The Si2182 integrates digital demodulators for the Japanese and South American terrestrial ISDB-T standard and for all first and second generation DVB standards (DVB-T2/T/C/S2 and S2X) in a single advanced CMOS die. Leveraging Silicon Labs’ proven digital demodulation architecture, the Si2182 achieves excellent reception performance for each media while significantly minimizing front-end design complexity, cost, and power dissipation. Connecting the Si2182 to a hybrid TV tuner or digital only tuner, such as Silicon Labs’ Si217x/5x/4x devices, results in a high-performance and cost optimized TV or STB front-end solution.

Leveraging significant field experience in DVB terrestrial demodulation (DVB-T2/T), Silicon Labs’ internally-developed ISDB-T demodulator can accept standard or low-IF inputs (differential) and complies with the Brazilian SBTVD-T terrestrial specifications (ABNT NBR 16.601 and 15.604). Main features include fast channel scan, very short lock times, state of the art CCI performance, partial reception, and auxiliary channels decoding.

DVB-T2/T, DVB-S2/S and DVB-C demodulators are next-generation enhanced versions of proven and broadly-used Silicon Labs’ Si2169/68/67/66/64/62/60 devices. DVB-T2-Lite (ETSI EN 302 755-V1.3.1) compatibility is also supported.

The satellite reception allows demodulating widespread DVB-S, DIRECTV™ (DSS), DVB-S2, DIRECTV™ (ARC) legacy standards, and new Part II of DVB-S2 (S2X) satellite broadcast standard. A zero-IF interface (differential) allows for a seamless connection to market proven satellite silicon tuners. Si2182 embeds DiSEqCTM 2.0 LNB interface for satellite dish control and an equalizer to compensate for echoes in long cable feeds from the antenna to the satellite tuner input.

The cable reception allows demodulating widely deployed DVB-C legacy standard (ITU-T J.83 Annex A/C) and the Americas’ cable standard (ITU-T J.83 Annex B).

The Si2182 offers an on-chip blind scan algorithm for DVB-S/S2/ S2X and DVB-C/C2 standards, as well as a blind lock function. The Si2182 programmable transport stream output interface provides a flexible range of output modes and is fully compatible with all MPEG decoders or conditional access modules to support any customer application.

Features
- Pin-to-pin compatible with all Si216x/8x single demods family
- API compatible with all single and dual demods families
- ISDB-T (ABNT NBR 16.601 and 15.604)
 - 6, 7, and 8 MHz bandwidth
 - Partial reception supported
 - AC1 and AC2 decoding
- DVB-T2 (ETSI EN 302 755-V1.4.1) with T2-Lite (Annex I)
 - Bandwidth: 1.7, 5, 6, 7, and 8 MHz (and extended BW)
 - NorDig Unified 2.5 and D-Book 8 compliant
- DVB-S2 (ETSI EN 302 307-1 V1.4.1)
 - QPSK/8PSK demodulator
- DVB-S2X (ETSI EN302 307-2 V1.1.1)
 - QPSK/8PSK, 8/16/32APSK demodulator
 - Roll-off factors from 0.05 to 0.35
- DVB-T (ETSI EN 300 744)
 - OFDM demodulator and enhanced FEC decoder
 - NorDig Unified 2.5 and D-Book 8 compliant
- DVB-C (ETSI EN 300 429) and ITU-T J.83 Annex A/B/C
 - QAM demodulator and FEC decoder
 - 1 to 7.2 MSymbol/s
- DVB-S and DSS supported
 - QPSK demodulator and enhanced FEC decoder
 - 1 to 45 MSymbol/s for all satellite standards (<40 MSps in 32APSK)
- LDPC and BCH FEC decoding for T2 and S2 standards
- I²C serial bus interfaces (master and host)
- Firmware control (embedded ROM/NVM)
- Upgradeable with patch download via I2C or fast SPI
- Flexible TS output interface (serial, parallel, and slave)
- DiSEqC™ 2.0 interface and Unicable™ support for satellite
- Fast lock times for all media
- Low power consumption
- Two power supplies: 1.2 and 3.3 V
- 7x7 mm, QFN-48 pin package, Pb-free/RoHS compliant

Applications
- iDTV: on-board design or in a NIM
- Advanced multimedia STB, PVR, and Blu-ray recorders
- PC-TV accessories

Digital Demodulator Copyright © 2015 by Silicon Laboratories 11.5.15
Selected Electrical Specifications

(T_A = –10 to 75 °C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input clock reference</td>
<td></td>
<td>4</td>
<td></td>
<td>30</td>
<td>MHz</td>
</tr>
<tr>
<td>Supported XTAL frequency</td>
<td></td>
<td>16</td>
<td></td>
<td>30</td>
<td>MHz</td>
</tr>
<tr>
<td>Total power consumption</td>
<td>ISDB-T^1</td>
<td></td>
<td>168</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>total power consumption</td>
<td>DVB-T2^2</td>
<td></td>
<td>356</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>total power consumption</td>
<td>DVB-T4</td>
<td></td>
<td>182</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>total power consumption</td>
<td>DVB-C4</td>
<td></td>
<td>142</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>total power consumption</td>
<td>DVB-S2^2</td>
<td></td>
<td>421</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>total power consumption</td>
<td>DVB-S^5</td>
<td></td>
<td>230</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>2 layer PCB</td>
<td></td>
<td>35</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>thermal resistance</td>
<td>4 layer PCB</td>
<td></td>
<td>23</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Power Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_DD_VCORE</td>
<td></td>
<td>1.14</td>
<td>1.20</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>V_DD_VANA</td>
<td></td>
<td>3.00</td>
<td>3.30</td>
<td>3.60</td>
<td>V</td>
</tr>
<tr>
<td>V_DD_VIO</td>
<td></td>
<td>3.00</td>
<td>3.30</td>
<td>3.60</td>
<td>V</td>
</tr>
</tbody>
</table>

Notes:
1. Test conditions: 8K, 64-QAM, CR = 7/8, GI = 1/32, 13 segments
2. Test conditions: 8 MHz, 256-QAM, 32K FFT, CR = 3/5, GI = 1/128, PP7, parallel TS, C/N at picture failure.
3. Test conditions: 8 MHz, 8K FFT, 64-QAM, parallel TS.
4. Test conditions: 6.9 Mbaud, 256-QAM, parallel TS.

Pin Assignments

<table>
<thead>
<tr>
<th>Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>Si2182-B60-GM</td>
</tr>
</tbody>
</table>