Silicon Labs Silicon Labs Community
silabs.com
Language
  • 简体中文
  • 日本語
  • MCUs
    • 8-bit MCU
    • 32-bit MCU
  • Wireless
    • Bluetooth
    • Proprietary
    • Wi-Fi
    • Zigbee & Thread
    • Z-Wave
  • More Products
    • Interface
    • Isolation
    • Power
    • Sensors
    • Timing
  • Development Tools
    • Simplicity Studio
    • Third Party Tools
    • Thunderboard
  • Expert's Corner
    • Announcements
    • Blog
    • General Interest
    • Projects
  1. Community - Silicon Labs
  2. Blog

Isolation FAQ

10/292/2018 | 01:32 PM
Lance Looper
Employee

Level 5


Some circuits may be damaged if they try to talk to each other, and digital isolators are devices that make it possible for them to communicate without blowing each other up. In this Q&A, Silicon Labs’ Rudye McGlothlin answers a few questions about these devices and techniques for balancing safety and performance.

 

What is driving the Industrial market to use isolation components in the first place?
There are many needs that drive the use of isolation components. System requirements for component protection, user safety, signal level shifting, and adherence to safety regulations are primary drivers. In all cases the isolation components add value to the system by enabling additional functionality and ensuring safe operation of the system.

 

When I add isolation devices, what affects does that have on my circuitry?
Improved performance in many cases and, in all cases, additional component safety is achieved. Isolation devices allow for multiple power domains to coexist and communicate, which means that sensitive circuits are protected from switching circuits. Modern, digital isolation allows for massive integration, which means that circuit component count can decrease. Performance, efficiency, size, and cost are all things that can be affected when adding isolation devices.

 

 

What are my options when considering isolation components for my application?
Up until the last ten years, designers used optocouplers for their isolation needs, but digital isolation has come a long way since that time. Now, digital, CMOS-based isolation is the technology of choice for isolation tasks in the system.

 

What is the difference between an optocoupler and a digital isolation device?
Simply put, an optocoupler is a hybrid device that uses LED light to transmit data across an isolation barrier to a light detector. The LED turns on for logic High and off for logic Low. Optocouplers consume high levels of power, are prone to aging and temperature effects, and provide limited data rates, often below 1Mbps.


Digital isolation devices, on the other hand, were created to meet safety regulations while maximizing the benefits of modern CMOS technology. To do this, digital isolation devices use semiconductor process technology to create either transformers, or capacitors to transfer data instead of light. With this technology, performance and feature integration are both improved.


What is the best advice to give someone who is hesitant to make the switch from optocouplers to digital isolators?
Optocouplers, although incorporated in many designs, are based on outdated LED-technology that provides significant output variation over input current, temperature, and age. This reduces performance over the device’s lifetime. Digital isolation components easily provide multichannel isolation solutions with a much smaller footprint, increases system reliability due to a lower failure rate, offer twice the electrical noise immunity, operate over a wider temperature range (-40oC to 125oC), and do not age or degrade over time. In general, the use of a high-frequency carrier instead of light enables low operating power and high-speed operation, which allows for precise timing specifications.
 

I’m convinced, now what factors go into selecting a particular digital isolator for my application?
Feature set and isolation performance are both factors to consider with selecting a digital isolator. On the feature set side, consider the number of isolation channels and the channel configurations. Timing specifications, such as propagation delay, should be appropriate for your system. On the isolation performance side, it is important to gain an understanding of the isolation rating your system needs. Transient noise immunity, and electromagnetic emission profile are other considerations related to the isolation structure. With the isolation rating, there maybe be package options to consider given the system environment.

 

What is the biggest challenge a designer has after they’ve decided to make the switch?
The first challenge is to select the correct digital isolator for each application. As mentioned before, each component has its own specifications just as each application has particular needs. Once an appropriate device is identified and designed in, the system designer can proceed with their system evaluation in their typical fashion.

What safety requirements do I have to consider for my application?
Once you’ve nailed down your application’s needs, you’ll want to be sure that the devices meet appropriate Safety Standards as required by end safety agencies such as UL, CSA, VDE, and CQC. These safety agencies use their component safety standards to qualify and either specify a safety component’s one-minute voltage withstand rating, which is typically 2.5 kVrms, 3.75kVrms, or 5 kVrms, or its life-time working voltage, which is typically between 125 Vrms to 1000 Vrms. All of Silicon Labs’ component safety certificates can be requested online at silabs.com.

 

What is the typical life expectancy of a digital isolator’s isolation barrier?
This depends on the material used as well as its thickness. Standard materials used include polymer-based, polyimide-based, or SiO2-based insulators. In general, though, the life span of the barrier can easily be over 25 years.

 

What are some of the standard rated voltages I can expect to find?
Depending on the device manufacturer, common one-minute rated voltages are 1 kVrms, 2.5 kVrms, 3.75 kVrms, or 5 kVrms. For surge protection, some devices can reach 10 kVpk.

 

What creepage and clearance do your products support?
The two most common creepage and clearance requirements that are required by end systems for basic and reinforced insulation needing up to 250Vrms working insulation are 3.2mm and 6.4 mm respectively. In general, Silicon Labs’ narrow body SOIC packages support ~4mm of creepage/clearance and the wide body SOIC packages support ~8mm.

 

For more information about our digital isolation products, visit https://www.silabs.com/products/isolation/digital-isolators.

  • Blog Posts

Tags

  • Wireless
  • High Performance Jitter Attenuators
  • EFR32MG21 Series 2 SoCs
  • Blue Gecko Series 2
  • Zigbee SDK
  • ZigBee and Thread
  • Internet Infrastructure
  • Sensors
  • Blue Gecko Bluetooth Low Energy SoCs
  • Z-Wave
  • Micrium OS
  • Blog Posts
  • Low Jitter Clock Generators
  • Bluetooth Classic
  • Makers
  • Flex SDK
  • Tips and Tricks
  • Smart Homes
  • IoT Heroes
  • Reviews
  • RAIL
  • Simplicity Studio
  • Mighty Gecko SoCs
  • Timing
  • Blue Gecko Bluetooth Low Energy Modules
  • Clocks
  • Ultra Low Jitter Clock Generators
  • General Purpose Clock Generators
  • Industry 4.0
  • Giant Gecko
  • 32-bit MCUs
  • blue-gecko-xpress-modules
  • Bluetooth Low Energy
  • 32-bit MCU SDK
  • Gecko
  • Microcontrollers
  • News and Events
  • Industrial Automation
  • Wi-Fi
  • Bluetooth SDK
  • Community Spotlight
  • Biometric Sensors
  • General Purpose Jitter Attenuators
  • Giant Gecko S1
  • Flex Gecko
  • Internet of Things
  • 8-bit MCUs
  • Isolation
  • Powered Devices

Top Authors

  • Avatar image Mark Mulrooney
  • Avatar image Siliconlabs
  • Avatar image Nari Shin
  • Avatar image lynchtron
  • Avatar image deirdrewalsh
  • Avatar image Lance Looper
  • Avatar image lethawicker

Archives

  • 2014 December
  • 2015 January
  • 2015 February
  • 2015 March
  • 2015 April
  • 2015 May
  • 2015 June
  • 2015 July
  • 2015 August
  • 2015 September
  • 2015 October
  • 2015 November
  • 2015 December
  • 2016 January
  • 2016 February
  • 2016 March
  • 2016 April
  • 2016 May
  • 2016 June
  • 2016 July
  • 2016 August
  • 2016 September
  • 2016 October
  • 2016 November
  • 2016 December
  • 2017 January
  • 2017 February
  • 2017 March
  • 2017 April
  • 2017 May
  • 2017 June
  • 2017 July
  • 2017 August
  • 2017 September
  • 2017 October
  • 2017 November
  • 2017 December
  • 2018 January
  • 2018 February
  • 2018 March
  • 2018 April
  • 2018 May
  • 2018 June
  • 2018 July
  • 2018 August
  • 2018 September
  • 2018 October
  • 2018 November
  • 2018 December
  • 2019 January
  • 2019 February
  • 2019 March
  • 2019 April
  • 2019 May
  • 2019 June
  • 2019 July
  • 2019 August
  • 2019 September
  • 2019 October
  • 2019 November
Silicon Labs
  • About Us
  • In the News
  • Email Newsletter
  • Cookies
  • Contact Us
  • Community
  • Site Feedback
  • Investor Relations
  • Blog
  • Privacy and Terms
  • Corporate Citizenship
Copyright © Silicon Laboratories. All rights reserved.
粤ICP备15107361号-1