG22 supporting PDM data input.

On Thunderboard EFR32BG22, the microphones are connected through a switch. The switch must therefore be enabled by setting EFR32_MIC_EN high before it can be used by the application. This enables power to the microphones and connects the PDM lines used for the sensor to the EFR32BG22. The application code should always drive the EFR32_MIC_EN signal either high or low to prevent it from floating. The figure below shows how the microphones are connected to the EFR32BG22.

![Digital Stereo Microphones](image)

Figure 3.7. Digital Stereo Microphones
3.4.5 ICM-20648 6-Axis Inertial Sensor

The ICM-20648 is a 6-axis inertial sensor consisting of a 3-axis gyroscope and a 3-axis accelerometer. The sensor detects acceleration and angular rate in and around the X-, Y- and Z-axes with integrated 16-bit ADCs and programmable digital filters.

On Thunderboard EFR32BG22, the ICM-20648 is connected through a switch. The switch must be enabled by setting EFR32_IMU_EN high before it can be used by the application. This enables power to the ICM-20648 and connects the SPI lines used for the sensor to the EFR32BG22 SPI bus. The application code should always drive the EFR32_IMU_EN signal either high or low to prevent it from floating. Note the presence of the external pull-up resistor on the interrupt line as this can cause back powering if not handled correctly in software. The figure below shows how the ICM-20648 is connected to the EFR32BG22.

![ICM-20648 Six-axis Inertial Sensor](image)

The inertial sensor is located close to the geometrical center of the board. The coordinate system and rotation of the sensor follows the right-hand rule, and the spatial orientation of the board is shown in the figure below.

![Thunderboard EFR32BG22 Spatial Orientation](image)
3.4.6 Push Button and LED

The kit has one user push button, marked BTN0, that is connected to a GPIO on the EFR32BG22. The button is connected to pin PB03 and it is debounced by an RC filter with a time constant of 1 ms. The logic state of the button is high while the button is not being pressed, and low when the button is pressed.

The kit also features one yellow LED, marked LED0, that is controlled by a GPIO pin on the EFR32BG22. The LED is connected to pin PA04 in an active-high configuration.

![Diagram of Button and LED connections](image)

Figure 3.10. Button and LED

3.4.6.1 GPIOs on Unused JTAG Debug Pins

The EFR32BG22 allows the PA04 pin, which is connected to TDI on the JTAG Debug Port, to be used for other purposes if JTAG is not used. The Thunderboard EFR32BG22 uses SWD as debugging interface and the PA04 pin of the EFR32BG22 is used to control LED0. Under certain circumstances, such as an unexpected reset during a debug session, control of the PA04 pin can be transferred to the debug port which will result in the user application losing control of the PA04 pin. If this happens, known workarounds are to disconnect all active debug sessions and then reset the EFR32BG22 through either the reset pin or by toggling the power.

3.4.7 External Memory

The Thunderboard EFR32BG22 includes an 8 Mbit Macronix SPI Flash that is connected directly to the EFR32BG22. The MX25R series are ultra low power serial flash devices, so there is no need for a separate enable switch to keep current consumption down. However, it is important that the flash is always put in deep power down mode when not used. This is done by issuing a command over the SPI interface. In deep power down, the MX25R typically adds approximately 100 nA to the current consumption. The figure below shows how the serial flash is connected to the EFR32BG22.

![Diagram of Serial Flash connections](image)

Figure 3.11. Serial Flash
3.5 On-board Debugger

The Thunderboard EFR32BG22 contains a microcontroller separate from the EFR32BG22 Wireless Gecko that provides the user with an on-board J-Link debugger through the USB Micro-B port. This microcontroller is referred to as the "on-board debugger", and is not programmable by the user. When the USB cable is removed, the on-board debugger goes into a very low power shutoff mode (EM4S).

In addition to providing code download and debug features, the on-board debugger also presents a virtual COM port for general purpose application serial data transfer. The Packet Trace Interface (PTI) is also supported which offers invaluable debug information about transmitted and received packets in wireless links.

The figure below shows the connections between the target EFR32BG22 device and the on-board debugger. The figure also shows the presence of the Mini Simplicity Connector, and how this is connected to the same I/O pins.

Please refer to chapter 4. Debugging for more details on debugging.

Figure 3.12. On-Board Debugger Connections
3.6 Connectors

Featured on the Thunderboard EFR32BG22 is a Mini Simplicity Connector, a USB Micro-B connector and 20 breakout pads that follow the EXP header pinout. The connectors are placed on the top side of the board, and their placement and pinout can be seen in the figure below. For additional information on the connectors see the following sub chapters.

Figure 3.13. Thunderboard EFR32BG22 Connectors
3.6.1 Breakout Pads

20 breakout pads, which follow the EXP header pinout, are provided, and allow connection of peripherals or add-on boards. Ten of the pads are located along the left side of the board and ten are located on the right side. The breakout pads expose I/O pins that can be used with most of the EFR32BG22's features. Additionally, the VMCU (main power rail), 3V0 (LDO regulator output) and 5V power rails are also exposed.

The breakout pads are pinned out similar to the EXP header found on other Silicon Labs Starter Kits, which ensures that commonly used peripherals such as SPI, UART and I2C buses are available on fixed locations. The rest of the pins are used for general purpose IO. This allows the definition of EXP boards that can plug into a number of different Silicon Labs starter kits.

The pin-routing on EFR32 is very flexible, so most peripherals can be routed to any pin. However, pins may be shared between the breakout pads and other functions on the Thunderboard EFR32BG22. The table below includes an overview of the EXP header and functionality that is shared with the kit.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
<th>EXP Header Function</th>
<th>Shared Feature</th>
<th>Peripheral Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Side Breakout Pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VMCU</td>
<td>EFR32BG22 voltage domain, included in AEM measurements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PC00</td>
<td>SPI_MOSI</td>
<td>IMU & Flash</td>
<td>US0_TX</td>
</tr>
<tr>
<td>6</td>
<td>PC01</td>
<td>SPI_MISO</td>
<td>IMU & Flash</td>
<td>US0_RX</td>
</tr>
<tr>
<td>8</td>
<td>PC02</td>
<td>SPI_SCLK</td>
<td>IMU & Flash</td>
<td>US0_CLK</td>
</tr>
<tr>
<td>10</td>
<td>PB02</td>
<td>SPI_CS</td>
<td>IMU</td>
<td>US0_CS</td>
</tr>
<tr>
<td>12</td>
<td>PA05</td>
<td>UART_TX</td>
<td>Virtual COM Port</td>
<td>US1_TX</td>
</tr>
<tr>
<td>14</td>
<td>PA06</td>
<td>UART_RX</td>
<td>Virtual COM Port</td>
<td>US1_RX</td>
</tr>
<tr>
<td>16</td>
<td>PD02</td>
<td>I2C_SDA</td>
<td>Sensor I2C bus</td>
<td>I2C0_SDA</td>
</tr>
<tr>
<td>18</td>
<td>5V</td>
<td>Board USB voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3V0</td>
<td>Board controller supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Side Breakout Pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PA08</td>
<td>GPIO</td>
<td>Virtual COM Port</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PA07</td>
<td>GPIO</td>
<td>Virtual COM Port</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PB00</td>
<td>GPIO</td>
<td>PDM Microphones</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PB01</td>
<td>GPIO</td>
<td>PDM Microphones</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PA04</td>
<td>GPIO</td>
<td>LED</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PB03</td>
<td>GPIO</td>
<td>Button</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PD03</td>
<td>I2C_SCL</td>
<td>Sensor I2C bus</td>
<td>I2C0_SCL</td>
</tr>
<tr>
<td>17</td>
<td>BOARD_ID_SCL</td>
<td>Connected to Board Controller for identification of add-on boards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>BOARD_ID_SDA</td>
<td>Connected to Board Controller for identification of add-on boards.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.2 Mini Simplicity Connector

The Mini Simplicity connector is a 10-pin 1.27 mm pitch connector that allows the use of an external debugger such as the one found on a Silicon Labs Wireless Starter Kit (WSTK) mainboard. See section 4.2 External Debugger for more details. The pinout of the connector on the board is described in the table below with the names being referenced from the EFR32BG22.

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Connection</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VMCU</td>
<td>VAEM</td>
<td>Target voltage on the debugged application. Supplied and monitored by the AEM when powered by a WSTK with its power selection switch in the "AEM" position.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>3</td>
<td>EFR32BG22 reset pin</td>
<td>DBG_RST</td>
<td>Reset.</td>
</tr>
<tr>
<td>4</td>
<td>PA06</td>
<td>VCOM_RX</td>
<td>Virtual COM Rx.</td>
</tr>
<tr>
<td>5</td>
<td>PA05</td>
<td>VCOM_TX</td>
<td>Virtual COM Tx.</td>
</tr>
<tr>
<td>6</td>
<td>PA03</td>
<td>DBG_SWO</td>
<td>Serial Wire Output.</td>
</tr>
<tr>
<td>7</td>
<td>PA02</td>
<td>DBG_SWDIO</td>
<td>Serial Wire Data.</td>
</tr>
<tr>
<td>8</td>
<td>PA01</td>
<td>DBG_SWCLK</td>
<td>Serial Wire Clock.</td>
</tr>
<tr>
<td>9</td>
<td>PC05</td>
<td>PTI_FRAME</td>
<td>Packet Trace Frame Signal.</td>
</tr>
<tr>
<td>10</td>
<td>PC04</td>
<td>PTI_DATA</td>
<td>Packet Trace Data Signal.</td>
</tr>
</tbody>
</table>

3.6.3 Debug USB Micro-B Connector

The debug USB port can be used for uploading code, debugging, and as a Virtual COM port. More information is available in section 4. Debugging.
4. Debugging

The Thunderboard EFR32BG22 contains an on-board SEGGER J-Link Debugger that interfaces to the target EFR32BG22 using the Serial Wire Debug (SWD) interface. The debugger allows the user to download code and debug applications running in the target EFR32BG22. Additionally, it also provides a VCOM port to the host computer that is connected to the target device's serial port, for general purpose communication between the running application and the host computer. The Packet Trace Interface (PTI) is also supported by the on-board debugger which offers invaluable debug information about transmitted and received packets in wireless links. The on-board debugger is accessible through the USB Micro-B connector.

An external debugger can be used instead of the on-board debugger by connecting it to the Mini Simplicity Connector. This allows advanced debugging features as described in section 4.2 External Debugger. When using an external debugger it is very important to make sure that there is no power source present on the Thunderboard EFR32BG22, as the external debugger might source a voltage on the target power domain (VMCU).

Important: When connecting an external debugger that sources voltage to the VMCU net, the USB cable and battery must be removed from the Thunderboard EFR32BG22. Failure to do so will create power conflicts.

The figure below shows the possible debug options.

![Debugging Options Diagram](image)

*USB and battery power sources **must** be removed before connecting an external debugger that sources voltage to the VMCU net.

Figure 4.1. Thunderboard EFR32BG22 Debugging Possibilities
4.1 On-board Debugger

The on-board debugger is a SEGGER J-Link debugger running on an EFM32 Giant Gecko. The debugger is directly connected to the debug and VCOM pins of the target EFR32BG22.

When the debug USB cable is inserted, the on-board debugger is automatically active, and takes control of the debug and VCOM interfaces. This means that debug and communication will not work with an external debugger connected at the same time. The on-board LDO is also activated, providing power to the board.

When the USB cable is removed, the board might still be running on battery power, as described in section 3.2 Power Supply. In this case, the on-board debugger goes into a very low power shutoff mode (EM4S), consuming about 80 nA. This means that battery lifetime will not be affected too much by the on-board debugger power consumption. Since the I/O voltage rail of the debugger remains powered in the battery operated mode, the pins connected to the debug and VCOM interfaces maintain proper isolation and prevent leakage currents.

4.2 External Debugger

A Wireless Starter Kit (Wireless STK) mainboard with a debug adapter board from Silicon Labs can be connected to the Mini Simplicity Connector and used for debugging instead of the on-board debugger. For instruction on how this can be done see "AN958: Debugging and Programming Interfaces for Custom Designs". Debugging with an external Wireless STK mainboard gives access to the following debugging features:

- Debugging of the target device through SWD
- Communication using the VCOM port
- Packet Trace Interface (for wireless devices only)
- Advanced Energy Monitor

Note that the Mini Simplicity Connector cannot be used at the same time as the on-board debugger is active (USB cable is plugged in). For information on how to correctly connect to the kit, see Figure 4.1 Thunderboard EFR32BG22 Debugging Possibilities on page 20.

Powering the board when using the Mini Simplicity Connector with a Wireless STK mainboard and adapter board can be done using the AEM voltage supply of the Wireless STK mainboard. When doing this, remove both the USB cable and the coin cell battery from the Thunderboard EFR32BG22 before connecting the Wireless STK mainboard to the Mini Simplicity Connector. The power switch on the Wireless STK mainboard should be set in "AEM". Power-cycling of the board, if necessary, can easily be done by flipping the power switch on the Wireless STK to "BAT" and back to "AEM" assuming a battery is not inserted in the Wireless STK mainboard.

It is possible to have the Thunderboard EFR32BG22 powered by a battery, and still use the Mini Simplicity Connector with a Wireless STK mainboard for debugging and communication. In this case the power switch on the Wireless STK mainboard must be set to the "BAT" position and the coin cell battery on the Wireless STK mainboard must be removed. In this case level shifters on the Wireless STK itself takes care of interfacing to different voltage levels on the Thunderboard EFR32BG22. Connecting the board to an external debugger in other ways than those described above might create power conflicts, compromise the ability to monitor power consumption and might hazardously feed power back to the on-board battery.

Important: Always remove the battery if you are not sure whether the external debugger is sourcing voltage to Thunderboard EFR32BG22.
4.3 Virtual COM Port

The virtual COM port (VCOM) is a connection to a UART on the EFR32BG22, and allows serial data to be sent and received from the device. The on-board debugger presents this as a virtual COM port on the host computer that shows up when the USB cable is inserted.

Data is transferred between the host computer and the debugger through the USB connection, which emulates a serial port using the USB Communication Device Class (CDC). From the debugger, the data is passed on to the target device through a physical UART connection.

The serial format is 115200 bps, 8 bits, no parity, and 1 stop bit by default.

Note: Changing the baud rate for the COM port on the PC side does not influence the UART baud rate between the debugger and the target device. However, it is possible to change the VCOM Baudrate through the kits Admin Console available through Simplicity Studio.

Alternatively, the VCOM port can also be used through the Mini Simplicity Connector with an external Wireless STK. Using the VCOM port through the Mini Simplicity Connector with an external Wireless STK works in a similar way, but requires that the USB cable to the on-board debugger is unplugged. The board controller on the Wireless STK then makes the data available over USB (CDC) or an IP socket. Note that flow control is not available over the Mini Simplicity Connector.
5. Radio

5.1 RF Section
This section gives a short introduction to the RF section of the BRD4184B board.
The schematic of the RF section is shown in the figure below.

![Figure 5.1. Schematic of the RF section](image)

5.1.1 Description of the RF Matching
The impedance of the RF port of the EFR32BG22 is matched to 50 Ohm: the RF2G4_IO pin is connected to a three-element impedance matching and harmonic filter circuitry, and a dc blocking capacitor. The on-board ceramic antenna is also matched to 50 Ohm by its impedance matching components and connected to the EFR32BG22.

5.1.2 RF Section Power Supply
On the BRD4184B the supply for the radio (RFVDD) and the power amplifier (PAVDD) is connected to the on-chip dc-dc converter. By default, the dc-dc converter provides 1.8 V for the entire RF section (for details, see the schematic of the BRD4184B).

5.1.3 RF Matching Bill of Materials
The Bill of Materials of the BRD4184B RF matching network is shown in the following table.

<table>
<thead>
<tr>
<th>Component name</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>2.6 mH</td>
<td>Murata</td>
<td>LQP03HQ2N6B02</td>
</tr>
<tr>
<td>C2</td>
<td>18 pF</td>
<td>Murata</td>
<td>GJM0335C1E180GB01D</td>
</tr>
<tr>
<td>C3</td>
<td>1.2 pF</td>
<td>Murata</td>
<td>GRM0335C1H1R2WA01D</td>
</tr>
<tr>
<td>C4</td>
<td>1.3 pF</td>
<td>Murata</td>
<td>GRM0335C1H1R3BA01D</td>
</tr>
</tbody>
</table>
5.1.4 Antenna

The BRD4184B has an on-board ceramic antenna.

The land pattern for the antenna on the PCB layout was designed based on the recommendations of the antenna data sheet. Due to the fact that there is a significant difference between the layout (practically the board size) of the BRD4184B and the antenna evaluation board, the applied antenna matching network deviates from the recommendation.

The values of the antenna matching network components were fine tuned to match the antenna impedance close to 50 Ohm on the BRD4184B PCB. The resulting antenna impedance and reflection are shown in the figure below.

![Antenna Impedance and Reflection](image)

Figure 5.2. Fine Tuned Antenna Impedance (Red Curve) and Reflection (Blue Curve)

5.1.5 Antenna Matching Bill of Materials

The Bill of Materials of the BRD4184B antenna matching network is shown in the following table.

<table>
<thead>
<tr>
<th>Component name</th>
<th>Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT1</td>
<td>—</td>
<td>Johanson</td>
<td>2450AT18D0100</td>
</tr>
<tr>
<td>L2</td>
<td>1.5 nH</td>
<td>Murata</td>
<td>LQP03TN1N5B02D</td>
</tr>
<tr>
<td>C5</td>
<td>1.5 pF</td>
<td>Murata</td>
<td>GRM0335C1E1R5BA01D</td>
</tr>
</tbody>
</table>

5.2 EMC Regulations for 2.4 GHz

5.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band

Based on ETSI EN 300-328 the allowed maximum fundamental power for the 2400-2483.5 MHz band is 20 dBm EIRP. For the unwanted emissions in the 1 GHz to 12.75 GHz domain the specified limit is -30 dBm EIRP.

5.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band

FCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 2400-2483.5 MHz band. For spurious emissions the limit is -20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are specified in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range from 960 MHz to the frequency of the 5th harmonic it is defined as 0.5 mV/m at 3 m distance (equals to -41.2 dBm in EIRP).

In case of operating in the 2400-2483.5 MHz band the 2nd, 3rd and 5th harmonics can fall into restricted bands so for those the -41.2 dBm limit should be applied. For the 4th harmonic the -20 dBc limit should be applied.
5.2.3 Applied Emission Limits

The overall applied limits are shown in the table below. For the harmonics that fall into the FCC restricted bands, the FCC 15.209 limit is applied, and the ETSI EN 300-328 limit is applied for the rest.

Table 5.3. Applied Limits for Spurious Emissions

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Frequency</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>4800~4967 MHz</td>
<td>-41.2 dBm</td>
</tr>
<tr>
<td>3rd</td>
<td>7200~7450.5 MHz</td>
<td>-41.2 dBm</td>
</tr>
<tr>
<td>4th</td>
<td>9600~9934 MHz</td>
<td>-30 dBm</td>
</tr>
<tr>
<td>5th</td>
<td>12000~12417.5 MHz</td>
<td>-41.2 dBm</td>
</tr>
</tbody>
</table>

5.3 Relaxation with Modulated Carrier

Depending on the applied modulation scheme, and the Spectrum Analyzer settings specified by the relevant EMC regulations, the measured power levels are usually lower compared to the results with unmodulated carrier. These differences have been measured and used as relaxation factors on the results of the radiated measurement performed with unmodulated carrier. This way, the radiated compliance with modulated transmission can be evaluated.

In this case, both the ETSI EN 300-328 and the FCC 15.247 regulations define the following Spectrum Analyzer settings for measuring the unwanted emissions above 1 GHz:

- Detector: Average
- RBW: 1 MHz

The table below shows the relative levels of the measured modulated signals compared to the unmodulated levels with the above Spectrum Analyzer settings in case of the supported modulation schemes.

Table 5.4. Measured Relaxation Factors for the Supported Modulation Schemes

<table>
<thead>
<tr>
<th>Applied Modulation (Packet Length: 255 bytes)</th>
<th>BLE Coded PHY: 125 Kb/s (PRBS9) [dB]</th>
<th>BLE Coded PHY: 500 Kb/s (PRBS9) [dB]</th>
<th>BLE 1M PHY: 1 Mb/s (PRBS9) [dB]</th>
<th>BLE 2M PHY: 2 Mb/s (PRBS9) [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd harmonic</td>
<td>-2.7</td>
<td>-3.1</td>
<td>-3.3</td>
<td>-9.1</td>
</tr>
<tr>
<td>3rd harmonic</td>
<td>-4.8</td>
<td>-5.2</td>
<td>-5.2</td>
<td>-10.7</td>
</tr>
<tr>
<td>4th harmonic</td>
<td>-5.5</td>
<td>-6.5</td>
<td>-6.7</td>
<td>-11.9</td>
</tr>
<tr>
<td>5th harmonic</td>
<td>-6.3</td>
<td>-6.5</td>
<td>-6.7</td>
<td>-11.4</td>
</tr>
</tbody>
</table>

As it can be observed, the BLE 125 Kb/s coded modulation scheme has the lowest relaxation factors. These values will be used as the worst case relaxation factors for the radiated measurements.
5.4 Radiated Power Measurements

The output power of the EFR32BG22 was set to 6 dBm. The board was supplied through its USB connector by connecting to a PC through a USB cable.

During the measurements the board was rotated in three cuts, see the reference plane illustration in the figure below. The radiated powers of the fundamental and the harmonics were measured with horizontal and vertical reference antenna polarizations.

![Reference Plane Illustration]

Figure 5.3. DUT Reference Planes

5.4.1 Maximum Radiated Power Measurement

The transceiver was operated in unmodulated carrier transmission mode, the output power of the radio was set to 6 dBm. The results are shown in the table below.

The correction factors are applied based on the BLE 125 Kb/s coded modulation, showed in section 5.3 Relaxation with Modulated Carrier. For the rest of the supported modulation schemes the correction factors are larger, thus the related calculated margins would be higher compared to the ones shown in the table below. Thus the below margins can be considered as worst case margins.

Table 5.5. Maximums of the Measured Radiated Powers of BRD4184B

<table>
<thead>
<tr>
<th>Frequency (2440 MHz)</th>
<th>Measured Unmodulated EIRP [dBm]</th>
<th>Orientation</th>
<th>BLE 125 Kb/s Coded Modulation</th>
<th>Limit in EIRP [dBm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Correction Factor [dB]</td>
<td>Calculated Modulated EIRP [dBm]</td>
</tr>
<tr>
<td>Fund</td>
<td>7.3</td>
<td>YZ/H</td>
<td>NA (0 is used)</td>
<td>7.3</td>
</tr>
<tr>
<td>2nd</td>
<td>-52.4</td>
<td>XY/H</td>
<td>-2.7</td>
<td>-55.1</td>
</tr>
<tr>
<td>3rd</td>
<td>-46.2</td>
<td>XZ/V</td>
<td>-4.8</td>
<td>-51.0</td>
</tr>
<tr>
<td>4th</td>
<td><=50*</td>
<td>—</td>
<td>-5.5</td>
<td>—</td>
</tr>
<tr>
<td>5th</td>
<td>-39.2</td>
<td>YZ/V</td>
<td>-6.3</td>
<td>-45.5</td>
</tr>
</tbody>
</table>

* Signal level is below the Spectrum Analyzer noise floor.

As it can be observed the radiated power levels with modulation are far below the applied limits.
5.4.2 Antenna Pattern Measurement

The measured typical antenna patterns are shown in the figures below.

![Normalized Radiation Pattern [dB], XY cut](image)

Figure 5.4. Antenna Pattern - XY
Figure 5.5. Antenna Pattern - XZ
5.5 EMC Compliance Recommendations

5.5.1 Recommendations for 2.4 GHz ETSI EN 300-328 Compliance

As it was shown in the previous chapter, with the EFR32BG22 output power set to 6 dBm, the radiated power of the fundamental of the BRD4184B complies with the 20 dBm limit of the ETSI EN 300-328. The harmonic emissions are under the applied limits with margin.

5.5.2 Recommendations for 2.4 GHz FCC 15.247 Compliance

As it was shown in the previous chapter, with the EFR32BG22 output power set to 6 dBm, the radiated power of the fundamental of the BRD4184B complies with the 30 dBm limit of the FCC 15.247. The harmonic emissions are under the applied limits with margin.
6. Schematics, Assembly Drawings, and BOM

Schematics, assembly drawings, and bill of materials (BOM) are available through Simplicity Studio when the kit documentation package has been installed. They are also available from the kit page on the Silicon Labs website: http://www.silabs.com/.
7. Kit Revision History

The kit revision can be found printed on the box label of the kit, as outlined in the figure below. The kit revision history is summarized in the table below.

Figure 7.1. Revision Info

Table 7.1. Kit Revision History

<table>
<thead>
<tr>
<th>Kit Revision</th>
<th>Released</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B00</td>
<td>2021-08-01</td>
<td>Major revision update with BRD4184B Rev. A04 replacing BRD4184A Rev. A02. Information about the differences between these boards can be found in 8.1 Revision History. Added USB cable to kit content.</td>
</tr>
<tr>
<td>A01</td>
<td>2020-01-22</td>
<td>Updated board revision to BRD4184A Rev. A02.</td>
</tr>
<tr>
<td>A00</td>
<td>2019-11-25</td>
<td>Initial kit revision with BRD4184A Rev. A01.</td>
</tr>
</tbody>
</table>
8. Board Revision History and Errata

8.1 Revision History

The board revision can be found laser printed on the board, and the board revision history is summarized in Table 8.1 Board Revision History on page 32.

<table>
<thead>
<tr>
<th>Board</th>
<th>Released</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRD4184B Rev. A04</td>
<td>2021-01-15</td>
<td>BRD4184B Rev. A04 is based on BRD4184A Rev. A02 with major changes being new pinout of the EFR32BG22 to prevent the PDM microphones from interfering with the radio, a different ambient light sensor and a buffer circuit on the Mini Simplicity reset line which breaks a potential current path between an external debugger and the EFR32BG22.</td>
</tr>
<tr>
<td>BRD4184A Rev. A02</td>
<td>2020-22-01</td>
<td>Changed C5 and X900.</td>
</tr>
<tr>
<td>BRD4184A Rev. A01</td>
<td>2019-11-04</td>
<td>Changed U1 part number, updated RF matching network, removed NM components and updated PCB revision.</td>
</tr>
<tr>
<td>BRD4184A Rev. A00</td>
<td>2019-09-13</td>
<td>Initial version.</td>
</tr>
</tbody>
</table>

8.2 Errata

<table>
<thead>
<tr>
<th>Board</th>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRD4184B Rev. A04</td>
<td>No known erratas.</td>
<td>—</td>
</tr>
<tr>
<td>BRD4184A Rev. A02-</td>
<td>External debuggers may inject current into the VDCDC rail.</td>
<td>A small current is injected into the VDCDC rail when using an external debugger that has a pull-up resistor to a higher voltage rail, such as VMCU, on the reset line due to the current path that is formed between the pull-up resistor on the external debugger and the internal pull-up resistor to DVDD on the RESETn pin on EFR32BG22.</td>
</tr>
</tbody>
</table>
| A00 | Chosen PDM microphone interface pinout and routing affects radio performance. | Using the microphones and the radio at the same time leads to severe degradation of radio performance and unstable Bluetooth link. This is because the PDM microphone interface pin selection and routing is too close to the HFXTAL pins and the HFXO, causing signal coupling to the HFXO and further into the radio.
As a consequence of this issue the PDM microphones are not supported by the sample application that is pre-programmed into the board, and the sound level will not be displayed in the Thunderboard mobile app.
This issue will be addressed on a new board revision, in which a new pinout of the PDM interface will be chosen. |
9. Document Revision History

Revision 1.0
June, 2021
• Initial document version.
Simplicity Studio
One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.