Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
What is Radiated EMI?

♦ A digital design can become an unintentional transmitter
♦ Circuit elements can act as antennas
 ➢ PCB traces
 ➢ Cables and connections
 ➢ IC's and devices
♦ This unintentional transmitter can cause problems for other intentional radio systems
Types of Radiated EMI Issues

♦ Regulatory: Fails a spec limit
 ➢ Examples
 ▪ System clock harmonics violate EN55022 maximum limits
 ▪ PWM signal harmonics in an automotive display exceed maximum level allowed by auto maker

♦ Functional: Interferes with itself
 ➢ Examples
 ▪ Radio scanner: System clock frequency may jam the receiver
 ▪ GPS blocking: 16th harmonic of system clock may block GPS reception
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
Radiation Mechanism: Antennas

♦ Intentional antennas—designed to radiate

♦ Unintentional antennas—not designed to radiate (but do!)
Reducing EMI

- To eliminate EMI, the engineer must
 - Reduce the currents or voltages exciting the antennas
 - Eliminate the transmitting antennas
 - Block the radiated fields

- In practical terms, this is done by
 - Understanding and minimizing high-frequency sources
 - Clean PCB layout
 - Using shielding
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
What is the Source of EMI?

♦ CMOS digital devices are made of thousands of gates

♦ For simplicity, consider each gate as a CMOS inverter:
V_DD Current

- In dynamic operation, transitions consume current
 - i_{CB}: Crowbar current
 - Both gates are momentarily on at the same time, conducting current from Vdd to ground
 - i_L: Load current
 - Output of the gate is likely connected to input of another gate
 - Gate inputs are capacitive

![Diagrams showing current flow](image-url)
V_{DD} current

- Periodic signals through gates cause current impulses

- Average current depends on switching frequency

- Spectrum depends on switching frequency
 - Usually system clock
 - Sometimes a subharmonic (sysclk/2, 3, 4, etc)
 - Peripherals often use sysclk/2
Think in terms of both AC and DC power supplies

Where does the AC current come from?

Ideal case

- Most AC current comes from on-chip sources
- Little or no AC current comes from off-chip sources
- Small current loop, small antenna
V_{DD} Current: DC and AC Components

- **Realistic case:**
 - AC current is sourced from outside the IC
 - On-chip capacitors are impractical: silicon area = larger die
 - Some on-chip capacitance does exist, but not enough

- **Engineer must think AC currents when designing PCB**
Think Loop Area

♦ Since AC currents need to flow outside the IC, there will be currents in loops

♦ Current loops = EMI transmitting antennas

♦ Make transmitting loop antennas small!

♦ Design a short path for the currents
 - Source currents (from \(V_{DD}\))
 - Return currents (through ground)

♦ Silicon Labs MCUs designed with adjacent power and ground pins to minimize loop area
Choosing Capacitors

- Ideal capacitor: \[Z_C = \frac{1}{j \omega C} \] \((Z_C \rightarrow 0 \text{ as } \omega \rightarrow \infty) \)

- Mag\([Z]\) of an ideal 0.1 uF capacitor:

![Graph showing capacitor impedance vs frequency](image-url)
Choosing Capacitors

♦ Unfortunately there are no ideal capacitors
♦ Real capacitor: capacitor in series with parasitic inductor
♦ Inductor adds impedance with increasing frequency

\[Z_C = \frac{1}{j\omega C} + j\omega L \]

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Parasitic inductance</th>
<th>Parasitic inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Choosing Capacitors

- Real capacitor—inductance cancels, dominates impedance

\[Z_C = \frac{-j}{\omega C} + j \omega L \]

- A capacitor behaves differently in three frequency bands
 1. \(f < \text{SRF} \): Capacitor acts like a capacitor (\(Z \downarrow \) as \(f \uparrow \))
 2. \(f = \text{SRF} \): Reactive impedances cancel
 3. \(f > \text{SRF} \): Capacitor behaves like an inductor (\(Z \uparrow \) as \(f \uparrow \))

- 0.1\(\mu \)F, SRF = 20MHz

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Capacitor Impedance</th>
<th>Ideal Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.001</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.001</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>
Choosing Capacitors

- Wrong capacitor may have little or no effect
 - Capacitors are capacitors only below SRF
 - Capacitors are inductors above SRF
 - Increasing inductive impedance will prevent capacitor from sourcing impulse currents
Choosing Capacitors

♦ Solution: select another capacitor
 ➢ Different capacitor values have different parasitics
 ➢ Choose capacitor for frequency of interest

♦ Help available from capacitor manufacturers
Capacitor Selection Examples

♦ Compare the imaginary impedance for various Murata capacitors

- 10pF (GRM1555C1H100JZ01)
- 33pF (GRM1885C1H330JA01)
- 100pF (GRM1555C1H101JZ01)
- 1000pF (GRM1555C1H102JA01)
- 1uF (GRM188F51C105ZA01)
Which Capacitor is Best?

- Use multiple capacitors in parallel
 - Example: 10pF || 1000pF || 1uF
Another Reason to Keep Short Traces

♦ Connecting trace to capacitor adds series inductance
 ➢ Simulate a 3mm trace with via to ground:

 ➢ Trace is inductive

![Graph showing connecting trace impedance](image-url)
Parallel capacitor combination effectiveness is reduced by additional trace inductance.
Internal Coupling/Leakage

- EMI can result from AC energy coupling to digital I/O lines inside the IC
- Static digital I/O's may be a source of EMI
- Possible causes:
 - Conduction through power supply
 - Capacitive coupling
 - Inductive coupling
Consider a simplified model

- Think of the EMI as a noise source with some impedance coupling it to a digital I/O
- Current at the digital I/O is from two sources
 - Digital driver (good)
 - EMI (bad)
Internal Coupling/Leakage

♦ How should we block the noise? Add a capacitor?

♦ May make EMI worse
 - Capacitor provides a low-impedance path outside the IC
 - The low impedance path may increase current
Internal Coupling/Leakage

- Add series resistance? May help
 - Less current (good and bad current) flows through high impedance
 - May reduce EMI by reducing currents flowing outside IC

- Disadvantage
 - Adding resistance may attenuate or distort the wanted signal
 For example, it may not provide enough LED current, or may slow a signal's slew rate
Internal Coupling/Leakage

♦ Troubleshooting experiment
 - Set $R = \infty$ by lifting pin
 - Reduced EMI means that this pin is contributing
Add an external inductor or choke?

- Provides high impedance for high frequencies, low impedance for low frequencies

Disadvantages

- Inductor may actually create and radiate EMI (inductors turn electric currents into magnetic fields)
- Inductors cost more than resistors and capacitors
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
Time and Frequency Domains

♦ Signals can be represented in time or frequency domains
 ➢ Fourier transform \mathcal{F}: Transform between time and frequency domains
 ➢ Digital designers think in time domain
 ➢ EMI measurements are in the frequency domain

♦ Periodic events in a circuit create distinct EMI frequencies
 ➢ Frequencies often harmonics of the system clock
 ➢ Frequencies may be harmonics of system clock subharmonics
 ▪ Example: Flash memory read every third sysclock period
 ➢ Digital waveforms will create harmonics
 ▪ Square wave creates odd harmonics
 ▪ Impulse train creates even and odd harmonics
Fourier Transform Review

- **Square wave**
 - Square wave is composed of several odd harmonics
Fourier Transform Review

♦ Impulse train
 ➢ A series of pulses in time is a series of tones in frequency
Example—Spectrum of a Square Wave

- F120 24.5MHz sysclock from a port pin

Oscilloscope (time)
Spectrum Analyzer (frequency)
System Clock Design Tradeoffs

- Difficult to change waveform
- Easy to change system clock

Example—C8051F120
- reduce sysclk using clock dividers
- increase sysclk using clock multiplier
- 24.5MHz shown here
Spectrum of 6.025 MHz System Clock

Date: 23.MAY.2007 10:10:09
Spectrum of 12.25 MHz System Clock

Date: 23.MAY.2007 10:10:44
Spectrum of 24.5 MHz System Clock

Date: 23.MAY.2007 10:11:54
Spectrum of 49 MHz System Clock

Date: 23.MAY.2007 10:14:42
Spectrum of 98 MHz System Clock

Date: 23.MAY.2007 10:14:02
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
Measuring EMI

♦ Measured by an accredited EMI test facility
 ➢ Open-Air Test Site (OATS)
 ▪ Device placed 3 or 10 meters from measurement antenna
 ▪ Quiet, reflection-free environment
 ▪ Outdoors or anechoic chamber
Measuring EMI—Accredited Test Facility

- OATS test results
 - Listed in a table
 - Includes all frequencies found
 - Shows both passing/failing frequencies
 - Data for horizontal and vertical receiving antenna polarization
Measuring EMI

♦ GTEM cell
- GTEM cell is an enclosure and antenna in one unit
- Used with a spectrum analyzer and correlation software
- Many digital design companies have one for pre-compliance testing
- Silicon Laboratories has one
- Not normally certified
Measuring EMI—GTEM

- GTEM test results
 - Continuous test data vs. tabular
 - Measurement shows computed OATS equivalent
 - Data shows worst-case antenna orientation
Measuring EMI

♦ Loop antenna
 - Simple and inexpensive
 - Can make one yourself
 - Used with a spectrum analyzer
 - Good only for relative measurements
Loop antenna test results

- Spectrum analyzer plot
- Amplitude units arbitrary as antenna is not calibrated
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
Shielding—Theory

♦ Faraday cage
 ➢ Made of conductive material
 ➢ Charges in conductor move to cancel electric field
 ➢ Faraday cage can keep fields out or in
Shielding—Troubleshooting

♦ Copper Foil Tape
 ➢ Available from 3M
 (www.3m.com, search for '1125')

♦ Tips and Tricks
 ➢ Make good ground connection
 ▪ Leave no gaps
 ▪ Solder to ground in many places
 ➢ Start by shielding small areas
 ▪ Shield a device or specific traces rather than a large area: helps pinpoint EMI source
 ➢ Adhesive is not conductive
 ▪ (Even if manufacturer says it is)
 ▪ Use solder for good connection
 ➢ Use Kapton tape beneath copper
 ▪ Keeps copper tape from shorting out IC pins
Shielding—Production PCB

- Production: Shields
 - Commonly used in wireless, computational products
 - Effective, but adds cost
 - Good source for off-the-shelf shields:
 Leader-Tech
 (www.leadertechinc.com)

Patent No. 5,354,951
Shielding—Troubleshooting

- **Conductive paint**
 - Use to convert non-conductive plastic enclosures to conductive, EMI-shielded enclosures
 - Use in troubleshooting or production
 - Conductive plastics commonly used in laptop PC's, mobile phones, PDA's, etc
 - Available from MG chemicals: (http://www.mgchemicals.com/products/shielding.html)
Agenda

♦ EMI background
 ➢ Mechanisms
 ➢ Circuit-level causes
 ➢ Frequencies
 ➢ Measurements
 ➢ Shielding

♦ Example problem
Example Problem

♦ Product is a GPS data logger using a C8051F120 MCU
♦ Problem—GPS receiver sometimes loses satellite reception

♦ Hypothesis
 - EMI may be radiating from the micro in to the GPS antenna
 - EMI may be conducted from the micro to the power supply or control lines of the GPS
Frequencies

♦ Known
 - F120 sysclk: 98MHz (internal 24.5MHz * 4)
 - GPS receive band: 1575.42 +/- 1MHz

♦ Are any harmonics close?
 - 15 * 98MHz = 1470MHz
 - 16 * 98MHz = 1568MHz (close, but not in GPS RX band)
 - 17 * 98MHz = 1666MHz
Frequencies

- **Nominal case**
 - sysclk = 24.5 * 4

- **From datasheet**
 - sysclk = (24.5 ± 2%) * 4

- **Revisiting 16th harmonic**
 - 16 * (24.0 * 4) = 1536MHz
 - 16 * (25.0 * 4) = 1600MHz

- **Conclusion**
 - 16th harmonic can interfere with GPS reception
Frequencies—Possible Solutions

1. Use lower sysclk
 - Higher-order harmonic at 1568MHz
 - $1568\text{MHz} = 16 \times (24.5 \times 4) \text{ MHz}$
 - $1568\text{MHz} = 32 \times (24.5 \times 2) \text{ MHz}$
 - $1568\text{MHz} = 512 \times (24.5 / 8) \text{ MHz}$
 - Higher order: lower in amplitude

2. Use more accurate sysclk
 - 1568MHz does not interfere, but $1568 \pm 2\%$ does
 - Crystal, typical: ± 20ppm
 - $24.5 \text{ MHz} \pm 20$ppm = $24.500490 \sim 24.499510 \text{ MHz}$
 - $(24.5 \times 4) \text{ MHz} \pm 20$ppm = $1567.969 \sim 1568.031 \text{ MHz}$
 - Harmonics remain out of GPS RX band
Power Supply Bypass Capacitors

♦ Insufficient power supply bypassing
 - C8051F120 has four power supply/ground pin pairs: each should have capacitors
 - Lack of local capacitors may cause larger current loops
 - Single value of capacitor may not be effective for all frequencies
Power Supply Bypass Capacitors

Solution

- Place bypass capacitors at each V_{DD} pin pair (analog and digital)
- Use short connecting traces
- Connect to ground with vias placed close
- Use appropriate capacitance values
 - 22nF: $SRF = 50.6$ MHz (little help at GPS frequencies)
 - 10pF: $SRF = 2240$ MHz
EMI may conduct through data lines between MCU and GPS
Data Connections

♦ Solution—try series resistance/shunt capacitance on data lines
 ➢ Try different combinations
 ▪ Series resistance only
 ▪ Shunt capacitance only
 ▪ Both resistance and capacitance
 ➢ Recall that capacitance may make problem worse
Shielding

- Add a shield over the MCU area
Shielding

♦ Use ground plane as shield
 ➢ Mount MCU and GPS on opposite sides of PCB
Summary

♦ To effectively understand EMI problems
 ➢ Understand the frequencies involved and their relation to the system clock
 ➢ Expect high frequency harmonics
 ➢ Consider every node and trace as a potential radiating antenna

♦ To effectively troubleshoot EMI problems
 ➢ Think about minimizing the power supply path for high frequencies
 ➢ Select the correct capacitors
 ➢ Design the PCB to minimize loop areas
 ➢ Filter signal lines
 ➢ Use shielding if necessary

♦ There is no single EMI fix for all problems
 ➢ Don't be afraid to experiment!
Contact Information

♦ MCU Applications Team
 ➢ mcuapps@silabs.com