- Community
- Blog

- 2014 August
- 2014 September
- 2014 October
- 2014 November
- 2014 December
- 2015 January
- 2015 February
- 2015 March
- 2015 April
- 2015 May
- 2015 June
- 2015 July
- 2015 August
- 2015 September
- 2015 October
- 2015 November
- 2015 December
- 2016 January
- 2016 February
- 2016 March
- 2016 April
- 2016 May
- 2016 June
- 2016 July
- 2016 August
- 2016 September
- 2016 October
- 2016 November
- 2016 December
- 2017 January
- 2017 February
- 2017 March
- 2017 April
- 2017 May
- 2017 June
- 2017 July
- 2017 August
- 2017 September
- 2017 October
- 2017 November
- 2017 December
- 2018 January

## Timing 101: The Case of the PLL’s VCO High Pass Transfer Function

Welcome to another edition of the Timing 101 blog from Silicon Labs' Kevin Smith.We have been doing some internal training recently and a common question that comes up is how and why a Phase Locked Loop (PLL) treats phase noise differently depending on whether it comes from the input clock or the VCO (Voltage Controlled Oscillator). Most everyone understands that input clock phase noise is jitter attenuated, i.e. the PLL acts like a low pass filter to input phase noise. However, it is not as readily apparent why a PLL should act like a high pass filter to VCO phase noise. This is the Case of the PLL’s VCO High Pass Transfer Function and the subject of this month’s post.

First, I will review the basic feedback loop and its transfer function. Next, I will generalize the process for signals injected at different locations around the loop. I will then generate and compare the transfer functions for a PLL both from the input clock and the VCO perspective. Finally, I’ll wrap up by offering some intuition and discussing the application considerations.

Feedback ReviewConsider the basic feedback diagram in the figure below where the variables and blocks are functions of the Laplace complex frequency variable ‘s’. The intermediate variable S representing error should be considered likewise. The forward gain is G(s) and the feedback gain H(s). I(s) and O(s) are the input and output signals respectively.

The closed loop transfer function TF for O(s)/I(s) is derived as follows.

Now what happens if we break up the forward path gain G(s) in to two separate blocks, G1(s) and G2(s) and inject a new signal X(s) as illustrated below? X(s) is additive as with noise.

By linearity, the transfer function TF for O(s)/x(s) is derived as follows where I(s) is set to 0.

It turns out we can generalize for any X(s) injection point anywhere around the feedback loop as follows. The term “Loop Gain” refers to the multiplication of all the gain elements going around the closed loop. In this particular example, the Loop Gain = G1(s)*G2(s)*H(s).

We can now apply these developments to the basic PLL.

Input Clock Phase Noise Transfer FunctionConsider the basic linear “small signal” PLL diagram below.

Going clockwise around the loop, the components in the diagram are as follows.

We can now generate the TF for Theta_o(s)/ Theta_i(s) almost by inspection by noting that the forward gain is KpF(s)Kv/s and the loop gain is [KpF(s)Kv/s]/N.

For reasons of stability F(s) is always a low pass filter so its value is either constant in value or rolls off with increasing frequency. In either case the overall closed loop behavior for the PLL is itself a low pass filter.

This PLL transfer function is covered in many textbooks and articles but a more detailed and recent discussion on this topic is contained in the article “Phase Locked Loop Noise Transfer Functions” by Peter Delos published in High Frequency Electronics, January, 2016.

VCO Phase Noise Transfer FunctionNow consider the basic PLL diagram modified below to also inject VCO phase noise via variable Theta_v(s).

We can generate the TF for Theta_o(s)/ Theta_v(s) by noting that the forward gain from the VCO phase noise injection point is simply unity and the loop gain is [KpF(s)Kv/s]/N as before.

Again, F(s) is a low pass filter so it is either constant in value or rolls off. Unlike the transfer function for the input clock, the numerator here has a zero at the origin. In this case the overall closed loop behavior for the PLL is now a high pass filter.

Some IntuitionOK, I know some of you may be saying, I get the math but I don’t really, intuitively, understand why the PLL acts as a high pass filter to VCO phase noise. Let me offer some food for thought that may provide some intuition.

Consider the expected difference in behavior for a phase step at Theta_i versus Theta_v:

low passfilter.high passfilter.Application ConsiderationsThe 2 dominant sources of phase noise in a PLL are typically the input clock and the VCO. As we have seen, the PLL treats each source's noise differently, i.e. as a low pass and a high pass filter respectively.

The application consequences are as follows:

1. If an input clock has relatively low phase noise versus the VCO, one typically uses a relatively wide bandwidth (BW) PLL in order to attenuate the VCO's phase noise. In this context, a wide bandwidth typically means something on the order of 100s of kHz to MHz. This is how clock generators or clock multipliers are designed. (Note that BW cannot be arbitrarily large for reasons related to stability and the need to suppress phase detector spurs.)

2. On the other hand, if an input clock has relatively high phase noise versus the VCO, one typically uses a relatively narrow bandwidth PLL in order to attenuate the input clock's phase noise. In this context, a narrow bandwidth means something on the order of kHz or less, usually much less. This is how jitter attenuators are designed.

Understanding this tradeoff and the ability to adjust the bandwidth "knob" is a key to troubleshooting PLLs and optimizing their application.

ConclusionThis month I’ve reviewed how a PLL's VCO phase noise transfer function arises and its unique high pass behavior. I’ve also offered some intuition and discussed the application considerations.

I hope you have enjoyed this Timing 101 article. It’s the last post for 2017. Happy Holidays and

Happy New Year to all of you!

As always, if you have topic suggestions, or there are questions you would like answered, appropriate for this blog, please send them to kevin.smith@silabs.com with the words Timing 101 in the subject line. I will give them consideration and see if I can fit them in. Thanks for reading.

Keep calm and clock on.

Cheers,

Kevin